Skip to main content
. Author manuscript; available in PMC: 2019 Jun 1.
Published in final edited form as: Biom J. 2019 Jan 7;61(3):698–713. doi: 10.1002/bimj.201800049

Table 2.

Empirical rejection probabilities for the weighted log-rank tests based on multinomial logistic regression and decision tree propensity methods. The decision tree method, we also report average number of strata (D) after the first classification (I), after pooling the strata with similar allocation proportions (I+II), after discarding the strata with no frequency in any of the three treatment groups (I+III), and pooling the strata with similar allocation proportions and discarding the strata with no frequency in any of the three treatment groups (I+II+III).(a) When K = 3

Allocation Censoring Multinomial Tree (I) Tree (I+II) Tree (I+III) Tree (I+II+III)
ANO Dun ANO Dun D ANO Dun D ANO Dun D ANO Dun D
(i) Undet H0 : β1=β2=β3
A1 19.6% 0.034 0.034 0.039 0.039 4.1 0.039 0.040 3.5 0.039 0.039 3.8 0.039 0.039 3.2
A2 19.6% 0.098 0.109 0.664 0.680 4.2 0.665 0.679 3.8 0.047 0.044 3.0 0.047 0.045 2.6
A3 17.4% 0.798 0.834 0.083 0.085 11.7 0.083 0.085 8.0 0.060 0.063 10.3 0.059 0.064 7.0
(ii) Undet H1 : β1=β2<β3
A1 26.6% 0.962 0.971 0.942 0.955 4.1 0.940 0.955 3.5 0.942 0.955 3.8 0.941 0.955 3.2
A2 24.4% 0.998 0.998 1.000 1.000 4.2 1.000 1.000 3.8 0.921 0.936 2.9 0.920 0.935 2.6
A3 23.4% 1.000 1.000 0.854 0.866 11.7 0.853 0.864 8.0 0.847 0.871 10.3 0.846 0.870 7.0
(iii) Undet H2 : β1<β2<β3
A1 24.6% 0.900 0.912 0.871 0.884 4.1 0.869 0.883 3.5 0.972 0.884 3.8 0.870 0.883 3.2
A2 21.8% 0.999 0.999 1.000 1.000 4.2 1.000 1.000 3.8 0.964 0.973 3.0 0.964 0.972 2.6
A3 21.2% 1.000 1.000 0.897 0.839 11.7 0.898 0.839 8.1 0.891 0.842 10.3 0.892 0.844 7.0