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Predictive Big Data Analytics using 
the UK Biobank Data
Yiwang Zhou1,5, Lu Zhao2, Nina Zhou1,5, Yi Zhao1, Simeone Marino   1, Tuo Wang1,6, 
Hanbo Sun   1,6, Arthur W. Toga2 & Ivo D. Dinov   1,2,3,4

The UK Biobank is a rich national health resource that provides enormous opportunities for 
international researchers to examine, model, and analyze census-like multisource healthcare data. 
The archive presents several challenges related to aggregation and harmonization of complex data 
elements, feature heterogeneity and salience, and health analytics. Using 7,614 imaging, clinical, and 
phenotypic features of 9,914 subjects we performed deep computed phenotyping using unsupervised 
clustering and derived two distinct sub-cohorts. Using parametric and nonparametric tests, we 
determined the top 20 most salient features contributing to the cluster separation. Our approach 
generated decision rules to predict the presence and progression of depression or other mental illnesses 
by jointly representing and modeling the significant clinical and demographic variables along with the 
derived salient neuroimaging features. We reported consistency and reliability measures of the derived 
computed phenotypes and the top salient imaging biomarkers that contributed to the unsupervised 
clustering. This clinical decision support system identified and utilized holistically the most critical 
biomarkers for predicting mental health, e.g., depression. External validation of this technique on 
different populations may lead to reducing healthcare expenses and improving the processes of 
diagnosis, forecasting, and tracking of normal and pathological aging.

The UK Biobank is a National Health Service data archive providing rich human health information across demo-
graphics, health, and disease. It offers incredible research opportunities for the entire worldwide scientific com-
munity1. The major objective of the UK Biobank is to improve the prevention, diagnosis, and treatment of a wide 
range of serious and life-threatening illnesses, such as cancer, heart disease, diabetes, depression, etc. Beginning in 
2006, a total of 500,000 volunteers aged 40–69 are being followed for years to record their demographic, medical, 
and other health-related information. This is a longitudinal study with some parts of the data still being gathered. 
Because of the large number of participants and the long follow-up time, managing and interpreting the data 
in the archive presents many challenges related to the data size, format complexity, feature heterogeneity, and 
sampling incongruence of the observations. For instance, the UK Biobank includes irregularly-sampled longi-
tudinal clinical, demographic, and imaging biomarkers. It is a big challenge to harmonize the data elements and 
extract useful information from such a complex dataset. The key objective of this paper is to interrogate the main 
determinants of common mental illness, especially depression, by using model-free machine-learning analytical 
methods.

Since the release of the UK Biobank data, researchers globally have been examining the relationships between 
a wide range of physical or mental illness and the available clinical, demographic, imaging, or genomic markers. 
One prior report2 studied the associations of developing obesity and related disorder with fast food and phys-
ical activity environments for mid-life adults aged 40–70 using the UK Biobank cross-sectional observational 
data. The authors demonstrated that greater density of physical activity facilities around home was significantly 
associated with smaller waist circumference, lower BMI, and reduced body fat percentage. Another prospective 
population-based study using the UK Biobank focused on the characterization of predictors for five-year mor-
tality in middle-aged to elderly individuals3. The study examined the associations between most of the available 
measurements and the five-year all-cause and cause-specific mortality. The authors discovered that self-reported 
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health, such as unable to work because of sickness or disability, was the strongest predictor of all-cause mortal-
ity in men and a previous cancer diagnosis was the strongest predictor of all-cause mortality in women. When 
excluding individuals with major disease or mental disorders, measures of smoking habits were the strongest pre-
dictors of all-cause mortality. Yes, smoking and other strongest predictors may simply be obtained by quick ques-
tionnaires and without extensive physical examination. Thus, for high-risk individuals some specific univariate 
clinical outcomes may easily be identified leading to establishing of effective public health policies. Many complex 
heterogeneous disorders and polymorphic and their detection, modeling, tracking and analytics require deeper 
computable phenotyping. A genome-wide association study of cognitive functions and educational attainment 
in UK Biobank participants was carried out in 20164. This study investigated the genetic contributions to varia-
tion in tests of three cognitive functions and in educational attainment. It demonstrated that the genome-wide 
significant single-nucleotide polymorphism (SNP)-based associations were located on several specific genes: 
ATXN2, CYP2DG, APBA1 and CADM2. In addition, this study reported significant SNP-based heritability of 
31% for verbal-numerical reasoning, 5% for memory, 11% for reaction time, and 21% for educational attainment. 
Although a lot of interesting findings have been discovered based on the studies of UK Biobank clinical and 
demographic features, few studies have used structural and functional brain neuroimaging biomarkers to exam-
ine mental health5. Currently, most neuroimaging studies continue to utilize modest sample sizes and limited 
amounts of data collected for each subject, which potentially may reduce the reproducibility and replicability of 
the research findings6. In 2014, to facilitate advanced computational neuroscientific explorations, the UK Biobank 
began the process of inviting back 100,000 of the original volunteers for imaging scans including brain, heart, and 
torso7. With the large number of participants, the increasing overall UK Biobank data presents both problems 
and opportunities. For instance, the emergence of big neuroimaging data analytics uncovers the big confounder 
and the small effect size issues5. Making meaningful interpretations and deriving valid inference using big data 
archives is often times tricky. Some preliminary studies are underway trying to take advantage of this deluge of big 
imaging data. For instance, to help convert the UK Biobank neuroimaging data into useful summary information, 
Alfaro-Almagro and others have developed an automated processing and QC (Quality Control) pipeline that is 
available for use by other researchers7.

This manuscript aims to address three specific UK Biobank analytic challenges.
Challenge 1 (Feature Selection): Reduce the high dimensionality of the derived neuroimaging biomarkers. 

Presently, there are thousands of morphometric measures that are computed by parcellating the brain, modeling 
the boundary of each region of interest, and computing intrinsic or extrinsic morphological characteristics for 
each region8–10. Simplifying the resulting derived imaging signature vector would expose the salient features that 
may be highly associated with specific observed computable or clinical phenotypes.

Challenge 2 (Data harmonization): Integrate the derived salient neuroimaging biomarker features with the 
corresponding clinical and demographic data to obtain harmonized computable data objects. The latter can be 
interrogated using model-based statistical methods, model-free machine learning techniques, or exploratory data 
analytics to examine predefined associations as well as formulate new research hypotheses11,12.

Challenge 3 (Data Analytics): Develop a decision support system capable of supervised classification, unsu-
pervised clustering, model-free forecasting, and prediction of clinical traits. This protocol may be used to prog-
nosticate normal development from birth to maturation and aging, as well as to predict the trajectories of various 
health conditions.

Methods
The complete data preprocessing protocol is described in Supplementary Materials. Briefly, we employed the 
UK Biobank archive (n = 502,627 cases and k = 4,316 features) with demographic, clinical, biological specimen, 
imaging, genomic, and questionnaire data elements. We used the structural magnetic resonance imaging data 
(sMRI) to obtain 3,297 derived neuroimaging morphometry measures of the 3D neuroanatomical integrity of 
the participants’ brains8,9,13. The complete dataset was randomly divided into a training set (n = 7,931, 80%), used 
for clustering and model building, and an independent testing set (n = 1,983, 20%), used for external validation.

To obtain derived computed phenotypes without a priori knowledge or specific clinically relevant traits, we 
relied on unsupervised machine learning methods. We split the entire population using two unsupervised clus-
tering methods. K-means clustering and Ward’s hierarchical clustering14–17 were applied independently to the 
neuroimaging biomarkers to stratify the data into separate cohorts. Linear (multidimensional scaling, MDS, and 
principal component analysis, PCA)18–20 and non-linear (t-distributed stochastic neighbor embedding, t-SNE) 
dimensionality reduction methods21–23 were employed to project the high-dimensional data into 2D or 3D spaces. 
These low-dimensional Euclidean and curved manifold projection spaces illustrate the separation between 
the derived cohorts labels, as well as, the consistency of the computed phenotype clusters (see Supplementary 
Materials for more details). To pinpoint data features that may be highly predictive of specific computed phe-
notypes, we examined the distributional differences of the derived neuroimaging biomarkers as well as the 
quantitative, categorical, and clinical measures between the clusters. The most salient neuroimaging biomark-
ers discriminating between different clusters were identified using parametric (Student’s t) and non-parametric 
(Kolmogorov-Smirnov and Mann-Whitney-Wilcoxon) statistical tests. The important categorical variables 
related to mental disorders differently distributed between the cohorts were identified using Chi-square and 
Fisher’s exact tests. We harmonized and aggregated the important clinical and neuroimaging features and then 
jointly interrogated the entire merged data. We then constructed decision trees11,24 and random forests25 to pre-
dict specific clinical traits, like the presence of common mental disorders, using the identified salient imaging 
biomarkers and categorical variables related to mental disorders. The pipeline workflow for obtaining the neuro-
imaging biomarkers and R analytic scripts are provided in Fig. S1 in the Supplementary Materials.
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Results
Unsupervised clustering of UK Biobank data into two separate computed phenotypes.  The 
first step of unsupervised clustering is to determine the optimal number of clusters. Figure 1 shows a plot of 
the average silhouette value (indicator of cluster robustness and reliability) for different number of clusters. 
The cluster number optimization results based on total within-cluster sum of squares is shown in Fig. S2 in the 
Supplementary Materials. The plots of the silhouette values for both k-means clustering and hierarchical cluster-
ing suggest that the optimal number of clusters is two.

We assessed the reliability and reproducibility of the derived computed clustering phenotypes using several 
alternative strategies: (1) evaluate the robustness of clustering with repeated experiments, (2) validate the clus-
tering results with illustrations based on dimensionality reduction methods, (3) compare clustering consistency 
between independent clustering methods, and (4) validate the computed clustering phenotypes by supervised 
clustering methods. To evaluate the clustering robustness, we performed 1,000 times repeated k-means clus-
tering. The consistency among these 1,000 randomly initialized k-means clustering results is summarized in 
Supplementary Materials Table S1. Consistency was defined as the probability of an arbitrary pair of two subjects 
being clustered in the same derived computed phenotype across different clustering experiments. Based solely on 
the neuroimaging biomarkers, these results suggest that k-means clustering represents highly robust and consist-
ent mapping of computed phenotypes.

K-means clustering of the neuroimaging biomarkers suggests the existance of structural patterns in the data. 
Figure 2a shows the multidimensional scaling (MDS) plot of the biomarkers color coded by the derived computed 
phenotypes generated by k-means clustering. The misclassification rate (MCR) is calculated based on the 1,000 
k-means clustering trials as the probability a single subject being clustered into a different computed phenotype 
relative to its major clustering label. The subjects with higher MCR are located along the boundary of the two 
clusters, which is to be expected as the subjects near the boundary are more likely to be misclassified. According 
to Fig. 2a, we can see that although the two clusters may not be widely separated, k-means clustering generates a 
clear boundary between the two computed phenotypes. It appears as if the first MDS coordinate plays the most 
important role in this 2D separation. To further validate the clustering results using dimensionality reduction 
methods, 2D and 3D PCA and t-SNE plots were generated. These Euclidean and curved-manifold projections 
of the high-dimensional data into low-dimensional spaces provide independent evidence of the separation of 
the derived computed phenotypes (Fig. 2b,c and Fig. 3). Figure 2b shows that PCA yields a similar separation of 
clusters as MDS. Although there is no distinct separation of the two clusters, there is a clear boundary between 
them. Again, the first dimension plays the most important role in cluster separation. The t-SNE plot tells a similar 
story; however, it generates a more detailed (perhaps non-linear) structure of cluster separation (Fig. 2c). The 3D 
PCA and t-SNE plots show a similar separation boundary. These findings suggest that k-means clustering picks 
up important information from the thousands of neuroimaging biomarkers as it splits the data into two computed 
phenotypes.

Figure 1.  Clustering optimization based on average Silhouette value for (a) k-means clustering (b) hierarchical 
clustering. The optimal number of clusters is two, which maximizes the average Silhouette value for both 
k-means and hierarchical clustering.
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Figure 2.  Panel a: Multidimensional scaling (MDS) for neuroimaging biomarkers with clustering labels 
generated by k-means clustering. MCR is the misclassification rate based on the 1,000 k-means clustering 
experiments. Panels b and c: 2-dimensional plots of (b) PCA and (c) t-SNE for the brain neuroimaging 
biomarkers with the clustering label generated by k-means clustering.

Figure 3.  3-dimensional plots of (a) PCA and (b) t-SNE for the brain neuroimaging biomarkers with the red 
(cluster1) and blue (cluster2) clustering labels generated by k-means clustering.
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The robustness of k-means clustering is evaluated by comparing the k-means derived computed phenotypes 
to those obtained by an independent hierarchical clustering. The consistency of the two data partitioning schemes 
is shown in Supplementary Materials Table S2. K-means and hierarchical clustering generate very consistent 
sub-cohort divisions. About 81.5% of the subjects are clustered into the same sub-cohort groups by both k-means 
and hierarchical clustering. Because of this strong clustering agreement, we focused all subsequent analyses on 
the results based on k-means clustering.

In addition to hierarchical clustering, the computed phenotypes derived from k-means clustering were also 
validated by supervised clustering methods, including k-nearest neighbor (kNN) and artificial neural network 
(ANN). 5-fold cross validation was applied to evaluate the consistency of the classification results. Our results 
showed that kNN gave a 93.7% consistency and ANN gave a 97.3% consistency of labeling the computed phe-
notypes derived by k-means clustering, which indicates a very strong agreement of these independent clustering 
and classification methods.

Challenge 1 (feature selection): reduce the high dimensionality of neuroimaging biomarkers.  
To address the first challenge of feature selection, we identified the top twenty salient biomarkers that are signif-
icantly different between the derived two computed phenotypes based on parametric and nonparametric tests 
comparing their distributions. The density plots of the selected twenty biomarkers are illustrated in Fig. 4. All the 
selected biomarkers appear fairly normally distributed, with cluster 1 having negative means and cluster 2 having 
positive means. This indicates that these salient biomarkers present strong signals separating the two computed 
phenotypes. Table 1 summarizes the descriptive statistics of the raw (unscaled) values of these biomarkers. Next, 
we focus the analysis on these twenty salient biomarkers.

Challenge 2 (data harmonization): integrate salient imaging biomarkers and clinical data.  To 
address the second challenge of data harmonization, we integrate the derived salient neuroimaging biomarkers 
with some clinical and demographic data and obtained a harmonized computable data object. The categorical 
variables that are significantly different between the two clusters, based on Chi-square tests and Fisher’s exact 
tests, are summarized in Supplementary Materials Table S4. The mosaic plots illustrated in Fig. 5 show distribu-
tion differences of some of the most significantly different categorical variables between the two clusters. We can 
see that the distributions of females and males are vastly different between the two clusters, with cluster 1 includ-
ing the majority of the females and cluster 2 containing predominantly males. The other five mosaic plots show 
that the subjects in cluster 1 tend to (1) have more sensitive/hurt feelings and more worried/anxious feelings; 
(2) have less willingness to take risks; (3) are more likely to feel depressed for a whole week; and (4) have more 
difficulties in sleeping. All these results may be highly associated with the significant gender disparity between 
the clusters. Albeit these findings illustrate how unsupervised clustering may be used for exploratory as well as 
confirmatory analytics in mental disorders, the same approach may be used to tackle different types of health 
conditions or to monitor normal development and aging.

Challenge 3 (data analytics): develop a decision support system using random forests.  Once 
we identified the salient neuroimaging biomarkers and categorical variables, we proceeded to examine the data in 
its entirety, e.g., look for potential associations between the categorical variables related to mental illness and the 

Figure 4.  Density plots of the scaled top twenty brain neuroimaging biomarkers with the clustering label 
generated by k-means clustering. Details about the specific FreeSurfer8 derivation and interpretation of the 
neuroimaging biomarkers listed in Table 1 and shown in Fig. 4 are available online at https://surfer.nmr.mgh.
harvard.edu/fswiki/FsTutorial/AnatomicalROI and https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/
AnatomicalROI/FreeSurferColorLUT.
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neuroimaging biomarkers. In order to address the third challenge (i.e., developing a decision support system capa-
ble of predicting the disease state), we started by fitting a single decision tree. Supplementary Materials Figure S3 
illustrates a direct example of an explicit decision support system that can be used for prediction of the mental state, 
e.g., sensitivity/hurt feelings. This specific decision tree shows that three of the salient biomarkers are important in 
the decision classification of the participants, namely rh_aparc.DKTatlas_area__rh_superiorfrontal_area, lh_aparc.
DKTatlas_area__lh_superiortemporal_area, and aseg__MaskVol. The other two features are both categorical vari-
ables and include “Worry too long after embarrassment,” which plays the most important role in the classification. 
Subjects responding “yes” to the question “Worry too long after embarrassment” are more likely to have sensitiv-
ity/hurt feelings than those responding “no.” Using the remaining variable together with the three neuroimaging 
biomarkers provides a deeper classification phenotyping. For instance, subjects with worrier/anxious feelings and 
lh_aparc.DKTatlas_area__lh_superiortemporal_area larger than −1.158 (scaled values) are 16.2% less likely to 
have sensitivity/hurt feelings. Similarly, subjects without worrier/anxious feelings and lh_aparc.DKTatlas_area__
lh_superiortemporal_area larger than −1.393 are 26.7% less likely to have sensitivity/hurt feelings. Supplementary 
Materials Figure S3 illustrates how the decision tree can be used as a clinical decision support system guiding physi-
cians in using the specific imaging biomarkers and categorical variables for prognostication or treatment planning. 
In addition, this information may be useful to guide prospective studies, i.e., what prospective data should be col-
lected (for future clinical trials) or mined (for retrospective data analytics). Of course, this simple example is just an 
illustration. To avoid the difficulties of unavoidable large variance or large bias issues in using single decision trees, in 
practice, we use the much more reliable ensemble classification and regression methods like random forests.

Next, we focus on developing a classifier that can predict the presence of some specific mental disorders. 
Random forest prediction relies on boosting hundreds of decision tree classifiers using the combination of the 
salient neuroimaging biomarkers and the salient categorical features. Figure 6 illustrates four examples of the 
top twenty variables identified to be important in the prediction of “sensitivity/hurt feelings,” “ever depressed 
for a whole week,” “worrier/anxious feelings,” and “miserableness” based on the mean decrease of the Gini val-
ues. “Worry too long after embarrassment,” “worrier/anxious feelings,” and 18 other neuroimaging biomarkers 
are listed as the top twenty features for predicting “sensitivity/hurt feelings.” In developing the decision rules for 
“ever depressed for a whole week,” we first included all selected imaging biomarkers and all categorical features. 
A deeper examination into the categorical variables revealed that two variables, “seen doctor (GP) for nerves, 
anxiety, tension or depression” and “frequency of depressed mood in last 2 weeks,” were highly associated with the 
response variable we predicted. Therefore, we retrained the random forest classifier excluding these two specific 
predictors to avoid confounding problems. The result showed that “Ever unenthusiastic/disinterested for a whole 
week” was the most important predictor in forecasting depression. The other features had approximately similar 
contributions. Indeed, depression, and other mental health disorders, represent complex heterogeneous condi-
tions, and one would not expect a small number of imaging biomarkers to yield extremely accurate, consistent, 
or reliable predictions. In the prediction of “worrier/anxious feelings” and “miserableness,” the salient neuroimag-
ing biomarkers also played an important role. Table 2 summarizes the cross-validated random forest prediction 

Name

Computed Phenotype 1 
(cluster 1)

Computed Phenotype 2 (cluster 
2)

SignificanceMean Median SD Mean Median SD

rh_BA_exvivo_area__rh_WhiteSurfArea_area 83,840 84,354 4,687 96,861 95,814 5,283 ***

lh_BA_exvivo_area__lh_WhiteSurfArea_area 83,571 84,190 4,685 96,467 95,423 5,260 ***

rh_aparc_area__rh_WhiteSurfArea_area 78,686 79,209 4,556 91,279 90,232 5,126 ***

rh_aparc.a2009s_area__rh_WhiteSurfArea_area 78,705 79,231 4,556 91,299 90,238 5,125 ***

lh_aparc_area__lh_WhiteSurfArea_area 78,418 79,022 4,545 90,870 89,864 5,103 ***

lh_aparc.a2009s_area__lh_WhiteSurfArea_area 78,437 79,037 4,545 90,891 89,890 5,103 ***

aseg__SupraTentorialVol 944,195 948,603 62,451 1,102,286 1,093,828 72,318 ***

aseg__SupraTentorialVolNotVent 921,038 925,358 61,368 1,072,067 1,063,706 70,466 ***

aseg__SupraTentorialVolNotVentVox 918,633 922,839 61,275 1,069,254 1,060,989 70,261 ***

aseg__BrainSegVol 1,077,598 1,082,266 69,154 1,247,680 1,238,569 79,105 ***

aseg__BrainSegVolNotVent 1,050,639 1,055,186 67,942 1,213,003 1,204,173 77,138 ***

aseg__BrainSegVolNotVentSurf 1,050,038 1,054,468 67,912 1,212,341 1,203,650 77,144 ***

aseg__CortexVol 431,767 433,836 28,159 496,015 492,066 31,309 ***

aseg__rhCortexVol 216,033 217,094 14,119 248,268 246,293 15,757 ***

aseg__MaskVol 1,479,307 1,482,621 97,626 1,700,818 1,691,706 107,502 ***

aseg__lhCortexVol 215,734 216,893 14,237 247,747 245,918 15,738 ***

aseg__TotalGrayVol 590,111 592,534 36,298 669,907 665,861 40,069 ***

rh_aparc.DKTatlas_area__rh_superiortemporal_area 4,411 4,414 329 5,038 5,005 385 ***

rh_aparc.DKTatlas_area__rh_superiorfrontal_area 8,055 8,034 751 9,475 9,382 887 ***

lh_aparc.DKTatlas_area__lh_superiortemporal_area 4,723 4,716 387 5,459 5,411 472 ***

Table 1.  Summary statistics of the unscaled values for the top twenty brain neuroimaging biomarkers 
separating cluster 1 and 2. Significance code: ***p-value <1 × 10−8. The p-values were calculated based on 
Whitney-Wilcoxon tests.
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accuracy (with 95% confidence intervals, CI), sensitivity and specificity for predicting four specific mental health 
outcomes: “sensitivity/hurt feelings,” “ever depressed for a whole week,” “worrier/anxious feelings,” and “miserable-
ness.” The consistent 70–80% accuracy across these four mental conditions suggests that these machine-learning 
strategies may be useful to support physicians in their diagnosis, prognosis, and disease progression tracking. The 
prediction performance of the established models on the testing dataset is summarized in Table 3, which indicates 
a high prediction consistency for an independent dataset.

Discussion
The UK Biobank is a complex data archive with an ongoing data collection process. The large number of obser-
vations and the complex composition of the data elements make it very difficult for researchers to statistically 
mine and computationally generate precise, reliable and consistent inference. In this manuscript, we employ a 
three-challenge approach to extract useful information from the UK Biobank, like deriving prediction models 

Figure 5.  Mosaic plots for some of the significantly different categorical features detected by Chi-square test 
and Fisher’s exact test. The six parts of the figure include (a) Sex; (b) Sensitivity/hurt feelings; (c) Worrier/
anxious feelings; (d) Risk taking; (e) Ever depressed for a whole week; and (f) Sleeplessness/insomnia. The 
standard residuals, reported in the right margins, indicate the significance of the differences.
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detecting the presence and tracking the progression of depression and other mental illness. The first challenge was 
to reduce the dimension of the dataset and identify salient features among thousands of the variables. By perform-
ing unsupervised clustering, we successfully computed derived phenotypes (clusters) that were consistent (across 
methods) and reliable (across experiments). We also identified the top twenty salient imaging biomarkers that 
contribute most to the separation of the two clusters. Examining the distributions of these twenty neuroimaging 
biomarkers, we found that they appear to be approximately normally distributed, with cluster 1 having predomi-
nantly negative means and cluster 2 having positive means. We tested many more of the neuroimaging biomark-
ers to determine whether they were significantly differently distributed between the two clusters. Figure S4, in 
Supplementary Materials section, shows the distributions of twenty neuroimaging biomarkers that ranked in 
the middle, and another twenty biomarkers that ranked at the bottom of feature significance according to par-
ametric and nonparametric tests. These groups of features were not significantly different across the computed 
phenotypes and their density plots illustrate no obvious differences. Therefore, our forecasting and prediction 
of mental health outcomes only used the top twenty imaging biomarkers. The number of selected imaging bio-
markers was determined by the consistency of their significances in separating the computed phenotypes based 

Figure 6.  Variable importance plots for four different outcome predictions: (a) sensitivity/hurt feelings; (b) 
ever depressed for a whole week; (c) worrier/anxious feelings; and (d) miserableness based on mean decrease Gini 
values by random forest.

Accuracy 95% CI of Accuracy Sensitivity Specificity

Sensitivity/hurt feelings 0.720 (0.686, 0.753) 0.684 0.754

Ever depressed for a whole week 0.778 (0.746, 0.807) 0.912 0.640

Worrier/anxious feelings 0.739 (0.706, 0.771) 0.723 0.755

Miserableness 0.743 (0.710, 0.775) 0.867 0.550

Table 2.  Cross-validated random forest prediction results for “sensitivity/hurt feelings,” “ever depressed for a 
whole week,” “worrier/anxious feelings,” and “miserableness.”

Accuracy 95% CI of Accuracy Sensitivity Specificity

Sensitivity/hurt feelings 0.708 (0.677, 0.737) 0.690 0.724

Ever depressed for a whole week 0.773 (0.745, 0.800) 0.908 0.624

Worrier/anxious feelings 0.725 (0.695, 0.754) 0.735 0.716

Miserableness 0.747 (0.718, 0.775) 0.880 0.521

Table 3.  Random forest prediction results for “sensitivity/hurt feelings,” “ever depressed for a whole week,” 
“worrier/anxious feelings,” and “miserableness” in the testing dataset.

https://doi.org/10.1038/s41598-019-41634-y
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on k-means clustering and hierarchical clustering. All the top twenty selected neuroimaging biomarkers were 
common according to the rankings of the significance tests with clustering results generated by k-means and the 
hierarchical clustering.

Challenge two involved harmonizing and aggregating imaging, clinical and demographic data elements and 
the joint interrogation of the holistic dataset. We demonstrated how unsupervised clustering may be used for 
either exploratory or confirmatory analytics in many health studies.

The final challenge addressed in this study was to develop an effective decision support system that is capable 
of detecting the presence of and predicting the progression of common illnesses. Our approach relies on unsu-
pervised learning of derived neuroimaging biomarkers and categorical phenotypic features. Following the unsu-
pervised clustering, we performed Chi-square and Fisher’s exact tests to determine the categorical variables that 
are discriminating between the two clusters. One interesting discovery from the tests of the categorical variables 
is the significant gender disparity between the clusters. This supports previous reports of association between 
the gender disparity and the prevalence of mental disorders26–28. The subjects in the majority female cluster were 
more likely to experience mental disorders. This finding suggests gender differences in mental health. It is demon-
strated that across many nations, cultures, and ethnicities, females are about twice as likely as males to develop 
depression29,30. Women have a lifetime prevalence for major depressive disorder of 21.3%, compared with 12.7% 
in men31. In addition to depression, females are more likely to express anxiety and worry, and also reported a 
more negative problem orientation and engaging in more thought suppression than males32,33. Our finding is 
consistent with the previous discoveries, indicating that females are more vulnerable to emotional fluctuation 
and mental disorders.

Aggregating the salient neuroimaging biomarkers and the selected categorical variables allowed us to generate 
a computable data object that can be interrogated to examine predefined associations (confirmatory analytics) 
as well as formulate new research hypotheses (exploratory analytics). The final decision guidelines for predicting 
some mental disorders, e.g., depression, were developed using a random forest classifier. Despite the fact that 
there are similarities between random forest and individual decision tree classification, the decision-making crite-
ria determined by random forest prediction cannot be directly explicated the way a single decision tree classifica-
tion can be explained. As our decision tree classifier demonstrated, categorical variables seem to play a dominant 
role in the classification. However, involvement of the neuroimaging biomarkers can provide additional stratifica-
tion complementing the classification procedure. Random forest classification ranked some imaging biomarkers 
higher than some of the categorical variables, which illustrates differences with the single decision tree classifier. 
In the Supplementary Materials section, we also demonstrate an approach to derive deeper computable pheno-
types by stratifying clusters within the low-dimensional t-SNE manifold (see Supplementary Materials Figures S5 
and S6, as well as Tables S4 and S5). Figure S6b and Table S6 show how biomarkers representing the size of specific 
cortical surface areas in the right hemisphere might indicate reduced functional activities, as many prior studies 
have shown. For instance, Kuperberg and colleagues demonstrated selective thinning of the cerebral prefrontal 
cortices (including precentral and postcentral gyri) in patients with schizophrenia34. Others have shown similar 
reductions of pre- and post-central areas in bipolar disease and Williams syndrome35–37.

The observed consistency of the derived computed phenotypes and the reliability of the chosen top salient 
biomarkers contributing to the unsupervised clustering suggest that the information structure in the UKBB data-
set can be exploited using various analytical techniques. The example of a rudimentary clinical decision support 
system we illustrated here specifically identified the critical biomarkers used in forecasting of depression, anxiety, 
and mood disorders.

As firm supporters of open-science, the authors encourage independent validation, reproducibility and expan-
sion of the reported results. Innovative collaborations using similar techniques may reduce healthcare costs and 
improve patient diagnosis and disease tracking of normal and pathological conditions. The entire computational 
protocol, software code, pipeline workflows, and R-scripts are available on the SOCR GitHub site (https://github.
com/SOCR/UKBB_Analytics). All UK Biobank data is available online at http://www.ukbiobank.ac.uk.
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