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ABSTRACT
Background: Differences in food composition, nutrient intake, and various health outcomes have been reported for

vegetarians and non-vegetarians in the Adventist Health Study-2 (AHS-2) cohort.

Objective: We sought to determine whether biomarkers of dietary intake also differed between individuals classified

as vegetarian (vegan, lacto-ovo-vegetarian, pesco-vegetarian, semi-vegetarian) and non-vegetarians based on patterns

of consumption of meat, dairy, and eggs.

Methods: Fasting plasma, overnight urine, and adipose tissue samples were collected from a representative subset

of AHS-2 participants classified into 5 diet groups (vegan, lacto-ovo-vegetarian, pesco-vegetarian, semi-vegetarian,

non-vegetarian) who also completed food-frequency questionnaires. Diet-related biomarkers including carotenoids,

isoflavones, enterolactone, saturated and polyunsaturated fatty acids, and vitamins were analyzed in 840 male and

female participants. Multiple linear regression was used to examine the association between diet pattern and biomarker

abundance, comparing each of 4 vegetarian dietary groups to non-vegetarians, and adjusted mean values were

calculated. Bonferroni correction was applied to control for multiple testing.

Results: Vegans had higher plasma total carotenoid concentrations (1.6-fold, P < 0.0001), and higher excretion of urinary

isoflavones (6-fold, P < 0.0001) and enterolactone (4.4-fold) compared with non-vegetarians. Vegans had lower relative

abundance of saturated fatty acids including myristic, pentadecanoic, palmitic, and stearic acids (P < 0.0001). Vegans

had higher linoleic acid (18:2ω-6) relative to non-vegetarians (23.3% compared with 19.1%) (P < 0.0001), and a higher

proportion of total ω-3 fatty acids (2.1% compared with 1.6%) (P < 0.0001). Results overall were similar but less robust

for lacto-ovo- and pesco-vegetarians. 1-Methylhistidine was 92% lower in vegans, and lower in lacto-ovo- and pesco-

vegetarians by 90% and 80%, respectively, relative to non-vegetarians (P < 0.0001).

Conclusion: AHS-2 participants following vegan, and lacto-ovo- or pesco-vegetarian diet patterns have significant

differences in plasma, urine, and adipose tissue biomarkers associated with dietary intakes compared with those who

consume a non-vegetarian diet. These findings provide some validation for the prior classification of dietary groups within

the AHS-2 cohort. J Nutr 2019;149:667–675.
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phytochemicals

Introduction

Vegetarian diet patterns are characterized not simply by the
absence of meat and/or dairy products but also by increased
consumption of plant foods. There is growing evidence that
such plant-based diet patterns are associated with a number
of favorable health effects. Various epidemiological studies
conducted with the Adventist Health Study-2 (AHS-2) cohort

have demonstrated that vegetarian diet patterns are associated
with reduced risk of colorectal and other cancers (1–3), diabetes
(4), and metabolic syndrome, reflected by decreased blood
pressure, triglycerides, glucose, and waist circumference (5, 6).

The favorable effects of vegetarian diets are largely at-
tributable to the increased amount of phytochemicals present
in plant foods, besides the increases in fiber and other nutrients.
For example, increased consumption of fruits and vegetables
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is positively correlated with carotenoids in blood (7–11) and
flavonoids in urine (12), which have anti-inflammatory and
antioxidant activity, neutralizing free radicals and protecting
against cell damage and chronic diseases. Other polyphenols are
elevated in urine or serum with increased consumption of plant
foods, including isoflavones, present in soy (13–15), and lignans,
found in seeds, whole grains, fruits, vegetables, and nuts (16,
17). These also have protective effects against cardiovascular
disease, cancer, and other chronic diseases (18, 19). Plant-based
diets have also been associated with more favorable profiles of
fatty acids (20, 21).

Concentrations of dietary biomarkers may be affected by
other biological or lifestyle factors (metabolism, hormone
signaling, digestive health, the microbiome, etc.) and thus are
not directly indicative of nutrient intake, but nonetheless have
considerable utility in providing a more accurate assessment
of dietary intake. This is particularly relevant in light of the
inevitable measurement error associated with FFQs. Beyond the
benefit of increasing validity in measurement of dietary intake,
the analysis of such biomarkers is highly valuable in clinical
and epidemiological studies in 1) validating the classification
of individuals by dietary group or pattern, 2) supporting
inferences regarding associations between dietary intake and
health outcomes, and 3) elucidating the relation between diet
and disease pathways by identification of clinically relevant
bioactive compounds, metabolites, or precursors.

We previously demonstrated that vegetarians within the
AHS-2 cohort, and especially vegans, consumed more plant
foods including fruits, vegetables, legumes, soy, nuts and seeds,
and had lower consumption of animal products (22). We also
reported differences in nutrient intakes comparing diet groups
(23). Given the considerable differences in food consumption
between vegetarians and non-vegetarians, it is reasonable to
hypothesize that these dietary groups also have distinct profiles
of biomarkers of dietary intake. With the use of plasma, urine,
and adipose tissue samples from 840 participants in the AHS-2
cohort classified into 5 diet groups (vegan, lacto-ovo-vegetarian,
pesco-vegetarian, semi-vegetarian, non-vegetarian), we sought
to determine whether biomarkers of dietary intake differed
between these groups.

Methods
Study design
Individuals in the current study participated in a calibration study
nested within the AHS-2 cohort. The AHS-2 cohort was established
between 2002 and 2007, and consists of over 96,000 Seventh Day
Adventists aged ≥29 y. It was designed to examine the effects of diet and
diet patterns on health outcomes. Roughly 52% of participants follow a
vegetarian diet (including vegans and lacto-ovo-vegetarians) or partially
vegetarian diet (including pesco-vegetarians and semi-vegetarians, with
the latter consuming meat more often than once a month but less than
once per week), and the others are non-vegetarian. Approximately
60% of participants are female, and approximately 27% are black,
with >90% of others identifying as white. Participants completed a
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self-administered questionnaire collecting information on diet, physical
activity, supplement use, medical history, and demographics at baseline
(24).

The calibration subgroup was established between 2004 and 2006 as
a representative sample of the parent cohort, but with oversampling of
black participants (45%). Fasting blood, adipose tissue, and overnight
urine were collected at field clinics held in local churches (25).
Participants were selected by church, and then within the church.
Additionally, anthropometric data were collected during clinic visits.
Over a period of 9–12 mo, participants completed 2 sets of three
24-h diet recalls through unannounced telephone calls, which were
separated by a second FFQ. Additional details of the calibration
study have been published previously (26). A total of 909 participants
provided biosamples and either complete dietary recalls or a second
FFQ. Exclusion of participants with missing data on diet (n = 39), race
(n = 2), education (n = 17), age (n = 2), caloric intake (n = 21), or
smoking (n = 12) or drinking status (n = 35) resulted in an analytic
cohort of 840 men and women.

Participants were classified a priori into vegetarian diet groups based
on their responses to the FFQ as follows: vegans never or rarely (less
than once per month) consumed eggs, dairy, fish, and other meats; lacto-
ovo-vegetarians consumed eggs and dairy more than once per month
but fish and other meats less than once per month; pesco-vegetarians
consumed fish at least once per month but all other meats less than
once a month; semi-vegetarians ate non-fish meats at least once per
month and any meat including fish less than once per week; non-
vegetarians consumed non-fish meats at least once a month and any
meat (including fish) more than once per week. Nutrient intake data
were collected with the use of the Nutrition Data System for Research
software versions 4.06 and 5.03 (The Nutrition Coordinating Center,
University of Minnesota). The study protocol was approved by the
institutional review board of Loma Linda University. All participants
provided written informed consent.

Biomarkers and laboratory analyses
Details of laboratory methods for the analysis of biomarker abundance
or concentrations have been described previously (26).

We selected plasma, urine, and adipose biomarkers that are
commonly associated with consumption of plant-based foods or animal
sources. This included carotenoids which are present in fruits and
vegetables, isoflavonoids in soy products and legumes, and lignans,
found in various plant sources, particularly seeds, whole grains,
fruits and vegetables (7, 14, 16). 1-Methylhistidine is a marker of
meat intake (27), particularly red meat and poultry. In addition, we
considered saturated fatty acids, which are commonly associated with
consumption of animal products or other fatty processed foods, and
unsaturated fatty acids, which in contrast are more commonly found
in plant sources, such as nuts, seeds, plant-based oils. Furthermore,
we analyzed plasma concentrations of vitamins important for overall
health which may be obtained from plant-based and/or animal
products; holotranscobalamin, and retinol obtained primarily from
animal sources (although provitamin A which is present in carotenes can
also be converted to retinol), tocopherols which are high in vegetable
oils, nuts and seeds, and folic acid enriched in green vegetables, legumes,
and citrus fruit (28).

Assays for plasma carotenoids and fatty acids, retinol, and α- and
γ -tocopherols were performed at the University of California, Los
Angeles Center for Human Nutrition Biomarker Laboratory. Plasma
carotenoids, retinol, and tocopherols were analyzed with HPLC. The
intra-assay CV for the pooled plasma sample was 7.4% for lutein,
8.7% for retinol, 8.8% for α-tocopherol, 10.3% for β-carotene, 10.6%
for γ -tocopherol, 11.5% for β-cryptoxanthin, 12.2% for lycopene,
and 14.2% for α-carotene (29). Erythrocyte folate was measured
with the Immulite Chemiluminescence Immunoassay Analyzer (Siemens
Healthcare Diagnostics) as described previously with intra-assay CV
of 5.2% for higher concentrations (13 ng/mL) and 9.0% for lower
concentrations (2.1 ng/mL). The detection limits were: 0.05 μmol/L
for lutein, β-cryptoxanthin, lycopene, α-carotene, and β-carotene;
0.3 μmol/L for retinol; 0.7 μmol/L for α-tocopherol and γ -tocopherol;
and 0.5 ng/mL for folate. Total adipose fatty acids were extracted
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with hexane (30) and the resulting methyl esters separated and
quantified with use of gas chromatography. The following CV have
been established for saturated and polyunsaturated fatty acids: 12:0,
13%; 14:0, 10.5%; 15:0, 12%; 16:0, 1.6%; 16:1ω-7, 2.7%; 18:0,
2.6%; 18:1ω-9, 3.4%; 18:2ω-6, 0.7%; 18:3ω-3, 0.7%; 20:4ω-6, 0.7%;
20:5ω-3, 3.2%; 22:5ω-3, 4.2%; 22:6ω-3, 2.2%. The detection limit was
0.1 μmol/L.

Urinary 1-methylhistidine was measured at University of Southern
California with a modification of a previously described method
for liquid chromatography linked tandem MS (31), with CV <5%.
The detection limit was 0.1 μmol/L. Serum holotranscobalamin was
measured with an enzyme immunoassay kit (Axis Shield Diagnostics
Limited) at the Department of Nutrition Laboratory, Loma Linda
University, with intra-assay CV of 7.2% and inter-assay CV, 10%, and
detection limit of 3 pmol/L. Urinary isoflavonoids (daidzein, genistein,
equol) and enterolactone were measured at the University of Hawaii
by HPLC with photodiode array and mass spectrometry, and adjusted
for urinary creatinine concentrations (32). Inter-assay coefficients of
variation of 1%, 11%, and 13% were obtained for daidzein, genistein,
and equol, respectively, and 8% for enterolactone (32). Detection limits
for isoflavones were 10 nmol/L or 2–50 pg/mg creatinine.

Statistical analysis
Linear regression models were fit for each dietary biomarker of interest
to estimate its association with diet pattern, while adjusting for sex,
age, race, education, smoking, alcohol drinking, and energy intake
(estimated from 24-h diet recalls) to obtain least squares means
(adjusted for other covariates in the model) and/or β coefficients with
95% CI. The null hypothesis was that there was no difference in
biomarker concentration between any 1 of the 4 vegetarian diets and the
non-vegetarian diet, with statistical significance indicated at α <0.05. A
Bonferroni correction was applied to control for multiple comparisons
of diet patterns. BMI was also considered as a covariate but not included
in the final model as it was found to have inconsequential effects on
results. Zero values for biomarker measurements were replaced with
a value equivalent to the product of 1 × 10−3 and the respective
mean value for each biomarker. Biomarkers were log transformed
to improve normality. Because of previously observed differences in

biomarker concentrations comparing black and non-black participants
(26), and possible differences according to BMI, the effect of race
(black compared with non-black) or BMI (<25 kg/m2 compared with
≥25 kg/m2) on the diet pattern-biomarker associations was examined.
Heterogeneity tests were conducted by including the respective diet-race
or diet-BMI interaction term in the regression model.

All carotenoids (lutein, zeaxanthin, cryptoxanthin, α-carotene,
β-carotene, lycopene, and total carotenoids) as well as α- and
γ -tocopherol, were adjusted for serum cholesterol with a residual
method to provide values that were uncorrelated with cholesterol. Then,
the new response variable for each biomarker (X) was set equal to the
sum of the residual and the mean of the log-transformed X. This variable
was substituted in subsequent multiple linear regression analyses.

Comparisons of demographic and lifestyle characteristics according
to diet pattern were conducted with use of ANOVA for continuous
variables and chi-square tests for categorical variables.

Analyses were carried out with use of SAS statistical software
package release 9.4 (SAS Institute Inc.).

Results

Baseline demographic and lifestyle characteristics of partici-
pants in the analytic study are shown in Table 1. The majority of
participants in the current study were female (65%), a reflection
of the parent cohort. There were no notable differences in the
proportion of males and females among diet groups. Black
participants constituted 43.4% of the study population, and
non-black participants, 56.6%. Differences in the distribution
of black and non-black participants across diet groups were
observed (P < 0.0007). After non-vegetarian, the majority
of black participants were pesco-vegetarian, and the majority
of non-black participants were lacto-ovo-vegetarian. A higher
proportion of semi- and non-vegetarians were former smokers
or alcohol drinkers (P < 0.02 and P < 0.0001). Vegans were
older and had lower BMI compared to the other diet groups, and
non-vegetarians were younger and had higher BMI (P < 0.0003

TABLE 1 Demographic and lifestyle characteristics of participants in the Calibration Study according to diet pattern1

All Vegan
Lacto-ovo-
vegetarian Pesco-vegetarian Semi-vegetarian Non-vegetarian P

Participants, n (%) 840 72 (8.6) 224 (26.7) 104 (12.4) 38 (4.5) 402 (47.9)
Sex, n (%) 0.81

Females 546 (65.0) 49 (68.1) 143 (63.8) 64 (61.5) 27 (71.1) 263 (65.4)
Males 294 (35) 23 (31.9) 81 (36.2) 40 (38.5) 11 (29.0) 139 (34.6)

Ethnicity, n (%) 0.0007
Non-black 475 (56.6) 44 (61.1) 174 (77.7) 44 (42.3) 27 (71.1) 186 (46.3)
Black 365 (43.4) 28 (38.9) 50 (22.3) 60 (57.7) 11 (29.0) 216 (53.7)

Education, n (%) 0.47
High school and below 171 (20.4) 13 (18.1) 39 (17.4) 25 (24.0) 10 (26.3) 86 (20.9)
Some college 340 (40.8) 33 (45.8) 85 (38.0) 36 (34.6) 15 (39.5) 171 (42.5)
College graduate and beyond 329 (39.2) 26 (36.1) 100 (44.6) 43 (41.4) 13 (34.2) 147 (36.6)

Smoking, n (%) 0.02
Never 699 (83.2) 62 (86.1) 199 (88.8) 92 (88.5) 29 (76.3) 317 (78.9)
Past/former 136 (16.2) 10 (13.9) 25 (11.2) 12 (11.5) 9 (23.7) 80 (19.9)
Current 5 (0.60) 0 0 0 0 5 (1.2)

Alcohol, n (%) 0.0001
Never 508 (60.5) 48 (66.7) 168 (75.0) 68 (65.4) 21 (55.3) 203 (50.5)
Past/former 278 (33.1) 24 (33.3) 54 (24.1) 30 (28.9) 14 (36.8) 158 (38.8)
Current 54 (6.4) 2 (0.9) 0 6 (5.8) 3 (7.9) 43 (10.7)

Age, y, + SD 58.3 ± 13.3 62.6 ± 12.0 60.0 ± 14.1 59.1 ± 14.0 59.4 ± 13.5 56.3 ± 12.5 0.0003
BMI, kg/m2, + SD 27.4 ± 6.1 24.7 ± 4.4 25.7 ± 5.6 26.5 ± 5.7 26.8 ± 4.9 29.2 ± 6.4 0.0001
Energy, kcal/d, + SD 1596 ± 500 1694 ± 418 1703 ± 516 1512 ± 546 1561 ± 467 1545 ± 485 0.0004

1Values are means ± SDs or n (%).
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TABLE 2 Biomarkers of dietary intake among participants in the Calibration Study according to diet pattern1,2

Vegan (n ≥ 67)
Lacto-ovo-vegetarian

(n ≥ 218) Pesco-vegetarian (n ≥ 94) Semi-vegetarian (n ≥ 35)
Non-vegetarian

(n ≥ 374)

Mean (95% CI) P Mean (95% CI) P Mean (95% CI) P Mean (95% CI) P Mean (95% CI)

Blood/plasma
α-carotene, mmol/L 0.16 (0.11, 0.22) <0.0001 0.10 (0.07, 0.13) <0.05 0.12 (0.08, 0.16) <0.001 0.08 (0.05, 0.12) NS 0.08 (0.06, 0.10)
β-carotene, mmol/L 0.65 (0.49, 0.88) <0.0001 0.46 (0.35, 0.59) <0.0001 0.45 (0.34, 0.60) <0.05 0.33 (0.24, 0.47) NS 0.34 (0.27, 0.43)
Lutein, mmol/L 0.36 (0.28, 0.45) <0.05 0.32 (0.26, 0.39) <0.05 0.32 (0.25, 0.40) NS 0.29 (0.22, 0.37) NS 0.27 (0.22, 0.32)
Zeaxanthin, mmol/L 0.05 (0.04, 0.06) NS 0.05 (0.04, 0.06) NS 0.05 (0.04, 0.06) NS 0.05 (0.04, 0.06) NS 0.05 (0.04, 0.05)
Cryptoxanthin, mmol/L 0.22 (0.16, 0.29) <0.0001 0.17 (0.13, 0.22) <0.001 0.15 (0.12, 0.20) NS 0.14 (0.10, 0.19) NS 0.13 (0.10, 0.16)
Lutein/zeaxanthin, mmol/L 0.41 (0.34, 0.51) <0.001 0.38 (0.31, 0.45) <0.05 0.37 (0.30, 0.44) NS 0.34 (0.27, 0.42) NS 0.32 (0.27, 0.37)
Lycopene, mmol/L 0.49 (0.41, 0.58) NS 0.47 (0.40, 0.54) NS 0.51 (0.44, 0.60) NS 0.45 (0.37, 0.54) NS 0.46 (0.40, 0.52)
Total carotenoids, mmol/L 1.86 (1.55, 2.23) <0.0001 1.40 (1.19, 1.64) <0.001 1.48 (1.25, 1.76) <0.001 1.17 (0.95, 1.44) NS 1.19 (1.03, 1.37)
α-tocopherol, mmol/L 33.5 (29.9, 37.4) NS 33.8 (30.7, 37.3) NS 34.9 (31.4, 38.7) NS 33.1 (29.1, 37.6) NS 33.4 (30.6, 36.5)
γ -tocopherol, mmol/L 4.17 (3.48, 5.00) <0.001 4.64 (3.97, 5.43) <0.05 4.69 (3.95, 5.56) NS 5.39 (4.39, 6.62) NS 5.36 (4.65, 6.18)
Retinol, mmol/L 2.23 (1.98, 2.52) NS 2.32 (2.09, 2.58) NS 2.44 (2.18, 2.74) NS 2.26 (1.98, 2.60) NS 2.45 (2.23, 2.70)
Holotranscobalamin,

pmol/L
82.3 (65.5, 103.3) NS 78.0 (64.0, 94.9) NS 85.2 (689, 105.3) <0.05 67.6 (52.3, 87.4) NS 72.1 (60.2, 86.2)

Folic acid (erythrocyte),
ng/mL

1030 (887, 1195) NS 1055 (926, 1201) NS 1078 (938, 1239) NS 1047 (886, 1237) NS 1036 (921, 1167)

Urine
Methylhistidine, nmol/mL 8.46 (5.04, 14.20) <0.0001 11.1 (7.1, 17.4) <0.0001 21.1 (13.0, 34.2) <0.0001 65.1 (36.2, 117.0) NS 107 (71.1, 162)
Daidzein, nmol/mg

creatinine
0.56 (0.25, 1.25) <0.0001 0.29 (0.14, 0.58) <0.0001 0.30 (0.14, 0.62) <0.0001 0.13 (0.05, 0.33) NS 0.09 (0.05, 0.17)

Genistein, nmol/mg
creatinine

0.17 (0.08, 0.36) <0.0001 0.08 (0.04, 0.15) <0.0001 0.09 (0.04, 0.18) <0.0001 0.04 (0.02, 0.10) NS 0.03 (0.02, 0.06)

Equol, nmol/mg creatinine 0.03 (0.02, 0.05) <0.0001 0.01 (0.01, 0.02) <0.05 0.01 (0.01, 0.02) NS 0.02 (0.01, 0.03) NS 0.01 (0.01, 0.01)
Total isoflavones,

nmol/mg creatinine
0.90 (0.44, 1.83) <0.0001 0.39 (0.21, 0.72) <0.0001 0.42 (0.22, 0.81) <0.0001 0.21 (0.10, 0.47) NS 0.15 (0.08, 0.26)

Enterolactone, nmol/mg
creatinine

0.22 (0.11, 0.43) <0.0001 0.08 (0.04, 0.14) <0.05 0.07 (0.04, 0.14) NS 0.06 (0.03, 0.13) NS 0.05 (0.03, 0.09)

Adipose tissue, % of total
fatty acids
12:0 0.42 (0.31, 0.57) NS 0.43 (0.33, 0.56) NS 0.42 (0.31, 0.55) NS 0.36 (0.26, 0.51) NS 0.37 (0.29, 0.47)
14:0 1.35 (1.18, 1.54) <0.0001 1.78 (1.59, 2.00) <0.05 1.79 (1.59, 2.03) NS 1.89 (1.63, 2.18) NS 1.97 (1.77, 2.18)
15:0 0.24 (0.20, 0.30) <0.0001 0.31 (0.27, 0.37) <0.0001 0.32 (0.27, 0.38) <0.05 0.39 (0.31, 0.48) NS 0.38 (0.33, 0.44)
16:0 16.3 (15.5, 17.2) <0.0001 18.7 (17.9, 19.6) <0.0001 19.1 (18.2, 20.1) <0.0001 20.0 (18.8, 21.2) NS 20.9 (20.0, 21.8)
18:0 3.63 (3.24, 4.05) <0.0001 4.03 (3.66, 4.45) NS 4.11 (3.70, 4.56) NS 4.09 (3.61, 4.64) NS 4.26 (3.90, 4.66)
16:1 3.13 (2.72, 3.60) <0.0001 3.69 (3.26, 4.16) <0.0001 3.76 (3.30, 4.29) <0.001 4.14 (3.54, 4.84) NS 4.40 (3.93, 4.91)
18:1ω-9 47.1 (45.9, 48.3) <0.0001 45.4 (44.4, 46.4) NS 45.3 (44.2, 46.3) NS 45.1 (43.8, 46.4 NS 45.1 (44.2, 46.0)
18:2ω-6 23.3 (22.1, 24.6) <0.0001 21.7 (20.7, 22.7) <0.0001 21.2(20.1, 22.2) <0.0001 20.4 (19.2, 21.6) <0.05 19.1 (18.3, 19.9)
20:4ω-6 0.39 (0.34, 0.45) <0.0001 0.44 (0.39, 0.50) <0.0001 0.42 (0.37, 0.48) <0.0001 0.50 (0.43, 0.59) NS 0.51 (0.45, 0.57)
20:2ω-6 0.29 (0.27, 0.31) <0.0001 0.27 (0.25, 0.29) <0.05 0.26 (0.24, 0.28) NS 0.26 (0.23, 0.28) NS 0.26 (0.24, 0.27)
18:3ω-3 1.59 (1.24, 2.04) <0.0001 1.24 (1.00, 1.54) <0.05 1.26 (1.00, 1.58) <0.05 1.27 (0.96, 1.68) NS 1.03 (0.85, 1.26)
20:5ω-3 0.02 (0.01, 0.04) NS∗ 0.02 (0.01, 0.04) <0.05∗ 0.04 (0.02, 0.06) NS 0.03 (0.01, 0.05) NS 0.03 (0.02, 0.05)
22:5ω-3 0.21 (0.18, 0.24) <0.05 0.20 (0.18, 0.23) <0.0001 0.23 (0.20, 0.26) NS 0.25 (0.22, 0.29) NS 0.24 (0.21, 0.27)
22:6ω-3 0.12 (0.10, 0.15) <0.0001 0.12 (0.10, 0.14) <0.0001 0.21 (0.17, 0.25) NS 0.15 (0.12, 0.19) NS 0.18 (0.15, 0.21)
ω-3, total 2.06 (1.85, 2.29) <0.0001 1.75 (1.59, 1.92) <0.001 1.86 (1.68, 2.06) <0.0001 1.78 (1.58, 2.01) NS 1.59 (1.46, 1.73)

NS, Nonsignificant. 1Values are adjusted geometric means (95% CIs) estimated from linear regression model adjusted for sex, age, race, smoking, alcohol drinking, education,
and caloric intake.
2P value for difference in adjusted mean value (biomarker) relative to non-vegetarians.
∗P value < 0.05 relative to pesco-vegetarians.

and P < 0.0001). Reported energy intake differed among diet
groups and was higher in lacto-ovo-vegetarians and vegans
(P < 0.0004).

A comparison of the adjusted mean values of plasma,
urinary, and adipose tissue biomarkers among the 5 diet groups
is presented in Table 2. Several differences were noted for
plasma carotenoids. Concentrations of carotenoids decreased
with increasing consumption of animal products, and were
lowest in non-vegetarians and semi-vegetarians. Compared to

non-vegetarians, vegans had considerably higher concentrations
of plasma α-carotene (2-fold, P < 0.0001), β-carotene (91%,
P < 0.0001), cryptoxanthin (69%, P < 0.0001), lutein (33%,
P < 0.05), lutein and zeaxanthin (28%, P < 0.001), and total
carotenoids (56%, P < 0.0001), but a lower concentration of
γ -tocopherol (22%, P < 0.001). A similar trend could be seen
for lacto-ovo-vegetarians, although concentrations were lower
than those for vegans and thus differences compared to non-
vegetarians were generally less robust [cryptoxanthin and total
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carotenoids (31% and 18% higher, P < 0.001), α-carotene
(25% higher), lutein (19% higher), and lutein/zeaxanthin (19%
higher), (P < 0.05), β-carotene (35% higher, P < 0.0001)
and γ -tocopherol (13.4% lower, P < 0.05)]. Pesco-vegetarians
had significantly higher concentrations of α-carotene (50%,
P < 0.001), β-carotene (32%, P < 0.05), and total carotenoids
(24%, P < 0.001) than non-vegetarians.

Differences were also found in the excretion of urinary
biomarkers comparing diet groups, with the most profound
differences in vegans for all biomarkers relative to non-
vegetarians (P < 0.0001). When compared to non-vegetarians,
the concentration of 1-methylhistidine was 92.1% lower in
vegans, 89.6% lower in lacto-ovo-vegetarians, and 80.3%
lower in pesco-vegetarians (P for all < 0.0001). Excretion of soy
isoflavones daidzein and genistein, as well as total isoflavones
was highest in vegans, followed by pesco- and lacto-ovo-
vegetarians, and all differences compared to non-vegetarians
were highly significant (P < 0.0001). Enterolactone and equol
excretion was significantly higher in vegans (4.4-fold and 3-fold,
respectively; P < 0.0001), and to a lesser degree in lacto-ovo-
vegetarians than non-vegetarians.

The proportion of the saturated fatty acid myristic acid
(14:0) was lower in vegans as well as lacto-ovo-vegetarians
compared to non-vegetarians (1.35% and 1.78% compared
with 1.97%; P < 0.0001 and P < 0.05, respectively).
Pentadecanoic (15:0) and palmitic (16:0) acids were also
lower in vegans, lacto-ovo-vegetarians, and pesco-vegetarians,
with the lowest values in vegans and lacto-ovo-vegetarians
(P < 0.0001). Stearic acid (18:0) was significantly lower in
vegans only (3.63% compared with 4.26%; P < 0.0001)
compared to non-vegetarians.

Compared to non-vegetarians, the relative proportion of
the MUFA palmitoleic acid (16:1) was lower in vegans
(P < 0.0001), lacto-ovo-vegetarians (P < 0.0001), and pesco-
vegetarians (P < 0.001). Oleic acid (18:1ω-9) was higher
in vegans alone when compared to non-vegetarians, but
the increase was marginal (47.1% compared with 45.1%;
P < 0.0001). The polyunsaturated fatty acid (PUFA) linoleic
acid (18:2ω-6) was higher in all vegetarian groups including
vegans, and lacto-ovo-, pesco-, and semi-vegetarians, than non-
vegetarians, with the greatest difference in vegans (23.3%
compared with 19.1%; P < 0.0001). Eicosadienoic acid (20:2ω-
6) was also higher in vegans (P < 0.0001) and to a lesser extent
in lacto-ovo-vegetarians (P < 0.05). Arachidonic acid (20:4ω-
6) was significantly lower in vegans, lacto-ovo-vegetarians, and
pesco-vegetarians (P < 0.0001) compared to non-vegetarians.

Among the ω-3 PUFAs, the proportion of α-linolenic acid
(ALA; 18:3ω-3) was higher in vegans, lacto-ovo-vegetarians,
and pesco-vegetarians compared to non-vegetarians, with the
highest values in vegans (1.59% compared with 1.03%;
P < 0.0001). However, docosapentaenoic acid (22:5ω-3), and
docosahexaenoic acid (DHA; 22:6ω-3) were significantly lower
in vegans (P < 0.05 and P < 0.0001, respectively) and lacto-ovo-
vegetarians (P < 0.0001). Eicosapentaenoic acid (EPA; 20:5ω-3)
was lower in lacto-ovo-vegetarians relative to non-vegetarians
(P < 0.05), and was also lower in vegans and lacto-ovo-
vegetarians than in pesco-vegetarians (P < 0.05). Nonetheless,
total ω-3 was higher in vegans (2.06% compared with 1.59%;
P < 0.0001), followed by pesco-vegetarians (1.86% compared
with 1.59%; P < 0.0001) and lacto-ovo-vegetarians (1.75%
compared with 1.59%; P < 0.001), relative to non-vegetarians.

We examined the ability of race to modify the effect
of diet on biomarker abundance as an exploratory analy-
sis. Black pesco-vegetarians (relative to non-vegetarians) had

higher concentrations of 18:1ω-9 compared to non-blacks
(β = 0.05, P for interaction < 0.0001), and black vegans
had lower concentrations of zeaxanthin compared to non-
blacks (β = −0.4, P for interaction < 0.005) (Supplemental
Table 1).

Examination of the effect of BMI on the association between
diet pattern and biomarker concentrations revealed significant
effect modification for 18:0 saturated fatty acid among pesco-
and semi-vegetarians compared to non-vegetarians (β = 0.22
and 0.28, respectively; P for interaction < 0.005). This
indicated significantly higher relative concentrations of 18:0
in overweight pesco- and semi-vegetarian participants. Plasma
cryptoxanthin concentrations among vegans (β = −0.49, P for
interaction < 0.05) and lacto-ovo-vegetarians (β = −0.42, P
for interaction < 0.005) compared to non-vegetarians were rel-
atively lower in overweight participants (Supplemental Table 2).

Discussion

We have shown marked differences in several biomarkers
of dietary intake among individuals classified according to
dietary patterns depending on the consumption of animal
products. Notable distinctions were seen for plasma, urine, and
adipose biomarkers comparing vegans, lacto-ovo-vegetarians,
and pesco-vegetarians to non-vegetarians. Vegans had the
most marked differences in plasma carotenoids (α-carotene,
β-carotene, cryptoxanthin, total carotenoids) (P < 0.0001),
as well as total isoflavones (P < 0.0001), and enterolactone
(P < 0.0001), which were significantly higher than non-
vegetarians. In addition, vegans had lower proportions of all
saturated fatty acids except lauric acid (P < 0.0001). Similar to
vegans although less robust, lacto-ovo-vegetarians and pesco-
vegetarians had higher concentrations of total carotenoids
(P < 0.001) and total isoflavones (P < 0.0001). As expected,
all 3 of these vegetarian groups had significantly lower 1-
methylhistidine (P < 0.0001). As for PUFAs, the 3 vegetarian
groups had lower 20:4ω-6 (P < 0.0001), but significantly higher
18:2ω-6 (P < 0.0001), and higher total ω-3 (P < 0.001).

The current findings provide some validation for our
previous studies of AHS-2 participants classified according to
vegetarian or non-vegetarian dietary patterns. It is clear that the
definitions that were used to assign diet groups divide subjects
into categories having distinct biological signatures. Previous
reports have noted higher consumption of fruits, vegetables,
grains, legumes, soy, nuts and seeds among vegetarians, most
notably vegans, but also lacto-ovo- and pesco-vegetarians (22).
In addition, dietary intakes of β-carotene and linoleic acid and
fiber were found to be highest in vegans and lacto-ovo or pesco-
vegetarians relative to non-vegetarians, whereas saturated fatty
acids were lower (23). Our current findings are consistent with
these reports.

Higher concentrations of β-carotene and other carotenoids
in plasma have been associated previously with plant-based
diets and consumption of plant foods (33–37). Thus we
expected to find higher concentrations of β-carotene and
total carotenoids in vegetarians in our study, relative to non-
vegetarians, although vegetarians in some studies have shown
lower than expected concentrations of carotenoids (38, 39).
Vegans had the highest isoflavone excretion, as expected, which
is strongly associated with soy consumption and vegetarian
diets (8, 13, 40–42). However, concentrations were not as
high as those reported for some Asian populations (15), where
urinary excretion of total isoflavones was ∼300–700 nmol/h
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for Chinese and Japanese women, consistent with high soy
intakes in Asian diets (15, 43). About 30% of the Western
adult population are equol producers (44, 45) and thus have
the gut bacteria necessary for its production from daidzein,
compared to 50–60% of Asian adults (46, 47). More than
57% of our study participants had equol concentrations above
0.01 nmol/mg creatinine (not shown). Notably, enterolactone
was highest in vegans. This is consistent with findings of
higher enterolactone with increased consumption of fiber
and plant foods (16, 48). Although these phytoestrogens are
predominantly ingested from plant foods, very small amounts
may be obtained from animal products including milk, eggs,
meat, and fish/seafood (3–6 μg/100 g wet weight) (49).

Our findings of lower proportions of saturated fatty acids in
vegetarians relative to non-vegetarians were expected because of
the lower consumption of saturated fats from meat and animal
products among vegetarians. As pentadecanoic acid (15:0) is a
marker for dairy consumption (50–52), it was expected that it
would be lowest in vegans, and somewhat higher in lacto-ovo-
vegetarians, which was indeed the case. In addition, arachidonic
acid (20:4ω-6) was markedly lower, and 18:2ω-6 (linoleic
acid) as well as 18:1 (oleic acid) higher among vegans and/or
vegetarians. These findings are largely consistent with results
from a previous study comparing fatty acid profiles in plasma
between Finnish vegans and non-vegetarians, where decreases
in saturated fatty acids, and increased ω-6 PUFAs, and MUFAs
were observed among vegans (38). There is much evidence that
a diet rich in ω-6 PUFA is associated with higher ω-6 PUFA
in adipose or plasma lipid fractions (53–58), although greater
variability has been observed for saturated fatty acids and
MUFAs. Given the correlation with previously reported dietary
intakes among AHS-2 participants (26), these biomarkers are
likely a reflection of fat intake in the diet. However, fatty
acid composition may also be affected by metabolism, genetic
variation—such as a polymorphism in an enzyme responsible
for endogenous synthesis of PUFAs (59), fat consumption,
fatty acid transport and elongation enzymes, gender, BMI, and
lifestyle factors such as smoking and alcohol drinking (60, 61).

As for the ω-3 fatty acids, higher adipose ALA but lower
percentages of DHA, EPA, and their intermediary product,
docosapentaenoic acid, were found among vegans and/or lacto-
ovo-vegetarians, also consistent with what has been reported
previously for vegans or vegetarians (38, 62). The higher
percentage of ALA in vegans is not surprising as there are many
plant-based sources for ALA, unlike EPA and DHA which are
obtained primarily from marine sources, although there are
other less common plant sources (63, 64). In our study, ALA
accounted for the majority of ω-3, explaining why total ω-3 was
highest in vegans. Although ALA may be converted to EPA and
to a lesser extent DHA, other factors, such as those previously
mentioned, may influence conversion efficiency.

It should be noted that many of the biomarkers differing
between diet groups showed moderate to strong correlations
with dietary intakes based on FFQs and 24-h diet recalls in
our previous calibration study (26), further supporting the
findings of the current study. We previously reported high
correlations between meat intake and urinary 1-methylhistidine,
and therefore we expected 1-methylhistidine to be significantly
lower in vegetarians, consistent with our current results. Urinary
isoflavones which differed significantly between vegetarians and
non-vegetarians in the current study also previously showed
moderate correlations with 24-h diet recalls, and adipose fatty
acids 18:2, 18:3, and 14:0 had moderate to strong correlations
with dietary intakes (26).

We often deal with validity issues in dietary assessment
studies. Under- or over-reporting is common, attributable to
subjects’ perceptions of social desirability, poor recall, question-
naire design, and other issues. This is likely a contributor to the
lack of coherence between reported energy intakes and BMI, as
energy intake is difficult to measure accurately with FFQs and
poor correlations have been found when comparing reported
energy intake in FFQs with 24-h diet recalls (24). However, the
discordance may also be a reflection of the difference in the rate
of metabolism on a plant-based compared to non-vegetarian
diet, as there is evidence of higher calorie expenditure on a vegan
diet even if calorie intake is higher, in the presence of limited
fat consumption (65). Twenty four-hour diet recalls, although
more accurate, may not reflect diet patterns or vegetarian
status dependent on exclusion of low intakes of some foods.
Approaches and methods have been developed to improve
accuracy of assessment of dietary intake, and we have previously
discussed calibration methods to address measurement error
issues (66). Although biomarkers are not without shortcomings,
they supplement other validation methods and may sometimes
help to circumvent the biasing effects of diet recall by providing
more accurate measures of intake of selected nutrients (67).

Although biomarkers may be strongly associated with
diet patterns, as with the adipose fatty acids, they do not
solely reflect the diet, but are also affected by absorption,
endogenous metabolism, and the gut microbiome, among other
factors. Notwithstanding, biomarkers are very valuable in
understanding disease etiology, and may provide a more secure
foundation for causal inferences about diet-disease relations in
epidemiologic studies. By this measure, the findings reported
here are of value, given previously reported associations
between vegetarian diet patterns and health outcomes, including
apparent reductions of cancer incidence, cardiometabolic risk
factors, type 2 diabetes, and overall mortality (68). It is
understood that phytochemicals play an important role in
prevention of these diseases. There is considerable evidence,
particularly for the anticancer, anti-inflammatory, and antiox-
idant activities of carotenoids, polyphenols, and isoflavones
(69, 70). In this manner the current study provides some
validation of our previous findings of favorable health outcomes
in individuals following a plant-based diet by demonstrating
selective increases in such bioactive markers that are related to
consumption of plant foods.

A major strength of this study is the large sample size
with biomarker measurements for over 800 participants,
and sufficient power to detect changes between diet pattern
groups. Another considerable strength is the detailed dietary
assessment of study participants, who completed a baseline
FFQ, reflective of longer-term dietary habits, enabling a priori
classification of participants by dietary pattern. However,
although individuals were assigned vegetarian status a priori
based on reported dietary intakes, there is always the possibility
of some information bias and consequently misclassification of
diet group. Another limitation was the limited power to detect
interactions between the biomarker-diet pattern association and
race or BMI, in particular because of the lower numbers of
vegans, and thus no clear conclusions can be drawn. In addition,
urine samples represented 12-h overnight collections, which
must be taken into consideration when comparing urinary
biomarkers examined in this study with other populations.
Plasma and urine samples were obtained at only one timepoint,
and consequently biomarker measurements in individuals may
not be totally reflective of diet status. Within-person variation
was not accounted for. As mentioned above, because biomarker
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concentrations may be affected by many factors, some caution
must be exercised with using these data in support of causal
inferences about dietary patterns and health outcomes.

Additional considerations include temporal differences as-
sociated with metabolism or absorption of these biomarkers.
Urine metabolites may be a better reflection of acute dietary
intake (relative to plasma and adipose). Elimination half-lives
of isoflavones and enterolignans are relatively short (6–8 and
4–13 h, respectively) (71, 72). Plasma carotenoid half-lives are
longer, ranging from ≤12 to >60 d. Differences in plasma
metabolites are more easily detected with long-term as opposed
to acute interventions (73), which is more comparable to the
long-term diet patterns examined in the current cohort. Adipose
tissue reflects longer-term storage of fats (74). Fatty acids
generally have a long half-life and may be incorporated into cell
membranes, and represent an integrated measure of up to 2 y
of dietary intake, although correlations with dietary intake may
vary (60, 61).

In conclusion, we report significant and overall favorable
differences in several biomarkers associated with nutrient
intake, including carotenoids, isoflavones, enterolactone, and
various fatty acids in vegetarians, particularly vegans compared
to non-vegetarians. Our findings also provide some validation of
the dietary patterns represented in the AHS-2 cohort, and may
help to elucidate the significance of diet-related biomarkers in
disease prevention.
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