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Abstract

C—H functionalization is an attractive strategy to construct and diversify molecules. Heme
proteins, predominantly cytochromes P450, are responsible for an array of C—H oxidations in
biology. Recent work has coupled concepts from synthetic chemistry, computation, and natural
product biosynthesis to engineer heme protein systems to deliver products with tailored oxidation
patterns. Heme protein catalysis has been shown to go well beyond these native reactions and now
accesses new-to-nature C—H transformations, including C—N and C—C bond forming
processes. Emerging work with these systems moves us along the ambitious path of building
complexity from the ubiquitous C—H bond.
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Introduction

Selective replacement of the ubiquitous carbon—hydrogen (C—H) bond with a carbon—
heteroatom or a carbon—carbon bond is an outstanding synthetic chemistry challenge to
which engineered enzymes are starting to make important contributions. Collectively termed
C—H functionalization, this set of reactions has the immense potential to change the logic
of chemical synthesis [1, 2]. Though its development in synthetic chemistry has mainly been
realized in the last few decades, nature has utilized a C—H functionalization approach to
diversify molecules for eons. Most biological C—H functionalization reactions are catalyzed
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by cytochromes P450, a superfamily of heme-thiolate monooxygenases [3]. Inspired by the
heme cofactor, early work with small-molecule transition metal catalysts for C—H
hydroxylation employed the porphyrin scaffold [4]. It has since been demonstrated that
porphyrin is a versatile scaffold for diverse C—H functionalization reactions (Figure 1a) [5,
6].

We believe that nature’s heme proteins have great potential for C—H functionalization,
including catalyzing reactions with no biological counterparts. Enzymes could conceivably
offer catalyst-controlled selectivity, high turnover numbers, or eliminate dependence on
toxic noble metals, which are desirable advances for the field of C—H functionalization [1,
2]. While protein engineering has historically focused on improving the known function of
an enzyme [7], a recent paradigm shift has expanded this vision. The initial focus is now on
the target reaction, such as a C—H functionalization transformation, and the necessary
elements to achieve that chemistry, such as the ability to bind porphyrin. Protein engineers
then search through the vast collection of existing proteins, select those which have the
necessary parts (it can also be beneficial to introduce artificial cofactors or computationally
design a suitable protein [8]), and test for the desired activity. Once even a low level of the
activity has been found, a new enzyme can be created by directed evolution, a protein
engineering strategy which uses iterative cycles of mutagenesis and screening to accumulate
beneficial mutations that enhance catalyst performance (Figure 1b). This approach has
generated porphyrin-containing enzymes which oxidize C—H bonds with tailored site-
selectivity and perform new-to-nature C—H amination and C—C bond forming reactions.

In this short opinion piece, we survey C—H functionalization transformations catalyzed by
engineered heme proteins and the methods used to introduce or optimize these functions.
These efforts are compelling precedents for expanding the chemistry accessible to proteins,
and we anticipate that they will inform and inspire exploration of other protein systems for
new catalytic functions.

Oxidative transformations catalyzed by engineered cytochromes P450

Cytochromes P450 are nature’s most prevalent catalysts for C—H functionalization [9].
Enzymes of this vast family directly activate inert C—H bonds for a broad spectrum of
oxidative transformations such as hydroxylation, desaturation, decarboxylation, and carbon-
skeleton rearrangement [10, 11]. The exceptional activities of P450s have driven interest in
utilizing them for diverse synthetic purposes [12]. With their remarkable capability for site-
selective catalysis, P450s can be useful for late-stage molecular diversification. The use of a
directing group to effect site-selectivity, a concept commonly used in small-molecule
catalysis, has been combined with P450-catalysis using PikC from Streptomyces venezuelae
[13]. The natural substrates of PikC are macrolides, macrocyclic lactones with a desosamine
sugar; the desosamine sugar acts as an anchoring group and the N, A-dimethylamino moiety
forms a salt bridge with a protein glutamate residue [14]. From substrate engineering
studies, it was found that various synthetic N, A~dimethylamino and N, A-diethylamino
groups are also suitable anchoring groups and affect site-selectivity in PikC catalysis [15,
16e¢]. In a powerful illustration of molecular diversification by enzymatic C-H
functionalization, the merger of nickel and PikC catalysis accessed five different
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hydroxylated macrocyclic lactone products from a common linear intermediate (Figure 2a)
[16+¢]. In this reaction, nickel-catalyzed regiodivergent cyclization converted the linear
intermediate into 11- and 12-membered macrocycles; after appending anchoring groups, a
single enzyme variant acted on each substrate to hydroxylate at a different position with
good regioselectivity. Complementary to a substrate engineering approach, the application of
homologous P450s from different natural product pathways can also access diverse
outcomes available to a molecule. Starting from one intermediate, a combination of
polyketide synthase (PKS) modules, /n vivo glycosylation, and three different P450s
delivered several tylactonebased macrolide antibiotics with varied oxygenation patterns
(Figure 2b) [17°].

P450s have also inspired new strategies for complex molecule synthesis by offering catalysts
that address challenging selectivity issues [18]. A compelling example is the first
enantioselective total synthesis of nigelladine A [19e¢]. In this synthesis, a site-selective
allylic oxidation of a tricyclic intermediate at the C7 position is required. However, the
presence of multiple reactive allylic C—H bonds in this intermediate significantly
complicated the seemingly straightforward transformation. Indeed, a survey of a broad range
of chemical oxidation methods only led to mixtures of inseparable mono-oxidation and over-
oxidation products. This synthetic challenge was solved by P450g)3 variant 8C7, which was
identified through screening a small set of P450g),3 variants originally engineered for
oxidation of large substrates with privileged scaffolds [20]. P450 8C7 efficiently catalyzed
the desired C7 oxidation with up to 1700 total turnovers and enabled a concise synthesis of
nigelladine A (Figure 2c).

Computational methods such as molecular dynamics (MD) simulations have emerged as
powerful tools to facilitate the laboratory evolution/engineering of P450s [21]. These /n
sificomethods can unveil key residues involved in important dynamic interactions that are
not revealed by static structural data. Employing such a computation-driven approach,
Narayan et al. expanded the scope of P450 PikC to include six-membered small ring systems
[22¢]. In another demonstration, by combining large-scale MD simulations with site-
saturation mutagenesis, Dodani et al. identified several mutations (His176Phe/Tyr/Trp) that
completely redirect the regioselectivity of P450 TxtE-catalyzed nitration from the C4 to the
C5 position of L-tryptophan [23¢]. Additionally, there are also several studies that employ
docking and MD simulation to identify important mutational hotspots for improving
selectivity or substrate specificity of P450 hydroxylation [24, 25, 26].

Common to the many thousands of P450s is the conserved cysteine residue that acts as an
axial ligand to the heme iron. This axial cysteine is crucial for the C—H activation activity
of P450 compound | [27, 28]. In a study of the thermostable Sulfolobus acidocaldarius
CYP119, mutation of the axial cysteine ligand to all other canonical amino acids created
mutants which still folded and incorporated heme [29]. The crystal structure of a histidine-
ligated CYP119 variant exhibited a tilted heme accompanied by a large rearrangement of the
protein structure. While mutation of the axial ligand typically results in diminished or
abolished hydroxylation activity, Green et al. discovered that the hydroxylation activity of
CYP119 compound I could be enhanced by mutation of the axial cysteine to selenocysteine
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[30e¢]. This finding may open a new avenue for the development of robust P450 catalysts for
additional challenging transformations.

Advancing biocatalytic C—H amination using directed evolution

The frequent presence of nitrogen in natural products and drug molecules drives the search
for methods to form C—N bonds. Biological systems typically rely on enzymatic functional
group manipulation of pre-oxidized substrates to forge this bond. This approach has been
applied in the design of multi-enzyme biocatalytic cascades for formal C—H amination
(Figure 3a) [31, 32]. As a complement to nature’s biosynthetic logic, recent work with
engineered heme proteins has identified enzymes which directly install a C—N bond in
place of an sp®-hydridized C—H bond.

In a study to produce metabolites of drug molecules, mutants of cytochrome P450g)3 Were
discovered to perform an unusual cyclization reaction on lidocaine (Figure 3b) [33]. The
cyclization, an intramolecular C—H amination reaction, competes with A-dealkylation, a
known reaction of P450s. The distribution of the two products is entirely controlled by the
protein scaffold: two variants with divergent selectivity for A-dealkylation and cyclization
differed by a single amino acid. Further work created a set of P450g)3 variants which
performed a-functionalization of diverse 2-aminoacetamides and thioamides [34¢]. In the
proposed mechanism, P450 compound I is involved in the formation of an iminium species
which subsequently undergoes cyclization. Examples of this transformation are limited to
functionalization of a-amino C—H bonds, in agreement with the proposed mechanism.
Wild-type P450g\3 did not catalyze the cyclization reaction or gave only low conversion
(<5%) on model substrates, demonstrating that the discovered mutations promote the
chemistry [34e].

Heme proteins are not limited to the reactions of iron-oxo intermediates. When given the
opportunity to interact with certain nitrogen-containing substrates, heme proteins can
putatively form iron-nitrene species, which can then perform C—H amination. Though first
demonstrated nearly 35 years ago [35], it was only with the advent of modern directed
evolution techniques that variants of P450g),3 adopted the C—H amination function with
synthetically useful levels of activity [36, 37]. Remarkably, these enzymes can be engineered
to alter the regioselectivity of amination in an intramolecular system and override substrate
reactivity patterns [38]. The creation of an intramolecular C—H amination enzyme does not
necessitate use of an enzyme scaffold: Physeter catodon myoglobin, which has no known
natural catalytic function, was also engineered to perform this chemistry [39]. Additional
testing of engineered heme proteins [40] and directed evolution of heme protein-derived
catalysts, including a CYP119 derivative in which the heme group was replaced with Ir(Me)-
porphyrin [41], further expanded the scope of enzymatic C—H amination.

Intermolecular C—H amination affords increased synthetic flexibility. However, changing
from an intramolecular to an intermolecular reaction is a fundamental challenge in catalysis
[42], and to date there is only one report of heme protein-catalyzed intermolecular C—H
amination [43e]. In the intermolecular reaction, C—H insertion must compete with iron-
nitrene decomposition pathways without the implicit proximity advantage of an
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intramolecular arrangement. Nonetheless, directed evolution found a protein scaffold which
overcame these challenges: a serine-ligated P450g\3 variant delivered seventeen different
chiral amine compounds with good turnovers and high enantioselectivity (Figure 3c).

Previously thought to be absent from natural enzyme mechanisms, an iron-nitrene has been
put forth as a possible intermediate for recently discovered cytochrome P450 BezE involved
in benzastatin biosynthesis [44¢]. This is an excellent demonstration of how findings from
biocatalysis can inform mechanistic possibilities for enzymes in complex biosynthetic
pathways. At the same time, the discovery of new enzymes provides biocatalysis with an
increasing repertoire of starting points for the implementation of new chemistry.

Engineering heme proteins for C—C bond formation

A prevalent belief in biocatalysis is that proteins cannot access the diversity of chemical
transformations available to synthetic chemistry. Some of this comes from the observation
that biological systems appear to use just a small set of elements from the periodic table; for
instance, known natural enzymes access their powerful and varied chemistry using
predominantly earth-abundant first-row transition metals. In contrast, small-molecule
catalysts for certain classes of reactions, such as so° C—H functionalization, commonly
employ noble metals [1, 2].

The creation of artificial metalloenzymes which contain noble metal complexes [45, 46],
including the replacement of the heme group in heme proteins with porphyrins containing
alternative metals, is one strategy to expand the scope of reactions accessible to enzymes.
Replacing the iron-porphyrin cofactor with an iridium-porphyrin creates artificial
metalloenzymes which install a new C—C bond in place of an so° C—H bond (Figure 4a).
First demonstrated using Physeter catodon myoglobin, protein variants containing the
Ir(Me)-porphyrin complex and engineered by directed evolution catalyze enantioselective
intramolecular carbene C—H insertion to deliver cyclic ether products [47¢]. In agreement
with previously observed reactivity patterns [6], the free Ir(Me)-porphyrin complex
catalyzes the model reaction with a higher reaction rate than an Ir(Me)-porphyrin myoglobin
enzyme. Changing the protein scaffold to apo-CYP119 and subsequent directed evolution,
however, delivered an artificial metalloenzyme with 23-fold higher turnover frequency
compared with the free cofactor [48]. Intermolecular C—H functionalization of phthalan
was accomplished using evolved variants of Ir(Me)-porphyrin CYP119 [48¢] and variants of
P. catodon apo-myoglobin equipped with porphyrins containing alternative metals, including
iridium [49]. In contrast, the alkylation of sp?-hybridized C—H bonds of unprotected indole
substrates has been achieved using variants of myoglobin which retain their native heme
group. Chemoselective for C3 functionalization, the alkylation occurs through electrophilic
aromatic substitution rather than a C—H insertion mechanism which is expected for sp° C—
H functionalization [50e].

The described non-natural C—C bond-forming reactions proceed via the intermediacy of an
electrophilic metal-carbene species. Remarkably, iron porphyrin carbene (IPC) intermediates
in two engineered proteins have now been captured by X-ray crystallography and studied
spectroscopically. Two recent reports show that the IPC can exist as either an end-on adduct
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[51e], which is responsible for carbene transfer activity, or have a Fe—C—N(pyrrole) bridging
configuration, which (if formed) is in equilibrium with the end-on adduct (Figure 4b) [52¢].
These reports illustrate that the protein scaffold affects bonding and the electronic state of
the IPC, and can even dictate the orientation of this intermediate [51¢]. Together with
knowledge gained from quantum chemical calculations on iron-porphyrin carbene systems
[53, 54] and experimental work with small-molecule systems [55], these studies can inform
new approaches to expand the limits of heme protein-catalyzed C—H functionalization.

Natural heme proteins have their own strategies to mediate C—H to C—C bond conversions
[10]. Many of these transformations are catalyzed by cytochromes P450 and result from
radical coupling (e.g. synthesis of salutaridine from reticuline in morphine biosynthesis [10],
phenol coupling in fungal natural products [56]) or rearrangements of substrate radicals
followed by quenching (e.g. transformation littorine to hyoscyamine aldehyde in tropane
alkaloid biosynthesis [57]) (Figure 4c). The potentials of these enzymes for novel reactions
have yet to be explored.

New enzymes (some even with new cofactors [58]) are being discovered every day.
Considering only cytochromes P450, there are more than 206,000 genes known in 2018 [10]
vs. only 18,000 just five years ago [59]. The considerable diversity of heme proteins and
their proven evolvability supply a fertile landscape for the discovery and optimization of new
reactions. Although new-to-nature C—N and C—C bond-forming processes have not yet
been applied in the context of complex molecule synthesis or diversification, the
achievements of P450-catalyzed site-selective hydroxylation provide a roadmap. Looking
forward, the successes of engineering heme proteins for diverse chemistry should stimulate
experimentation with other groups of proteins for non-native catalysis [60]. Approaching
nature’s protein diversity with a new chemical perspective and a powerful set of protein
engineering tools, we see a bright future for creating new enzymes for selective C—H bond
functionalization.
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Porphyrin is a versatile scaffold for C—H bond functionalization. (a) Porphyrin-based
transition metal catalysts which functionalize C—H bonds. Examples are from ref. [4-6]. X,
(154R5R85)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracene-9-yl. TCorresponding
ketones were also formed; ketone formation is not due to further oxidation of alcohol
products [4]. (b) Proteins which contain a porphyrin group have been engineered by directed
evolution to perform C—H oxidation reactions with increased activity or tailored site-
selectivity, C—H amination, and carbene C—H insertion. Structural models are Bacillus
megaterium cytochrome P450gy3 (PDB 1JPZ, top and middle) and an engineered C—H
amination enzyme derived from P450gp3 (PDB 5UCW, bottom); Y, vinyl or ethyl; Z, amino

acid or organic functional group.

Curr Opin Chem Biol. Author manuscript; available in PMC 2020 April 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Zhang et al. Page 14

(a) OR'?2 OR! OR?
| o, J |
o 0 il o
P450-catalyzed C-H
H o hydroxylation O (%) OH

\\ 1 @
(0] OR24 PikC-RhFRED
L

D50N, D176Q,
o E246A variant HO
(0] (0] (0]
(0]
o OH O 0N
o :

Diversification by P450s

|

P450 JuvD P450 MycCl l

P450 8C7 (0.02 to 0.04 mol%)
NADP (10 mol%), iPrOH, ADH

2.5% DMSO in KPi buffer (pH 8)
23°C, 12h

Nigelladine A

Figure 2.
Cytochromes P450 catalyze diverse selective oxidative transformations. (a) Synthesis of

macrocyclic lactones by merging nickel-catalyzed cyclization with P450-catalyzed C—H
hydroxylation [16<¢]. (b) PKS catalysis followed by glycosylation and P450-catalyzed
oxidation affords tylactone-based macrolides [17¢]. (c) Site-selective oxidation by P450 8C7
at the C7 position of an advanced intermediate in the total synthesis of nigelladine A [19e¢].
ADH, alcohol dehydrogenase; KPi, potassium phosphate; DMP, Dess—Martin periodinane.
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Figure 3.
Representative examples of engineered heme proteins used for C—H amination. (a)

Biocatalytic cascade for formal C—H amination [31]. (b) Cytochrome P450-catalyzed
reactions of lidocaine [33]. Distribution between A-dealkylation and cyclization products is
controlled by mutations to the protein scaffold. (c) Intermolecular C—H amination catalyzed
by an engineered cytochrome P450 [43e¢]. This reaction proceeds through a putative iron-
nitrene intermediate. Four beneficial mutations, whose positions are shown as spheres in the
structural model (PDB 5UCW), were accumulated in the directed evolution of a C—H
amination enzyme. TThe initial protein was an engineered variant of P450gy3 which differs
from wild-type by seventeen mutations.
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Figure 4.
C—H to C—C bond transformations catalyzed by artificial metalloenzymes and

cytochromes P450. (a) Replacement of heme in myoglobin with Ir(Me)-mesoporphyrin IX
results in an artificial metalloenzyme which catalyzes carbene C—H insertion, a reaction

that the iron-based enzyme does not catalyze [47++]. Cartoons were created using PDB

1MBN; porphyrin cofactors have been enlarged (not to scale). (b) The IPC intermediate has
been captured by X-ray crystallography in two poses, end-on (left, PDB 6CUN) and Fe-C-
N(pyrrole) bridging (right, PDB 6G5B), in engineered cytochrome ¢ and myoglobin carbene
transferases, respectively [51e, 52¢]. (c) P450 catalyzed C—C bond forming reactions in
natural product biosynthesis. Representative examples are from ref. [10], [56], and [57] (left

to right).
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