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Abstract

Causal discovery is the problem of learning the structure of a graphical causal model that 

approximates the true generating process that gave rise to observed data. In practical problems, 

including in causal discovery problems, missing data is a very common issue. In such cases, 

learning the true causal graph entails estimating the full data distribution, samples from which are 

not directly available. Attempting to instead apply existing structure learning algorithms to 

samples drawn from the observed data distribution, containing systematically missing entries, may 

well result in incorrect inferences due to selection bias.

In this paper we discuss adjustments that must be made to existing structure learning algorithms to 

properly account for missing data. We first give an algorithm for the simpler setting where the 

underlying graph is unknown, but the missing data model is known. We then discuss approaches to 

the much more difficult case where only the observed data is given with no other additional 

information on the missingness model known. We validate our approach by simulations, showing 

that it outperforms standard structure learning algorithms in all of these settings.
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1. Introduction

Causal discovery is an unsupervised learning problem where the goal is to recover as much 

structure of a causal graphical model as possible from data generated from a process well-

approximated by such a model. A large literature on this problem exists, with causal 

discovery algorithms falling into three general types. Constraint-based algorithms, such as 

the PC algorithm and the FCI algorithm (Spirtes et al., 2001), attempt to rule out graphs 

inconsistent with constraints found in the data, and return the set of remaining graphs. 

Score-based algorithms, such as GES (Chickering, 2002), rank models with a score that 

rewards model fit, and penalizes model complexity, and finds high ranking models using 

exhaustive or local search. Finally, parametric methods such as LiNGAM exploit parametric 

assumptions to infer causal structure (Shimizu et al., 2006).

Using causal discovery algorithms in applications entails dealing with practical data analysis 

issues, including missing data. If available data has systematically missing entries, using 

only fully observed rows (complete cases) forms a biased view of the true underlying data 
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distribution, which can severely affect the performance of causal discovery algorithms, as 

we later show.

In this paper, we consider the problem of causal discovery under missing data. We make use 

of a statistical technique called Inverse Probability Weighting (IPW) – first developed in 

Horvitz and Thompson (1952) and then improved and generalized in Robins et al. (1994) 

and Scharfstein et al. (1999) – which weights datapoints by their sampling probability to 

alleviate biases due to imbalances in population classes. IPW has numerous applications 

when missing data is present, such as improvements to M-estimation (Wooldridge, 2007) 

and estimating biased population statistics (Vansteelandt et al., 2010), such as the population 

mean. Our methods also make use of IPW, but do so in a way that takes into account 

information pertaining to the data generation process and causes of missingness in order to 

improve causal structure learning.

Via simulations, we show that in settings where the underlying causal graph is unknown, but 

the missing data model is known, our adjustments based on IPW result in high quality 

inferences about the underlying graph. We also consider more complicated versions of the 

problem where neither the underlying graph nor the missing data model are known. In this 

setting, we give evidence that an algorithm that considers, by brute force, all possible 

sequences of reweightings of the observed data, will yield the sparsest output graph if it uses 

reweightings corresponding to the true missing data model. Moreover, this sparsest output 

will be closer to the true graph than outputs that use reweightings not licensed by the true 

model. The brute force reweighting algorithm, and the IPW adjusted algorithms can be 

viewed as using identification results for the full data distribution in missing data problems 

described in Mohan et al. (2013); Shpitser et al. (2015) to improve performance of structure 

learning when missing data is present.

For simplicity, we restrict our attention to learning directed acyclic graph (DAG) models 

using the PC algorithm (Spirtes et al., 2001), the standard constraint-based approach for 

DAGs. Although we do not pursue this here in the interests of space, our approach 

generalizes in a straightforward way to learning ancestral graphs (Richardson and Spirtes, 

2002) using the FCI algorithm, and to learning nested Markov models (Richardson et al., 

2017) using scoring approaches.

Our paper is organized as follows. Section 2 reviews notation and basic preliminaries, 

Section 3 discusses relevant material for causal discovery under missing data with our novel 

contributions beginning in subsection 3.3 onward, Section 4 contains our simulation results, 

and Section 5 contains our conclusions.

2. Notation and Preliminaries

We denote variables (or vertices in a graph) by capital letters V, and sets of variables (or 

vertices) by bold capital letters V. Values are denoted by lowercase letters v, and sets of 

values by bold lowercase letters v. For values v of V, and W ⊆ V, denote vW to be a subset 

of values in v for variables in W. A directed acyclic graph (DAG) is a graph with directed 

edges with no directed cycles. Given a DAG 𝒢 with a vertex set V, denote the sets of 
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parents, children, ancestors, and descendants of V as as pa𝒢(V) ≡ W |W Vexists in 𝒢 , 

ch𝒢(V) ≡ W |V W exists in 𝒢 , defined as an𝒢(V) ≡ W |W … V exists in 𝒢 , and 

de𝒢(V) ≡ W |V … W exists in 𝒢 , respectively. By convention, for any 

V , V ∈ an𝒢(V) ∩ de𝒢(V). For any V, define nd𝒢(V) = V\de𝒢(V). Given A ⊆ V, define the 

induced subgraph 𝒢A to be a DAG containing vertices A and only edges in 𝒢 between 

elements in A.

2.1 Statistical Models, Causal Models, and Causal Discovery of DAGs

A statistical model of a DAG 𝒢 with a vertex set V is the set of all distributions p(V) of the 

form

p(V) = ∏
V ∈ V

p(V | pa𝒢(V)) . (1)

For disjoint subsets A,B,C of V, we say that A is independent of B given C in p(V), written 

as a shorthand as (A ⫫ B | C)p if p(A | B ∪ C) = p(A | C).

Conditional independences in a distribution that factorizes as (1) can be read off by the d-

separation criterion (Pearl, 1988). We use (A ⫫ B |C)𝒢 as a shorthand for A being d-separated 

from B given C in a DAG 𝒢. In any distribution p(V) that factorizes as (1) according to a 

DAG 𝒢, the following global Markov property holds. For any disjoint subsets A,B,C of V,

(A ⫫ B |C)𝒢 implies (A ⫫ B |C)p(V) . (2)

The notion of causality we consider in this paper is based on the intervention operation do(a) 

(Pearl, 2009). This operation can be viewed as altering a system’s normal state from the 

outside, in the same way the value of a variable in a normally operating computer program 

can be altered artificially by a debugger. Given a distribution p(V), a subset A of V, and a 

value set a, the variation in V \ A after the operation do(a) is performed is called an 

interventional distribution and is denoted by p(V\A | do(a)). Just as statistical models can be 

viewed as sets of distributions defined by restrictions, causal models can be viewed as sets of 

interventional distributions defined by restrictions. In this paper, we define the weakest 

causal model of a DAG 𝒢, which postulates that for any A ⊂ V, and any values a of A, 

p(V\A | do(a)) = ∏V ∈ V\A p(V |apa𝒢(V) ∩ A, pa𝒢(V)\A).

The task of causal discovery algorithms is recovering 𝒢 given a dataset corresponding to 

p(V) which factorizes according to 𝒢. In fact, in general recovering the complete DAG 𝒢 is 

impossible due to observational equivalence, where two distinct DAGs 𝒢1, 𝒢2 yield the 

same statistical model. Because of observational equivalence, a causal discovery algorithm 

in general cannot distinguish distinct but observationally equivalent DAGs. For this reason, 
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the goal of causal discovery algorithms for DAGs is recovering the true DAG up to its 

equivalence class.

Regardless of the type of causal discovery algorithm used, assumptions are necessary for 

inferring causal structure from observational data. The standard assumption in the literature 

is that any conditional independence that holds in the data corresponds to some structural 

features of the underlying 𝒢. This assumption is called faithfulness. A distribution p(V) is 

said to be faithful for a DAG 𝒢 if for any disjoint subsets A,B,C of V,

(A ⫫ B |C)𝒢 if and only if (A ⫫ B |C)p(V) . (3)

2.2 Missing Data and Missingness Graphs

In missing data problems, samples from the full data distribution p(V) are not available. 

Instead, a subset L ⊆ V is sometimes observed in the data and sometimes missing, while O 
≡ V\L is always observed. For each Li ∈ L there exists an observability indicator Ri, such 

that Li is observed if Ri = 1, and Li is missing if Ri = 0. We define a set of indicators as R ≡ 
{Ri | Li ∈ L}. We represent this situation as follows. The variables in L are never observed 

themselves. However, for each Li ∈ L there exists a proxy variable Li* such that Li* = Li if R1 

= 1, and Li* is equal to a special value “?” if R1 = 0. Thus, the set of observed variables is Z 

≡ O ∪L* ∪ R.

Thus, the full data distribution p(V), and the observed data distribution p(Z) are related by 

the following identity:p(O,L*,R = 1) = p(V,R = 1) = p(R = 1 | V )p(V). This implies that if 

p(R = 1 | V) can be shown to be a function gR|V(p(Z)) of the observed data distribution, 

then, via IPW, the full data distribution p(V) is identified as p O, L*, R = 1 /gR |V(p(Z)).

A number of missingness models exist which permit identification of the full data 

distribution. In this paper, we will use graphical models of missingness, introduced in 

Mohan et al. (2013). A missingness graph 𝒢m is a directed acyclic graph with vertices 

corresponding to variables O,L,L*,R with the property that for every Li* ∈ L*, 

pa
𝒢m Li* = Li, Ri , and for every Ri ∈ R, ch𝒢 Ri ∩ V = ∅.

Just as with regular DAGs, we associate distributions p(O,L,R,L*) with a missingness DAG 

𝒢m with a vertex set O ∪ L ∪ R ∪ L* if it factorizes as (1) with respect to 𝒢m:

p O, L, R, L* = ∏
V ∈ O ∪ L ∪ R ∪ L*

p(V | pa𝒢(V)) . (4)

Missingness graphs can also be viewed as causal models, with elements in R being 

particularly useful to subject to the intervention operation, since

Gain and Shpitser Page 4

Proc Mach Learn Res. Author manuscript; available in PMC 2019 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



p O, L* |do 1R =
p O, L*, 1R

∏R ∈ R p(1R |1R ∩ pa𝒢(R), pa𝒢(R)\R) = p(O, L) = p(V) . (5)

See Mohan et al. (2013); Shpitser et al. (2015) for further details. Even though (5) is a 

version of the g-formula (in ratio form) for missing data problems, it cannot be applied 

directly to identify p(V), since elements of pa𝒢(R)\R for some R may intersect L, and thus 

may not always be observed.

A general algorithm for identifying the full data distribution in missingness graphs was 

given in Shpitser et al. (2015). This algorithm adapted causal inference ideas for identifying 

interventional distributions of the form p(Y | do(pa𝒢(Y))) involved in defining controlled direct 

effects for the task of identifying p(R = 1|R ∩ pa𝒢(R) = 1, pa𝒢(R)\R), and then applied (5).

As an example, consider the graph in Fig. 1 (a), where O = {C,D}, L = {A,B}. The 

application of the algorithm in Shpitser et al. (2015), with certain subproblems arising in the 

operation of the algorithm shown in Fig. 1 (b),(c), yields 

p(A, B, C, D) = p A*, B*, C, D, 1RA
, 1RB

/ q 1RA
|B, D, 1RB

⋅ q 1RB
| A, D , where

q(1RB
| A, D) =

pD(A* |1RA
, 1RB

)p(1RB
)

∑RB
pD(A* |1RA

, 1RB
)p(1RB

) ; q(1RA
|B, D, 1RB

) = pD(1RA
| 1RB

, B*) (6)

and pD RA, RB, A*, B* = ∑C p A*, B*, RA, RB |C, D p(C) .

3. Causal Discovery Under Missing Data

Having given the necessary preliminaries, we now consider the problem of causal discovery 

from missing data. We assume the observed data was generated from the observed data 

distribution p(Z) that was generated from a true missingness graph 𝒢m such that the 

distribution p(O,L,L*,R) factorizes according to 𝒢m as in (4)

A simple approach to causal discovery might be to ignore missing data entirely, and use the 

observed cases in the data as input to a causal discovery algorithm. The problem with this 

approach is illustrated by Fig. 1 (d), where A and C are always observed, and B is 

potentially missing, based on RB which is a function of A and C. Here, the true DAG has a 

single conditional independence (A ⫫ C | B), which would be easily recoverable if the 

algorithm were given samples from the full data distribution p(A,B,C). However, in the 

context of missing data, samples from this distribution are not available. If only samples 

from p(A,B*,C,RB) are available, and we use fully observed data rows, then the algorithm 

only sees samples from p A, B*, C | 1RB
. This introduces a form of selection bias known as 
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Berkson’s bias in the statistics literature or “explaining away” in the artificial intelligence 

literature. In this particular case, the result is that A is no longer independent of C given B if 

we also insist on conditioning on RB, as easily verified by d-separation in Fig. 1 (d). This 

version of Berkson’s bias misleads the PC algorithm into returning the complete graph 

rather than the equivalence class corresponding to A → B → C.1

A more sophisticated alternative would attempt to approximate the full data distribution first, 

before applying causal discovery algorithms. The difficulty is that generally in order to 

identify the full data distribution, we need to know the missingness graph. However, in 

causal discovery settings the true graph is unknown. In addition, in order to recover the true 

graph in missing data contexts, we need to introduce an extension of the faithfulness 

assumption. Before doing so, we introduce necessary conditional graphs, and kernels, which 

correspond to intermediate worlds after IPW is applied, and the fixing operation, which 

corresponds to a single application of IPW.

3.1 Conditional Acyclic Directed Mixed Graphs, Kernels and Fixing

A conditional acyclic directed mixed graph (CADMG) 𝒢(V, W) is a graph containing 

directed (→) and bidirected (↔) edges with no directed cycles such that no edge with an 

arrowhead into W exists (vertices W are drawn as squares, and meant to denote constants, 

while V are drawn as circles and meant to denote random variables). A CADMG may 

contain both a → and ↔ edge between the same pair of vertices. Given a CADMG 

𝒢(V, W), and a subset O ⊆ V, define the latent projection (Pearl, 2009) onto O, as a 

CADMG 𝒢(O, W) with a vertex set O,W, all edges in  between elements in O ∪ W, and 

the following additional sets of edges. First, a directed edge between V1,V2 ∈ O∪W is 

added if there exists a directed path from V1 to V2 with all intermediate elements not in O ∪ 
W. Second, a bidirected edge between V1, V2 ∈ O ∪ W is added if there exists a path from 

V1 ← ◦…◦ → V2 with no collider triples, with all intermediate elements not in O ∪ W. 

The latent projection can be viewed as a graphical analogue of marginalization in 

distributions, hence the suggestive notation. Note that a latent projection is not a simple 

graph, e.g. may include both → and ↔ connecting the same pair of vertices.

Given a CADMG 𝒢(V, W), we say a vertex V ∈ V is fixable in 𝒢 if no Z ∈ V \ {V } exists 

such that V ∈ an𝒢(Z), and V ↔ ∘ ↔ ... ↔ ∘ ↔ Z exists in 𝒢. For any vertex V fixable in 

𝒢(V, W), define a fixing operator ϕV(𝒢(V, W)) that produces a new graph 𝒢* that removes all 

arrows with arrowheads into V, and moves V from V to W in 𝒢*. For {V1, … Vk} ⊆ V, a 

sequence 〈V1, … Vk〉is fixable in 𝒢, if V1 is fixable in 𝒢, V2 is fixable in ϕV1
(𝒢), etc. For 

such a fixable sequence, define ϕ
V1, …Vk

(𝒢) as the generalization of 𝜙V defined via 

function composition.

Define a kernel q(V | W) as any mapping from values of W to a normalized density over V. 

Define marginalization and condition in kernels in the natural way. Given a kernel q(V | W) 

1.The authors thank Peter Spirtes for pointing this out.
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and a CADMG 𝒢(V, W), and V fixable in 𝒢, define a fixing operator ϕV(q; 𝒢) that produces a 

new object q * (V\ V |W ∪ V ) ≡ q(V |W)/q(V | nd𝒢(V) ∪ W). It is not difficult to show this 

object is always a kernel. For a fixable sequence above, define ϕ
V1, …Vk

(q; 𝒢) as the natural 

generalization of ϕV(q; 𝒢) defined via function composition.

Given a kernel q(V | W), and any A ⊆ V, B,C disjoint subsets of V∪W such that W ⊆ B∪C, 

we say (A ⫫ B | C)q if q(A | B,C) is only a function of A∪C. Given a CADMG 𝒢(V, W), and 

a kernel q(V | W), we say that q is Markov relative 𝒢 if for any A ⊆ V, B,C disjoint subsets 

of V ∪ W such that W ⊆ B ∪ C, if A is m-separated from B given C in 𝒢 then (A ⫫ B | C)q, 

where m-separation is a natural generalization of d-separation (Richardson and Spirtes, 

2002).

If a CADMG/kernel pair is obtained by applying ϕ to a DAG 𝒢(V) and a distribution p(V) 

that factories according to 𝒢, then the kernel is Markov relative to the CADMG (Richardson 

et al., 2017). An important result in that reference is that any two fixable sequences in 𝒢 on 

the same set Z ⊆ V applied to a CADMG 𝒢 and kernel q Markov relative to 𝒢, if they are 

ultimate derived from hidden variable DAGs and their distributions in an appropriate way, 

lead to the same CADMG and kernel (Richardson et al., 2017). For this reason, we can 

redefine fixing operators to apply to sets rather than sequences: ϕZ(𝒢) and ϕZ(q; 𝒢). A causal 

way to think about a CADMG 𝒢(V, W) and kernel q(V | W) obtained from p(V ∪ W) via ϕW 

is they represent an interventional distribution p(V | do(w)) (identified from p(V) in a 

particular way represented by ϕW), and a graph representing conditional independences in 

this distribution.

3.2 Faithfulness in Missing Data Causal Discovery Problems

The standard faithfulness assumption (3) implies all conditional independences are 

“structural.” For our problem we also need to consider generalized independence 

constraints, sometimes known as “Verma constraints” (Verma and Pearl, 1990). A simple 

example of a Verma constraint occurs in Fig. 1 (a). Here, in order to apply missing at 

random (MAR) approaches, it would be desirable to have RA be conditionally independent 

of A given the set of observed variables {C,D} or its subset. However, it’s easy to verify by 

d-separation in Fig. 1 (a) that this is not true for any such set. However, it is possible to show 

that in any distribution p(A,B,C,D,RA,RB,A*,B*) that factorizes as in Fig. 1 (a), RA is 

independent of A conditionally on D,RB in the kernel ϕD(p(A*,B*,C,D,RA,RB); 𝒢m

(A*,B*,C,D,RA,RB)). In the case of Fig. 1 (a), it is these types of generalized independences 

that result in identifiability of the full data distribution. The type of faithfulness assumption 

we need states, informally, that generalized conditional independences themselves are also 

all structural.

Definition 1 (weak generalized faithfulness)—Given a missingness graph 𝒢m with 

the observed variables Z ≡ O∪L*∪R, and the corresponding distribution p(R,V), p is 

weakly faithful to 𝒢m if for any set W ⊆ Z fixable in 𝒢m(Z), and any A ⊆ Z\W, and B,C 
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disjoint subsets of Z\(W∪A) such that W ⊆ B ∪ C, (A ⫫ B |C)
ϕW 𝒢m(Z)

 if and only if 

(A ⫫ B |C)
ϕW p(Z); 𝒢m(Z)

.

This assumption is stated on fixing sequences applied to the latent projection onto observed 

variables Z in a missingness graph 𝒢m. All variables involved in fixing operations are also 

always observed.

3.3 Causal Discovery with Graph-Agnostic Identifiable Models

Aside from generalized faithfulness described above, the simplest additional assumption we 

can make to make causal inference in the presence of missing data possible is that sufficient 

information on p(R | V) is available such that (i) p(V) is identified by some function f(p(Z)), 

and (ii) this function is not sensitive to the structure of 𝒢V
m. We call this type of missingness 

model a graphagnostic identifiable model. A simple example of such a model assumes that 

for every Ri ∈ R, ch
𝒢m Ri = Li*, and pa

𝒢m Ri ⊆ V\ Li . In this model, results in Mohan et al. 

(2013) show that the full data distribution p(V) is identified via IPW as 

p O, L*, 1R / ∏Ri ∈ R p 1Ri
O, L*\ Li* , 1R\ Ri

) , regardless of what the structure of the edges 

among V vertices is.

An alternative commonly used missingness model is the sequential monotone missing at 

random (MAR) model. In this model, variables in V are assumed to be under a total ordering 

≺, which induces a total ordering on elements of R, where Ri ≺ Rj if Li ≺ Lj. For every Li, 

define pre≺(Li) to be the set of variables in V earlier in the ordering than Li. Similarly, for 

every Ri, define pre≺(Ri) to be the set of variables in R earlier in the ordering than Ri. 

Monotonicity here means once a variable Li is missing, then for every Lj such that Li ≺ Lj, 

Lj is also missing. We further assume every Li is independent of Ri = 1, given pre≺(Ri) ∪ 
pre≺(Li). Under these assumptions, it is well known that regardless of graph structure on V, 

the full data distribution p(V) is identified as 

p O, L * , R = 1 /∏Ri ∈ R p Ri = 1|pre≺ Ri = 1, L j* |L j ≺ Li .

Causal discovery in graph-agnostic identifiable missingness models can be addressed by the 

following modification of the PC algorithm. First, use the structure of the (known) 

missingness model to obtain an estimator g(D) for p(1R | V), using an identified functional 

f(p(Z)) = p(1R | V). Then, replaced ordinary conditional independence tests in the PC 

algorithm with IPW-weighted tests, and apply the resulting modified PC algorithm to the 

observed data. As pseudo-code, we have:

Algorithm 1

CBR-PC algorithm

Input: Observed dataset D with corresponding variable sets V,O,L,L*, and R; a known estimator g(D) of p(1R | V).
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Output: An equivalence class of DAGs over V.

procedure CBR-PC

Construct an IPW-weighted conditional independence algorithm tester(A,B,C; D) for any (A ⫫ B |C)
p(Z)/ p 1R |V

using D and g(D).

return PC-alg(D,tester(A,B,C;D)).

end procedure

⊳ PC-alg denotes the PC algorithm from Spirtes et al. (2001), taking as input a dataset D and an algorithm tester(.) for 
performing any conditional independence hypothesis test (A ⫫ B | C)p using a dataset D drawn from p.

For example, the finite sample version of the PC algorithm which uses hypothesis tests 

based on the correlation matrix can be augmented by instead computing an appropriately 

weighted correlation matrix, while versions which use non-parametric independence tests 

may augment each test with the appropriate weights. For simplicity, in our simulations we 

restrict our attention to using weighted correlation matrices. We call this version of PC the 

correlation-based reweighted PC algorithm (CBR-PC). The following result is 

straightforward, and generalizes to other versions of the PC algorithm that use IPW with 

weights given by f(p(Z)) = p(1R | V).

Theorem 1 The CBR-PC algorithm is asymptotically consistent.

Proof: This follows from asymptotic consistency of the ordinary PC algorithm (Spirtes et al., 

2001), and the consistency of IPW estimators for any functional of the full data law, if p(R = 

1 | V) is identified (Tsiatis, 2006).

3.4 Causal Discovery with Unknown Identifiable Missingness Models

A much more difficult setting assumes a true underlying missingness graph 𝒢m where p(V) 

is identifiable, but where no part of 𝒢m is known, including the parts related to the 

missingness model. There are a number of difficulties in this setting. First, the appropriate 

(strong) version of weak generalized faithfulness needed in this setting cannot yet be stated 

precisely. This is because without knowing 𝒢m, we cannot be sure attempted divisions by 

conditional distributions are valid and interpretable causally as was the case with the 

operator ϕ. In such cases it is an open question whether graphs exist which properly capture 

independence structure of kernels obtained by such “invalid” operations, and if so what such 

graphs might look like. Without a characterization of these graphs, it is impossible to state a 

one to one correspondence between some notion of path separation in such graphs and 

independence in corresponding kernels formed by “invalid” operations. Second, the space of 

possible sequences of “invalid” fixing operations is very large. It is not currently known how 

to minimize the number of hypothesis tests performed, in the way the PC algorithm does, 

when fixing operations are involved. Third, given that an independence after fixing was 

found, it is not currently known what the full implications of this are for graphical structure.

Nevertheless, a simple algorithm for learning the graph of an unknown identifiable 

missingness model, based on conjecture by James M. Robins, is as follows. Given a set of 

variables, try all possible fixing sequences, apply the PC to the resulting (possibly “non-
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causal”) kernel, and output the pattern with the fewest edges. As shown in the following 

section, the sparsest graph found in this way appears to be closest to the true graph, and 

corresponds to a sequence fixable under the true graph. However, the general validity of this 

type of algorithm is an open problem due to issues we discuss above.

We now outline in more detail how to implement this algorithm, conjectured to be valid for 

finding correct structure up to equivalence in unknown identifiable missingness models. 

Recall that this algorithm applies PC to a kernel obtained by an arbitrary (and not 

necessarily fixable relative to the true graph) fixing sequence from the observed data 

distribution p(Z). Since we only have observed data as an empirical approximation of p(Z), 

we proceed via an iterative resampling scheme suggested by Robins. Assume we are 

interested in a fixing sequence where we divide by 〈p(H1 | T1), … ,p(Hk | Tk)〉. We first 

learn a model of p(H1 | T1;α1) via maximum likelihood (in our experiments we used a 

random forest method, but we believe any flexible strategy would be appropriate). Then, we 

use a weighted bootstrap approach with IPW to select, from the original dataset 𝒟 of size n, 

another dataset 𝒟1 of size n. Specifically, we select a row in 𝒟 with replacement, such that 

each row i has a selection probability 
1/ p H1

i |T1
i ; α1

∑ j = 1
n 1/ p H1

j |T1
j ; α1

. After obtaining 𝒟1, we then fit a 

model p(H2 | T2; α2) by maximum likelihood now using 𝒟1, and use this model to select a 

dataset 𝒟2 of size n from 𝒟1, where rows are selected with replacement with probability 

similar to above, except the learned H1 model is replaced with the learned H2 model. We 

iteratively proceed in this way until we obtain 𝒟k. In addition, if a fixing sequence p(Hj | Tj) 

is such that Tj contains all variables, then we ignore the operation (as it corresponds to a 

marginalization and can be safely skipped without affecting subsequent hypothesis tests). 

This dataset is used as an empirical approximation of the kernel resulting from applying the 

above fixing sequence to p(Z).

As an example, of the scheme, assume we are interested in applying (6) to p(Z) given by 

variables in Fig. 1 (a). For q 1RA
|B, D, 1RB

, we first learn a model p(D | C), then use 

weighted bootstrap with weights 1/p(D | C) to generate a dataset from which a model for 

q 1RA
|B, D, 1RB

 is learned (skipping the step of fixing C, since it corresponds to a 

marginalization). Similarly, for q 1RB
| A, D  we use weighted bootstrap and IPW with 

weights 1/p(D | C) to generate a dataset 𝒟1, which is used to learn a model for p(RA | D,RB). 

We then use weighted bootstrap and IPW on 𝒟1 again, with weights 1/p(RA | D,RB), to 

generate a dataset 𝒟2, which is used to learn a model for q 1RB
| A, D . Finally, both q weights 

are used to reweigh observed cases, with the resulting weighted correlation matrix given as 

input to the PC algorithm.

The weighted bootstrap scheme can be viewed as mimicking the fixing operations of the 

identification algorithm for needed weights for R in Fig. 1 (a), but ignoring all fixing 
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operations that correspond to marginalization. This is due to the fact that marginalizations do 

not affect independence statements, and all fixing operations can be reordered so 

marginalizations are computed last, see also Theorem 7 in Shpitser et al. (2009).

4. Simulations

To illustrate the advantages of the CBR-PC algorithm, we focused on cases where the 

regular PC algorithm performs well given the full data distribution but performs poorly 

given observed cases only. The CBR-PC algorithm completely reverses this performance 

gap, learning causal structure given samples from the observed data distribution nearly as 

well as the the PC algorithm that is given access to samples from the full data distribution.

We generated random sparse DAGs of size 9, 12, 15 and 18 of degree 2. The DAGs were 

parameterized as multivariate normals via the standard parameterization given by the LDL 

decomposition of the precision matrix (Lauritzen, 1996). For all DAGs, we considered the 

model with disconnected R variables. For DAGs of size 9, we also considered the sequential 

monotone MAR model. In all cases, we generated p(R | pa
𝒢m(R)) using a noisy-or model, in 

order to generate strong Berkson’s bias due to only observing cases where R = 1. For all 

cases, we generated 10 trials for 20 random DAGs, at sample sizes ranging from 1000 to 

30000.

We note that the CBR-PC performance is not significantly affected by percentage of 

missingness ranging up to around 90%, in which case the small sample size of observed 

cases starts to negatively affect performance. This in contrast to the original PC algorithm, 

which performs progressively worse as percentage of missingness increases. For all 

simulations, we set the percentage of missing rows at around 60% ± 8 for each trial in order 

to clearly illustrate the negative effects of missing data the original PC algorithm may 

plausibly face in practical scenarios.

We compared four versions of the PC algorithm. The algorithm that used the true full data 

distribution, the algorithm that used the observed cases only, and the algorthms that 

reweighted observed cases using either the true model p(R | V), or the model p(R | V) 

learned using the random forest method described in Chipman et al. (2010). We scored the 

output of the algorithms by subtracting one point for every skeleton edge or collider that was 

different between the output, and the true equivalence class, with the best score 

corresponding to recovering the true equivalence class thus being 0.

The results are shown in Fig. 2 (a), (b), and Fig. 3 (a), (b) (c),, and show that CBR-PC is 

generally doing as well as the PC algorithm running on the full data distribution, and the PC 

algorithm using the observed data distribution doing poorly in general, and more poorly with 

larger sample sizes. We believe this is due to the fact that some false edges introduced due to 

Berkson’s bias are “weak,” and thus cannot be detected at low sample sizes.

Second, we illustrate how the harder version of the problem, where no information about 𝒢m

is known might be approached by learning the graph in Fig. 1 (a). First, we verified that even 

in cases where p(R | V) is identified via a complex function of the observed data, such (6) 
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for Fig. 1 (a), learning this function correctly and applying CBR-PC to the observed data 

yields performance that is not much worse than that obtained by running PC on the true data. 

See Fig. 2 (c) for the summary of our experiments.

Lastly, we approach the even harder version of the problem where no causal structure is 

known at all. We applied the pseudo-algorithm outlined in section 3.4 to data generated from 

the graph in Fig. 1 (a), by trying a random subset of 60 reweighting sequences, including the 

true sequence licensed by the model. The scores of the resulting graphs are shown in Fig. 4, 

with the score for the true sequence shown first. It’s clear that given the sequences we tried, 

the average score of the true sequence is better than all others. We emphasize that while the 

algorithm we suggest has promising performance in our experiments, it’s formal validity for 

learning the true structure of a DAG under unknown identifiable missingness models 

remains an open problem.

5. Conclusions

In this paper we consider the problem of causal discovery from datasets with missing 

entries. In short, the CBR-PC algorithm outperforms standard structure learning algorithms 

significantly in all scenarios considered, properly accounting for missing data. Lastly, in 

addition to considering the problem of causal discovery in missing data problems, we 

believe this paper is the first time constraint-based causal discovery procedures were adapted 

to take advantage of generalized independence (or Verma) constraints (Verma and Pearl, 

1990; Richardson et al., 2017).
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Figure 1: 
Vertices in green correspond to variables that are always observed. (a) An example where 

the full data distribution p(A,B,C,D) is identifiable from the observed data distribution 

p(RA,RB,A∗,B∗,C,D). (b),(c) Graphs corresponding to subproblems considered considered 

by the identification algorithm. (d) A simple missingness graph, where causal discovery 

from the observed data distribution leads to recovering an erroneous graph.
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Figure 2: 
A comparison of four versions of the PC algorithm for learning sparse DAGs from 

observations with missing data. (a) Under the “disconnected R” model with random DAGs 

(b) Under the sequential MAR model with random DAGs. (c) For the model in Fig. 1 (a). 

Here the algorithm that learned p(R | V) used weighted bootstrap for reweighting.
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Figure 3: 
Additional simulations of the “disconnected R” model with random DAGs. (a) 12-node 

graphs (b) 15-node graphs (c) 18-node graphs
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Figure 4: 
The weighted bootstrap approach applied to a number of fixing sequences on a single dataset 

size of 10000. The left-most score corresponds to the correct fixing sequence.
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