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Summary

The Nun Study, a longitudinal study to examine risk factors for the progression of dementia, 

consists of subjects who were already diagnosed with dementia (i.e., prevalent cohort) and those 

who do not have dementia (i.e., incident cohort) at study enrollment. When assessing the risk 

factors’ effects on the survival time from dementia diagnosis until death, utilizing data from both 

cohorts supports more efficient statistical inference because the two cohorts provide valuable 

complementary information. A major challenge in analyzing the combined cohort data is that the 

prevalent cases are not representative of the target population. Moreover, the dates of dementia 

diagnosis are not ascertained for the prevalent cohort in the Nun Study. Hence, the survival time 

for the prevalent cohort is only partially observed from study enrollment until death or censoring, 

with the time from dementia diagnosis to study enrollment missing. In this paper, we propose an 

efficient estimation method that uses both incident and prevalent cohorts under the proportional 

mean residual life model. By assuming proportionality of the mean residual life time with 

covariates in the incident cohort, we can utilize the natural relationship between the mean residual 

life function and the hazard function of the survival time measured from enrollment until death for 

the prevalent cohort. We evaluate the efficiency gain from using the combined cohort data through 

simulations and demonstrate that the proposed method is valid and efficient.
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1 | INTRODUCTION

Prospective observational studies are commonly used to identify and evaluate risk factors 

that are associated with disease-specific survival. Such studies occasionally include both 

incident and prevalent cohorts. For example, the Nun Study of Aging and Alzheimer’s 
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Disease (Nun Study),1 which motivates this work, involves an incident cohort of subjects 

who have not experienced dementia onset and are followed over time to monitor the 

potential diagnosis of dementia and death; and the prevalent cohort of subjects who already 

have dementia but have not experienced death at the time of study entry. The two cohorts 

provide valuable complementary information: the incident cohort is a random sample from 

the target population; and the prevalent cohort includes more deaths since subjects are 

sampled in the midst of dementia. Thus, analyzing the combined data from both cohorts 

yields more efficient statistical results. However, statistical analysis using the combined data 

has received less attention in the literature.

The data from the Nun Study consist of 501 subjects after excluding 177 participants who 

had missing key covariates (22) or withdrew consent (155). Among the participants 

represented in the data, 77 (about 15%) already had dementia and 424 were not yet 

diagnosed with dementia at study entry; these participants comprise the prevalent and 

incident cohorts, respectively. During the prospective follow-up, 153 subjects among the 

incident cohort were diagnosed with dementia. The dates of diagnosis of dementia were not 

available for the 77 subjects with dementia in the prevalent cohort. The combined cohort 

data are illustrated in Figure S1 of the web-based supplementary materials. In the statistical 

literature, the Nun Study data have been used primarily to illustrate Markov transition 

models,2,3,4,5,6 which has excluded the data from the prevalent cohort. We aim to take 

advantage of data from both the prevalent and incident cohorts for more efficient evaluation 

of the relationship between the risk factors and the survival time after diagnosis of dementia. 

In addition to the challenge of properly adjusting for sampling bias, a major issue when 

analyzing the combined data from the Nun Study is that the dates of dementia diagnosis for 

the prevalent cases were not ascertained. Thus, we only observe the time from study 

enrollment to death (referred to as the “forward recurrence time”) with the information of 

the time from diagnosis of dementia to study enrollment (referred to as the “backward 

recurrence time”) missing for the prevalent cohort.

We consider the proportional mean residual life (PMRL) model 7 to assess the effect of risk 

factors on the residual survival time. By assuming proportionality of the mean residual life 

time with covariates, we can utilize the natural relationship between the mean residual life 

function and the hazard function of the forward recurrence time to analyze the combined 

cohort data. In Section 2, we introduce notations to depict the combined cohort data and 

present the connection between the PMRL model and the proportional hazards (PH) model. 

We review existing estimation methods for data from the incident cohort only and the 

prevalent cohort only, and propose efficient estimating equations for the combined cohorts in 

Section 3. The asymptotic properties are also established in this section. We investigate finite 

sample properties through simulation studies under various settings in Section 4. In Section 

5, we use the proposed method to analyze the Nun Study data. We provide some remarks in 

Section 6.

2 | NOTATIONS AND MODEL

We consider data from both the incident and prevalent cohorts with respective sample sizes 

of n1 and n2. For the incident cohort, we denote T0 and a p × 1 vector X as the duration from 
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disease diagnosis to death and the time-independent covariates, respectively. Let C be the 

duration from disease diagnosis to a censoring event. Then, the observed data from the 

incident cohort consist of independent and identically distributed (i.i.d.) {(Ti, Ai, Xi), i = 1, 

… , n1}, where T i = min(T i
0, Ci) and Δi = I(T i

0 ≤ Ci). We assume that the censoring time C is 

conditionally independent of T0 given covariates X. We note that the incident cohort is 

representative of the target population. For prevalent cases, the dates of dementia diagnosis, 

which occurred prior to enrollment, are unknown. Thus, only partial information on survival 

times that is measured from the study enrollment is available. We introduce additional 

notations to represent the event times observed from the prevalent cohort. Let V0 and a p × 1 

vector Xv denote the duration from enrollment to death and the time-independent covariates 

for the prevalent cohort, respectively. Unlike the censoring time C for the incident cohort, 

the censoring time Cv is measured from enrollment until a censoring event. The observed 

prevalent cohort data are i.i.d. {(V i, Δi
υ, Xi

υ), i = 1, ..., n2}, where V i = min(V i
0, Ci

υ) and 

Δi
υ = I(V i

0 ≤ Ci
υ). The censoring time for the prevalent cohort, Cv, is assumed to be 

conditionally independent of V0 given covariates Xv. Based on research about dementia,8,9 it 

is reasonable to assume that the natural history of dementia follows a stationary Poisson 

process. Under such an assumption, the prevalent cohort is subject to length-biased 

sampling.

The mean residual life function for the underlying survival time T0 at time t can be defined 

as m(t | X) = E(T0−t | T0 > t, X). To assess the covariate effects on the mean residual time, 

we assume the PMRL model 7 as

m(t X) = m0(t)exp(β┬X), (1)

where m0(t) is the unspecified positive baseline mean residual life function and β is a p × 1 

vector of coefficients. We may use existing methods to fit the model to data from the 

incident cohort only. 10,11 However, the observed data from the prevalent cohort cannot 

directly fit model (1) because the survival times are length biased and the backward 

recurrence times are missing. Under length-biased sampling, it is shown that the conditional 

density function of the forward recurrence time V0 given covariates X is

f
V0 X

(υ X) = S(υ X)
m(0 X) ,

where S(· | X) is the conditional survival function of T0 and m(0 | X) is the mean survival 

time of T0 given X. 12 It follows that the hazard function of the forward recurrence time is

λυ(t X) = S(t X)/m(0 X)

t
τS(u X)/m(0 X)du

= S(t X)

t
τS(u X)du

= 1
E(T0 − t T0 > t, X)

= 1
m(t X)
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where τ is the finite upper bound that satisfies Pr(T > τ) > 0. Therefore, as discussed by 

Maguluri and Zhang,13 Chen and Cheng,10 and Chen et al.,11 the PMRL model for T0 

implies the following PH model for the forward recurrence time V0:

λυ(t X) = {m(t X)}−1 = {m0(t)}−1exp(− β┬X) = λ0
υ(t)exp(− β┬X), (2)

where λ0
υ( ⋅ ) is the positive unspecified baseline hazard function of the forward recurrence 

time.

3 | ESTIMATION METHODS

3.1. | Estimation for Incident Cohort

For data from an incident cohort, Maguluri and Zhang 13 proposed an estimation method 

under the PMRL model when censoring was absent. Chen et al. 11 extended the method to 

accommodate right censoring using the inverse probability of censoring weighted (IPCW) 

approach. The IPCW estimating equation assumes that censoring is independent of the 

covariates. While the assumption can be relaxed to tackle a censoring distribution that is 

dependent on the covariates, as discussed in the paper, the censoring mechanism needs to be 

modelled. An alternative semiparametric estimation procedure was developed based on the 

counting process theory by Chen and Cheng. 10 We briefly review their method in this 

section.

Based on the definition of m(t | X) and using an inversion formula, we can derive the 

conditional survival function of T0 given X,

S(t X) = m(0 X)
m(t X) exp −

0

t
1

m(u X)du .

Under model (1), it follows that

m0(t)dΛi(t) = exp(− β┬Xi)dt + dm0(t), (3)

where Λi(t) is the cumulative hazard function of T i
0. Let Ni(t) = I(Ti ≤ t)Δi and Yi(t) = I(Ti ≥ 

t). Define

Mi(t; β, m0) = Ni(t) −
0

t

Y i(s)dΛi(s; β, m0), (4)
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where dΛi(t;β, m0) = {exp(−β┬Xi)dt + dm0(t)} for i = 1, …,n1.Expression (4) is a zero-

mean martingale when β = β* and m0( ⋅ ) = m0*( ⋅ ), where β* and m0* are the true parameter 

and the true baseline mean function, respectively. Based on equation (3) and expression (4), 

the following estimating equations are constructed to estimate m0( ⋅ ) and β,

1
n1 i = 1

n1
m0(t)dNi(t) − Y i(t){exp(− β┬Xi)dt + dm0(t)} = 0 (5)

1
n1 i = 1

n1

0

τ

Xi m0(t)dNi(t) − Y i(t){exp(− β┬Xi)dt + dm0(t)} = 0 (6)

A closed form solution is available for m0(·) from equation (5),

m0(t; β) = {S(t)}−1

t

τ

S(u)Q(u; β)du,

where S(t) = exp{−
0

t

i = 1

n1
dNi(u)/ i = 1

n1 Y i(t)} and 

Q(t; β) =
i = 1

n1
Y i(t)exp(− β┬Xi)/ i = 1

n1 Y i(t). After replacing m0(t) with m0(t; β) in equation 

(6), we have the estimating function for β

UI(β) = 1
n1 i = 1

n1

0

τ

{Xi − X(t)}{m0(t; β)dNi(t) − Y i(t)exp(− β┬Xi)dt}, (7)

where X(t) =
i = 1

n1
Y i(t)Xi/ i = 1

n1 Y i(t). The estimator βI can be obtained from the solution to 

UI(β) = 0. Chen and Cheng10 showed that n1
1/2(βI − β∗) converges weakly to a normal 

distribution with mean zero and covariance matrix AI
−1

I
AI

−1 under the regularity 

conditions (C1)−(C5) listed in Appendix A.1. We define matrices AI and ƩI in Appendix A.

2. The covariance matrix AI
−1

I
AI

−1 can be consistently estimated by 

{AI(βI)}
−1 ΣI (βI){AI(βI)}

−1, where
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ΣI (β) = 1
n1 i = 1

n1

0

τ

{Xi − X(t)} ⊗ 2Yi(t)m0(t; β){exp(− β┬Xi)dt + dm0(t; β)},

AI(β) = 1
n1 i = 1

n1

0

τ

{Xi − X(t)} ⊗ 2Yi(t)exp(− β┬Xi)dt,

in which a ⊗ 2 = aa┬ for any vector a.

3.2 | Estimation for Prevalent Cohort

As discussed, data arising from prevalent sampling are subject to length bias, which hinders 

one from applying the method proposed for the incident cohort. Under the PMRL model, 

Bai et al. 14 proposed a semiparametric method for right-censored length-biased data, 

adopting the IPCW approach. That method properly addressed the induced dependent 

censoring issue and sampling bias, which are commonly encountered in length-biased data 

with right censoring. However, that method is not directly applicable to our motivating data 

because the survival times are not available due to missing backward recurrence times. Due 

to the special relationship between the PMRL and the PH models shown in equation (2), it is 

sufficient to estimate the covariate effects using only the observed forward recurrence times 

from the prevalent cohort. Note that we are estimating the same regression coefficient β for 

the target population under model (1) with the prevalent cohort data as with the incident 

cohort data. This approach has been studied for right-censored length-biased data by Chan et 

al. 15 for cross-sectional sampled data with no follow-up or data with no information on the 

disease diagnosis time. The prevalent cohort data in our study belong to the latter case.

Denote Ni
υ(t) = I(V i ≤ t)Δi

υ and Y i
υ(t) = I(V i ≥ t), for i = 1, …, n2, Define 

S(k)(β, t) = n−1
i = 1
n2 Xi

υ ⊗ kexp(− β┬Xi
υ)Y i

υ(t) for k = 0,1, and 2, where a ⊗ 0 = 1, a ⊗ 1 = a, 

a ⊗ 2 = aaT for any vector a. Based on the relationship shown in equation (2), we can 

estimate the regression parameter _ by adopting the partial likelihood score function,

UP(β) = 1
n2 i = 1

n2

0

τ

{Xi
υ − ε(β, t)}dNi

υ(t), (8)

where ε(β, t) = S(1)(β, t)/S(0)(β, t). The solution to UP(β) = 0 is the estimator βP Under the 

regularity conditions (C1)–(C4), and (C6) listed in Appendix A.1, the distribution of 

n2
1/2(βP − β∗) converges to a normal distribution with mean zero and covariance matrix 
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AP
−1 ΣP AP

−1, where AP and ƩP are defined in Appendix A.3. We can consistently estimate 

AP
−1

P
AP

−1 by {AP(βP)}−1 ΣP (βP){AP(βP)}−1, where

ΣP (β) = 1
n2 i = 1

n2

0

τ

{Xi
υ − ε(β, t)}dNi

υ(t)

⊗ 2

,

AP(β) = 1
n2 i = 1

n2

0

τ
S(2)(β, t)
S(0)(β, t)

− {ε(β, t)} ⊗ 2 dNi
υ(t) .

Note that the estimating function (8) is equivalent to the score function for conventional 

survival data under the PH model, except for the unknown regression coefficients being 

negative of β. Thus, we can implement the estimation method using readily available 

software.

3.3 | Estimation Using the Combined Cohorts

Although the data arising from the two cohorts have distinct data structures with different 

time variables, they are from the same target population. Thus, we may use the combined 

cohort data to make inference for the target cohort under model (1) regarding survival times. 

To improve statistical efficiency, we propose an estimation method that combines the two 

weighted estimating functions using data from the incident and prevalent cohorts. We 

consider a class of weighted linear combinations of the estimating functions (7) and (8):

UC(β) = 1
n{W1n1UI(β) + W2n2Up(β)}

= 1
n W1

i = 1

n1

0

τ

{Xi − X(t)}{m0(t; β)dNi(t) − Y i(t)exp(− β┬Xi)dt}

+W2
i = 1

n2

0

τ

{Xi
υ − ε(β, t)}dNi

υ(t) ,

(9)

where W1 and W2 are p × p weight matrices. We combine the estimating equations derived 

from each cohort instead of using the weighted average of the two estimators, βI and βp, to 

avoid imposing a restrictive condition that the optimal estimator is a linear combination of 

the two estimators. Note that the total sample size increases to n = n1 + n2 by combining the 

data from the two cohorts. We can obtain a class of estimators βC by solving UC(β) = 0 for β.
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Among the class of estimators βC, we derive the estimator with the smallest asymptotic 

variance by finding the optimal W = (W1, W2). Let ρ = limn1 ∞, n2 ∞n1/(n1 + n2). Based 

on the large sample properties of the estimators βI and βp, the asymptotic covariance matrix 

of n1/2 βC − β *  is

ΩC(W) = {ρW1AI + (1 − ρ)W2Ap}−1{ρW1∑I W1
T + (1 − ρ)W2∑pW2

T} {ρW1AI + (1 − ρ)W2Ap}−1 T .

By the matrix Cauchy–Schwarz inequality,16 for any W,

ΩC(W) ≥ Ωopt = {ρAI∑I
−1 AI + (1 − ρ)AP∑P

−1 AP}−1 .

We can attain the efficiency bound Ωopt when the weight matrices W1 = AI∑I
−1 and 

W2 = Ap∑p
−1, which are the optimal weights. Since the optimal weights depend on the 

unknown parameter β, we proceed to a two-step estimation. We first derive an estimator that 

is consistent with β* by solving UC(β) = 0 with W1 = W2 = Ip×p, where Ip×p is the identity 

matrix, to obtain the first-step estimator βC. Then, the efficient estimator βopt is the solution 

to

Uopt(β) = 1
n{W1n1UI(β) + W2n2Up(β)} = 0,

where W1 = AI(βC){ ΣI (βC)}−1 and W2 = AP(βC){ ΣP (βC)}−1. The asymptotic properties of 

βoPt are summarized in the following theorem.

Theorem 1. Under the regularity conditions listed in Appendix A.1, n1/2(βopt − β∗)

converges weakly to a normal distribution with mean zero and covariance matrix Ωopt.

The detailed proofs of Theorem 1 are provided in Appendix A.4. The covariance matrix Ωopt

can be consistently estimated Ωopt,

ρAI(βopt){ ΣI (βopt)}
−1AI(βopt) + (1 − ρ)AP(βopt){ ΣP (βopt)}

−1AP(βopt)
−1

,

where ρ = n1/n.

4 | SIMULATION STUDY

We conducted simulation studies to investigate the finite sample properties of the proposed 

estimation method for the combined cohort data. We simulated 1000 datasets that consist of 
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n1 subjects from the incident cohort and n2 subjects from the prevalent cohort. Total sample 

sizes of n = n1 + n2 = 200 and 400 were considered with various combinations. We 

considered two covariates: X1 from a Bernoulli distribution with probability 0.5 and X2 from 

a uniform distribution (0, 1) for both cohorts. Conditioning on X1 and X2, the survival time 

T0 was generated from the same target population under the mean residual life model m(t | 
X1, X2) = (at+b) exp(β1X1 +β2X2), where parameters for the baseline mean function (a, b) = 

(0.1, 0.5) and the true coefficients (β1, β2) = (0.5, −0.5). For the incident cohort, we 

randomly generated n1 observations, (T i
0, X1i, X2i), i = 1, … , n1. For the prevalent cohort, we 

generated the left truncation time A from a uniform distribution and only kept observations 

that satisfy T0 > A. We continued the sampling procedure until we sampled n2 observations 

(V j
0, X1 j

υ , X2 j
υ ) j = 1, … , n2, where V j

0 = T j
0 − A j, and X1 j

υ = X1 j, X2 j
υ = X2 j for subject j with 

T j
0 > A j. Since both cohorts are subject to right censoring, we generated censoring times C 

and Cv from a uniform distribution (0, τC ) and chose τC to allow for 15% and 30% of 

censoring rates overall. Under this setting, the censoring rate of each cohort is about the 

same. The distributions of C and Cv share the same support because the follow-up periods 

for both cohorts are the same in practice. The generated dataset consists of 

{(T i, Δi, X1i, X2i), (V j, Δ j
υ, X1 j

υ , X2 j
υ ); i = 1, …, n1, j = 1, …, n2}.

We denoted βI as the estimator using the simulated incident cohort data only, βP using the 

simulated prevalent cohort data only, and βC and βopt as the proposed estimators using data 

from both cohorts with identity weight matrices and the optimal weights, respectively. 

Tables 1 and 2 summarize the simulation results. When the overall censoring rate is as low 

as 15%, all estimators present virtually unbiased point estimates, the asymptotic standard 

errors are close to the empirical standard deviations of the point estimates, and the coverage 

probabilities are close to the nominal level of 95%. We note that the relative efficiency of the 

estimators βI and βP highly depends on the number of samples in each cohort. When there 

are more samples and hence more failure events in the incident cohort than in the prevalent 

cohort (i.e., n1 > n2), βI has smaller variance, which indicates that it is more efficient than 

βP, and vice versa. When the proposed method is used for the combined cohort data, we 

have an increased sample size of n1 + n2. Thus, we observe smaller variance estimates for 

βC and βopt compared to βI and βP under all settings. To assess the efficiency gain of the 

proposed estimators over βI and βP, we compute the relative efficiency, which is defined as 

the ratio of the mean squared errors of the estimators. For example, when n1 = 100, n2 = 

100, and the censoring rate is 15%, βC for β1 is 1.86 and 1.93 times more efficient than βI

and βP, respectively; and βopt is respectively 2.08 and 2.15 times more efficient. The 

proposed estimator with optimal weights βopt is relatively more efficient than βC across all 

settings. While the point estimates for βopt tend to be slightly more biased than βC due to the 

two-step estimation procedure, the mean squared errors of βopt are smaller in every setting.
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With an increased censoring rate of 30%, we find some bias for βI, where only the incident 

cohort data are used. A similar trend was observed in the original simulation studies on βI

conducted by Chen and Cheng. 10 In the simulation results under a censoring rate of 30%, 

we observe that the estimators βC and βopt are less biased and more efficient than βI. 

Therefore, combining information from the prevalent cohort data with that from the incident 

cohort data is desirable, especially under heavy censoring rates.

5 | APPLICATION

The Nun Study, introduced in Section 1, has been conducted to examine risk factors for the 

progression of dementia, with a cohort of 678 members of the School Sisters of Notre Dame 

religious congregation who were 75 years of age or older and recruited between 1991 and 

1993. 1 Each participant received an assessment of her cognitive and physical function near-

annually up to 10 years. At each examination, the participant’s cognitive status was recorded 

as one of the five following states: cognitively intact for age, cognitive deficit that does not 

affect activities of daily living, cognitive deficit in one or more activities of daily living, 

clinical dementia, and death. Covariates such as age at each exam, presence of the 

apolipoprotein E-e4 allele (APOE4), and the level of education were collected.

To illustrate the proposed estimation method, we use the combined cohort data, which 

consist of 501 subjects with complete data from the Nun Study. Among them, 153 incident 

and 77 prevalent cases were used in the analysis. In the data, the exact time of death was 

recorded if it occurred before the last follow-up. If a subject did not die by the last 

examination, her survival time was censored. Among the incident cases, 29 (19%) subjects 

were right censored; and only two (2.6%) were right censored among the prevalent cases. 

The overall censoring rate was as low as 13.5%. For the incident cohort, the data include the 

survival time from dementia diagnosis until death or the censoring event. When a subject 

was assessed as clinically demented at one of the annual examinations, we assumed that 

dementia occurred in the middle of two consecutive examinations. However, for the 

prevalent cohort data, we only have the information that the subject was demented prior to 

enrollment; hence, the backward recurrence time is missing. Instead, we have the forward 

recurrence times from study enrollment until death or the censoring event for the prevalent 

cohort. We considered two covariates of interest: the level of education and the presence of 

the genetic risk factor APOE4. The distribution of the covariates are summarized in Table 3 

by each cohort and for the combined cohorts.

We conducted regression analyses to estimate the effects of the educational level and 

APOE4 on the mean residual survival time under the PMRL model (1). The analyses were 

carried out using the incident cohort only, the prevalent cohort only, and the combined 

cohort data with optimal weights. In the analysis of the incident cohort data, the support of 

the censoring distribution is greater than that of the survival distribution, which satisfies the 

assumption for the method using only the incident cohort. 10 The estimated distributions of 

the survival time and the censoring time are provided as Figure S2 in the web-based 

supplementary materials. We present the results in Table 4 . None of the estimated 

regression parameters were found to be significantly associated with the mean residual 
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survival time, which is consistent with the findings in the literature. Qiu et al. 17 and Helmer 

et al. 18 showed that educational level was not significantly correlated with the mortality of 

subjects who had dementia, while a lower level of education was found to be associated with 

higher risk of dementia in other studies. 19 Mez et al. 20 suggested that the incidence of 

dementia may mediate the effect of APOE4 on mortality, given that both APOE4 and 

dementia are high risk factors for decreased survival times among older adults. Thus, among 

subjects diagnosed with dementia,

APOE4 has not been found to be a significant risk factor for death.

Under the assumption that the incident and prevalent cohorts are from the same population, 

we can examine the proportional means assumption by checking the proportional hazards 

assumption using the prevalent cohort. We confirmed that the assumption is reasonable: the 

p-values are 0.66 and 0.19 for the presence of APOE4 and the level of education, 

respectively; and 0.39 for the global test. However, it should be noted that the model 

diagnostic test may have low power. Another assumption is that data observed in the 

prevalent cohort are subject to length bias (i.e., the incidence of dementia follows a 

stationary Poisson process). However, the information about the time from dementia onset to 

enrollment is missing for the prevalent cohort data, which hinders one from checking this 

assumption. As an alternative, we can compute the dementia incidence rate using the 

incident cohort only data, provided that the two cohorts are from the same population. The 

incidence rate was fairly constant over the follow-up period, with no specific trend. Hence, 

the stationarity assumption is reasonable for our application.

6 | CONCLUSION

In observational studies, prevalent samples are commonly collected along with the incident 

cohort from a single study population. Combining data from incident and prevalent cohorts 

can substantially improve efficiency and ensure robustness of the estimators when assessing 

the risk factors’ effects on survival times. This is an efficient way of utilizing the data 

because the combined cohort data are usually available at no additional cost. While 

statistical methods for the analysis of the combined cohort data would make invaluable 

contributions to many studies, such methods are limited in the literature.

In this paper, we assume the PMRL model for the target population. One advantage of 

assuming such a model is that it directly leads to the PH model on the forward recurrence 

times for the prevalent cohort. Hence, we can use the conventional survival method for the 

incident cohort under the PMRL model. For the prevalent cohort data, which has a 

nonstandard structure with missing backward recurrence times, we can use the PH model 

without additional assumptions or extra effort. Thus, the proposed estimation method 

involves two estimating functions that are constructed differently for data from the incident 

and prevalent cohorts.

In the estimating function for the combined data (9), we only use data from the incident 

cohort to derive the consistent estimator m0(t; β) for m0(t). To estimate the baseline mean 

function m0(t) more efficiently, one may consider combining the data om the prevalent 
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cohort. Based on equation (2), m0(t) is the inverse of the baseline hazard function of the 

forward recurrence time,λ0
υ(t). Hence, a naive approach is to estimate the inverse of λ0

υ(t)

based on the Nelson–Aalen estimator for the cumulative hazard 0function. However, the 

estimated baseline cumulative hazar0d function is nonsmooth and results in a noisy estimator 

for λ0
υ(t) as in conventional survival analyses, which leads to an unstable estimation of m0(t). 

As an alternative, one may adopt the kernel smoothing method to estimate the baseline 

hazard function,λ0
υ(t).21 A major drawback of applying the smoothing method is that the 

choice of bandwidth, which is crucial, involves computationally intensive procedures. 

Further studies on combining data for more efficient estimation of m0(t) are of interest.

Subjects were examined periodically in the Nun Study. While the dates of death were 

accurately recorded, the onset of dementia is only known to occur within time intervals (i.e., 

interval censored). In our application, we adopted a simple approach by assuming that the 

event occurred in the middle of the interval since that was not the focus of the current paper. 

Further research that tackles the issue of interval censoring is certainly warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

A LARGE SAMPLE PROPERTIES OF THE ESTIMATORS

A.1 Regularity conditions

(C1) Given any X = x, Pr(T0 < C /x) > 0; and given any Xυ = x, Pr(V0 < Cυ/x) > 0.

(C2) The parameter space of β is a compact subset of ℝp, and the true parameter value β* is 

in the interior of the parameter space.

(C3) The true baseline mean function m0
∗(t) is continuously differentiable on [0, τ].

(C4) A p × 1 vector of covariates X is bounded by some constant, and not contained in a (p 
− 1)-dimensional hyperplane.

(C5) AI = 0
τ E {X − μX(t)} ⊗ 2S∗(t /X)exp(− β∗TX)  dt is nonsingular, where µX(t) is the limit 

of X(t) as n1 ∞ and S∗(t /X) = Pr(T > t /X).
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(C6) AP =
0

τ
s(2)(β∗, t)
s(0)(β∗, t)

− {e(β∗, t)} ⊗ 2
s(0)(β∗, t)λ0

υ(t) dt is positive definite, where s(k)(β, t) is 

the limit of S(k)(β, t) for k = 0,1, and 2, and e(β, t) is the limit of ε(β, t) as n2 ∞.

A.2 Asymptotic properties of βI

The asymptotic properties of the estimator βI have been established in the appendix of Chen 

and Cheng. 10 Here, we briefly outline the results. Given that m0(t; β∗) converges to m0
∗(t)

almost surely, we have

n1
1/2UI(β∗) = n1

−1/2
i = 1

n1

0

τ

(Xi − X(t) −
E S(t /X){X − μX(t)}

E{S(t /X)} ) m0
∗(t)dMi(t) + oP(1) .

Thus n1
1/2UI(β∗) converges weakly to a normal distribution with mean zero and covariance 

matrix

∑I =
0

τ

E {X − μX(t)} ⊗ 2S∗(t /X)m0
∗(t){exp(− β∗TX)dt + dm0

∗(t)} .

Provided that ∂m0(t, β∗)/ ∂β= − m0
∗(t)μX(t) + oP(1), it is shown that ∂UI(β∗)/ ∂ β converges in 

probability to AI, is defined in (C5). By applying the Taylor series expansion, one can show 

that n1
1/2UI(β∗) = {− ∂UI(β∗)/ ∂ β}n1

1/2(βI − β) + oP(1). Hence, it follows that n1
1/2(βI − β)

converges weakly to a normal distribution with mean zero and covariance matrix 

AI
−1

I AI
−1.

A.3 Asymptotic properties of βP

We establish the asymptotic properties of βP following the large sample studies conducted 

by Andersen and Gill 22 for conventional survival data. Let Mi
υ(t) = Ni

υ(t) − 0
t λi

υ(s) ds, where 

λi
υ(t) = λ0

υ(t)exp(− β┬Xi). We can represent the estimating function UP(β) evaluated at β* as 

follow:

n2
1/2UP(β∗) = n2

−1/2
i = 1

n2

0

τ

{Xi
υ − ε(β∗, t)}dMi

υ(t) + oP(1) .

The distribution of n2
1/2UP(β∗) is asymptotically normal with mean zero and covariance 

matrix
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∑P =
0

τ
s(2)(β∗, t)
s(2)(β∗, t)

− {e(β∗, t)} ⊗ 2
s(0)(β∗, t)λ0

υ(t)dt .

By the Taylor series expansion,n1
1/2UP(β∗) = {− ∂UP(β∗)/ ∂ β}n2

1/2(βP − β∗) + oP(1). Note that 

∂UP(β∗)/ ∂ β converges in probability to AP, which is defined in (C6). Thus, n2
1/2(βP − β∗)

asymptotically follows a normal distribution with mean zero and covariance matrix 

AP
−1

P
AP

−1.

A.4 Proofs of Theorem 3.1

Given the optimal weights W1 = AI ΣI
−1 and W2 = AP ΣP

−1, we rewrite the estimating 

function Uopt(β) in summations of i.i.d. vectors, as follows.

n1/2Uopt(β) =
n1
n AI∑I

−1 1
n1 i = 1

n1

0

τ

(Xi − X(t) −
E S(t /X){X − μX(t)}

E{S(t /X)} ) m0
∗(t)dMi(t)

+
n2
n AP∑P

−1 1
n2 i = 1

n2

0

τ

{Xi
υ − ε(β, t)}dMi

υ(t) + oP(1) .

Based on the asymptotic properties of βI and βP, it follows that n1/2Uopt(β∗) is 

asymptotically normal with mean zero and covariance matrix 

Σ = ρAI ΣI
−1 AI + (1 − ρ)AP ΣP

−1 AP. This is straightforward because the incident and 

prevalent cohorts are independent.

By the Taylor series expansion of U(βopt) around β*, we have

n1/2(βopt − β∗) = {− ∂
∂ β Uopt(β)}

−1
n1/2Uopt(β∗),

where β is on the line segment between βopt and β*, and

∂
∂ β Uopt(β) =

n1
n AI∑I

−1 ∂
∂ β UI(β) +

n2
n AP∑P

−1 ∂
∂ β UP(β) .

We can easily show that ∂Uopt(β)/ ∂ β converges in probability to 

ρAI ΣI
−1 AI + (1 − ρ)AP ΣP

−1 AP, which is equal to Ʃ. Therefore, n1/2(βopt − β∗) is 

asymptotically normal with mean zero and covariance Ωopt = Σ−1 Σ Σ−1 = Σ.

Hyun Lee et al. Page 14

Stat Med. Author manuscript; available in PMC 2019 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Denote an arbitrarily small neighborhood of β* as ß Following the arguments in Chen and 

Cheng,10 Pr(βopt ∈ B) = 1 because Uopt(β∗) 0 can be extended to any β ϵ ß under the 

regularity conditions on uniform convergence. Thus, βopt is consistent with β*.

Given the consistency of ÂI(β), ÂP(β), ΣI (β), and ΣP (β), and assuming that ƩI and ƩP are 

nonsingular, we can show that the estimators of the optimal weights 

W1 = AI(βC){ ΣI (βC)}−1 and W2 = AP(βC){ ΣP (βC)}−1 converge in probability to AI ΣI
−1

and AP ΣP
−1, respectively, where βC is a consistent estimator of β*
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TABLE 1

Summary statistics of simulation results for estimating (β1, β2) = (0.5, −0.5) with n = 200. Monte Carlo mean 

of the estimates (Est), the empirical standard deviation (SD), the mean standard error (SE), the mean squared 

error (MSE) and the coverage probability (CP) using incident cohort only (βI), prevalent cohort only (βP), and 

both incident and prevalent cohorts (βC and βopt) with sample sizes of n1 and n2 for incident and prevalent 

cohorts, respectively, and censoring rates (cr) of 15% and 30%.

β1 Β2

n1 n2 cr Est SD SE MSE CP Est SD SE MSE CP

125 75 15% βI
0.481 0.208 0.206 0.043 0.943 −0.489 0.347 0.359 0.120 0.950

βP
0.526 0.276 0.274 0.077 0.948 −0.502 0.492 0.468 0.242 0.950

βC
0.502 0.171 0.172 0.029 0.954 −0.484 0.302 0.297 0.091 0.952

βopt
0.487 0.162 0.164 0.026 0.950 −0.493 0.279 0.282 0.078 0.947

30% βI
0.422 0.199 0.198 0.046 0.934 −0.429 0.336 0.346 0.118 0.936

βP
0.519 0.306 0.300 0.094 0.951 −0.499 0.547 0.517 0.299 0.940

βC
0.471 0.186 0.181 0.035 0.948 −0.450 0.322 0.314 0.106 0.934

βopt
0.443 0.164 0.165 0.030 0.940 −0.456 0.281 0.285 0.081 0.934

100 100 15% βI
0.476 0.232 0.229 0.054 0.945 −0.470 0.390 0.401 0.153 0.950

βP
0.513 0.236 0.235 0.056 0.951 −0.524 0.401 0.399 0.161 0.938

βC
0.498 0.169 0.171 0.029 0.955 −0.499 0.286 0.294 0.081 0.951

βopt
0.486 0.161 0.163 0.026 0.950 −0.497 0.273 0.280 0.074 0.944

30% βI
0.417 0.222 0.222 0.056 0.927 −0.416 0.381 0.387 0.152 0.938

βP
0.509 0.256 0.258 0.066 0.951 −0.539 0.446 0.442 0.200 0.952

βC
0.476 0.182 0.182 0.034 0.942 −0.486 0.307 0.314 0.095 0.958

βopt
0.450 0.165 0.167 0.030 0.942 −0.473 0.284 0.288 0.081 0.953

75 125 15% βI
0.473 0.263 0.263 0.070 0.943 −0.469 0.463 0.459 0.215 0.933

βP
0.512 0.217 0.209 0.047 0.939 −0.514 0.365 0.353 0.134 0.950

βC
0.501 0.172 0.170 0.030 0.940 −0.495 0.297 0.289 0.088 0.947

βopt
0.489 0.163 0.163 0.027 0.946 −0.492 0.286 0.277 0.082 0.943

30% βI
0.421 0.252 0.254 0.069 0.942 −0.415 0.452 0.443 0.212 0.940
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β1 Β2

n1 n2 cr Est SD SE MSE CP Est SD SE MSE CP

βP
0.515 0.234 0.227 0.055 0.946 −0.512 0.407 0.388 0.166 0.945

βC
0.491 0.185 0.181 0.034 0.944 −0.478 0.326 0.311 0.107 0.953

βopt
0.466 0.167 0.168 0.029 0.949 −0.469 0.307 0.289 0.095 0.944
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TABLE 2

Summary statistics of simulation results for estimating (β1, β2) = (0.5, −0.5) with n = 400. Monte Carlo mean 

of the estimates (Est), the empirical standard deviation (SD), the mean standard error (SE), the mean squared 

error (MSE) and the coverage probability (CP) using incident cohort only (βI), prevalent cohort only (βP), and 

both incident and prevalent cohorts (βC and βopt) with sample sizes of n1 and n2 for incident and prevalent 

cohorts, respectively, and censoring rates (cr) of 15% and 30%.

β1 Β2

n1 n2 cr Est SD SE MSE CP Est SD SE MSE CP

250 150 15% βI
0.479 0.142 0.146 0.021 0.946 −0.472 0.252 0.254 0.064 0.957

βP
0.514 0.184 0.190 0.034 0.970 −0.529 0.334 0.322 0.113 0.949

βC
0.496 0.116 0.120 0.013 0.954 −0.496 0.206 0.207 0.042 0.954

βopt
0.488 0.111 0.115 0.012 0.955 −0.493 0.196 0.199 0.038 0.960

30% βI
0.424 0.138 0.141 0.025 0.916 −0.422 0.243 0.246 0.065 0.941

βP
0.509 0.204 0.208 0.042 0.962 −0.534 0.371 0.357 0.138 0.941

βC
0.467 0.124 0.126 0.017 0.947 −0.473 0.217 0.219 0.048 0.957

βopt
0.446 0.113 0.116 0.016 0.927 −0.460 0.198 0.201 0.041 0.953

200 200 15% βI
0.475 0.162 0.163 0.027 0.945 −0.469 0.280 0.284 0.079 0.947

βP
0.516 0.172 0.164 0.030 0.931 −0.508 0.272 0.278 0.074 0.955

βC
0.501 0.121 0.120 0.015 0.940 −0.490 0.199 0.206 0.040 0.961

βopt
0.490 0.115 0.115 0.013 0.951 −0.488 0.191 0.198 0.037 0.956

30% βI
0.420 0.157 0.157 0.031 0.914 −0.420 0.273 0.275 0.081 0.941

βP
0.516 0.188 0.179 0.035 0.938 −0.517 0.309 0.307 0.095 0.952

βC
0.481 0.130 0.128 0.017 0.929 −0.475 0.217 0.221 0.048 0.958

βopt
0.456 0.116 0.118 0.015 0.928 −0.464 0.202 0.204 0.042 0.943

150 250 15% βI
0.478 0.192 0.188 0.037 0.944 −0.453 0.330 0.328 0.111 0.939

βP
0.508 0.144 0.145 0.021 0.963 −0.512 0.245 0.246 0.060 0.946

βC
0.500 0.119 0.119 0.014 0.949 −0.495 0.200 0.203 0.040 0.950

βopt
0.493 0.116 0.115 0.014 0.943 −0.491 0.194 0.196 0.038 0.949

30% βI
0.422 0.187 0.182 0.041 0.918 −0.410 0.323 0.318 0.112 0.933

Stat Med. Author manuscript; available in PMC 2019 May 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hyun Lee et al. Page 20

β1 Β2

n1 n2 cr Est SD SE MSE CP Est SD SE MSE CP

βP
0.504 0.156 0.158 0.024 0.959 −0.512 0.272 0.270 0.074 0.952

βC
0.483 0.125 0.127 0.016 0.955 −0.482 0.215 0.218 0.047 0.950

βopt
0.465 0.118 0.119 0.015 0.937 −0.470 0.203 0.205 0.042 0.959
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TABLE 3

Distribution of risk factors by cohort.

Variable Incident only
(n1 = 153)

Prevalent only
(n2 = 77)

Combined cohorts
(n = 230)

APOE4

  Presence 39 (25%) 29 (38%) 68 (30%)

  Absence 114 (75%) 48 (62%) 162 (70%)

EDCAT

College and higher 134 (87%) 49 (64%) 183 (80%)

  Others 19 (13%) 28 (36%) 47 (20%)
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TABLE 4

Regression analysis under the proportional mean residual life model using data from incident cohort only, 

prevalent cohort only, and combined cohorts. Estimated parameter (Est) and standard error (SE).

Incident only Prevalent only Combined cohorts

Est SE Est SE Est SE

APOE4

(presence=1, absence=0) 0.279 0.154 −0.278 0.245 0.148 0.131

EDCAT

(college and higher=1, others=0) −0.231 0.197 −0.470 0.253 −0.287 0.155

Stat Med. Author manuscript; available in PMC 2019 May 30.


	Summary
	INTRODUCTION
	NOTATIONS AND MODEL
	ESTIMATION METHODS
	Estimation for Incident Cohort
	Estimation for Prevalent Cohort
	Estimation Using the Combined Cohorts

	SIMULATION STUDY
	APPLICATION
	CONCLUSION
	APPENDIX
	References
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4

