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DeepSqueak: a deep learning-based system for detection and
analysis of ultrasonic vocalizations

Kevin R. Coffey', Ruby E. Marx @' and John F. Neumaier'

Rodents engage in social communication through a rich repertoire of ultrasonic vocalizations (USVs). Recording and analysis of
USVs has broad utility during diverse behavioral tests and can be performed noninvasively in almost any rodent behavioral model
to provide rich insights into the emotional state and motor function of the test animal. Despite strong evidence that USVs serve an
array of communicative functions, technical and financial limitations have been barriers for most laboratories to adopt vocalization
analysis. Recently, deep learning has revolutionized the field of machine hearing and vision, by allowing computers to perform
human-like activities including seeing, listening, and speaking. Such systems are constructed from biomimetic, “deep”, artificial
neural networks. Here, we present DeepSqueak, a USV detection and analysis software suite that can perform human quality USV
detection and classification automatically, rapidly, and reliably using cutting-edge regional convolutional neural network
architecture (Faster-RCNN). DeepSqueak was engineered to allow non-experts easy entry into USV detection and analysis yet is
flexible and adaptable with a graphical user interface and offers access to numerous input and analysis features. Compared to other
modern programs and manual analysis, DeepSqueak was able to reduce false positives, increase detection recall, dramatically
reduce analysis time, optimize automatic syllable classification, and perform automatic syntax analysis on arbitrarily large numbers
of syllables, all while maintaining manual selection review and supervised classification. DeepSqueak allows USV recording and
analysis to be added easily to existing rodent behavioral procedures, hopefully revealing a wide range of innate responses to

provide another dimension of insights into behavior when combined with conventional outcome measures.

Neuropsychopharmacology (2019) 44:859-868; https://doi.org/10.1038/s41386-018-0303-6

INTRODUCTION
Rodents engage in social communication through a rich repertoire
of ultrasonic vocalizations (USVs, vocalizations >20 kHz). Rats and
mice produce complex sequences of USVs throughout develop-
ment and in a variety of social and motivational contexts [1-6].
These sequences are made up of a number of uniquely shaped
syllables across a wide range of frequencies (20-115 kHz), and
they appear to have a form of syntax which is contextually
dependent [3, 7, 8]. Since their discovery, there has been a
concerted effort to assess the significance of USVs in rats and mice
and to utilize these innate responses as an indicator of the
subjective experience of the animal. For example, high fre-
quency (~50 kHz) USVs have been associated with positive affect
in rats, while lower frequency (~22kHz) USVs have been
associated with negative affect [1, 9-12]. However, within rat 50
kHz USVs there is considerable variability in syllable type and
sequence structure that may encode valuable information, and
has yet to be deciphered [13]. Mouse USVs are less clearly tied
to affective state, but the shape and sequence of syllables
vary greatly across genetic strains [14-17], behavioral and
social contexts [3, 18, 19], genetic manipulations [20], and
development [4, 21].

Recording and analysis of USVs has broad utility and can be
performed noninvasively in almost any rodent model, including
those commonly used to investigate models of drug abuse,

depression, fear or anxiety, neurodegenerative disease, aging,
and reward processing. However, despite strong evidence that
USVs serve an array of communicative functions and the
extraordinary extent to which rodent behavioral models are
used in neuroscience research [22], technical and financial
limitations have curbed the adoption of USV analysis. While it is
possible to use USVs as a relatively simple inference of positive
and negative affect, it still remains unclear the extent to which
syllable type and syntax may signify unique information relevant
to specific biological states, affective states, or social situations.
Manual classification of rat USVs often use 15 call categories [13]
and semi-automated analysis of 12 different mouse strains
suggested there are >100 USV categories [17]. While both of
these strategies have yielded interesting behavioral insights,
there is no consensus yet on exactly how to categorize USVs.
Performing these analyses manually is laborious and prone to
misclassification. Software such as MUPET [17] can produce
automatically generated syllable repertoires of a user-defined
size, but to determine that number by maximizing goodness-of-
fit measures can lead to the selection of rather large repertoires
that are difficult to map onto behavior. Further, the models
produced by MUPET cannot be saved and applied to future
datasets. There remains a need for a fully automated method of
producing syllable repertoires that can be used to compare call
types across experiments.
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Rapid detection of USVs using Faster RCNN. Shown is the Faster RCNN-based detection architecture. a An example waveform froma 1s

section recording containing mouse ultrasonic vocalizations. b A filtered sonogram produced from the audio segment displayed in (a). ¢ A
representation of the Faster-RCNN region proposal network determining sections of the sonogram to pass to the classification network. d The
classification network receives input from the region proposal network, performs a series of convolutions and filters, and ultimately classifies

the section as a call or background noise. Scale bar: Y=

Investigator analysis of USV recordings is slow and laborious,
while existing automated analysis software are vulnerable to broad
spectrum noise routinely encountered in the testing environment.
In order for a large portion of the neuroscience community to
adopt USV recording, and to fully explore the meaning and
scientific value of USVs, researchers need access to an inexpensive,
accurate, and high throughput method for detecting USVs,
classifying syllables, and analyzing sequences across a wide range
of experiments and recording procedures. Recently, deep learning
has revolutionized the field of machine hearing and vision, by
allowing computers to perform human-like activities such as
seeing, listening, and speaking [23-25]. Such systems are
constructed from biomimetic, “deep”, artificial neural networks.
Here, we present DeepSqueak, a USV detection and analysis
software suite which uses regional convolutional neural networks
(Faster-RCNN) [26] to increase detection rate, reduce false positives,
reduce analysis time, classify calls, and perform syntax analysis
automatically. While DeepSqueak is not the first software package
developed for USV detection and analysis [17, 27-30], it is free,
accessible, accurate, and fully featured (Table S1).
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METHODS

Training Faster-RCNN to detect USVs

DeepSqueak is packaged with four default detection networks:
one general purpose network, one for mouse USVs, one for short
rat USVs, and one for long 22 kHz rat USVs. Subsequent detection
networks for novel vocalizations or different species can be
generated within DeepSqueak with no programing or neural
network experience. To generate the default detection networks,
hundreds of rat and mouse USVs were manually isolated from our
own recordings and from external labs [1, 31] using Raven Lite 2.0
(Cornell Lab of Ornithology, NY). Manually isolated calls may be
imported into DeepSqueak from Raven Lite 2.0, MUPET [17],
Ultravox (Noldus; Wageningen, NL), or XBAT [27]. Using the
“Tools—Network Training—Create Training Data” function, indivi-
dual vocalizations were transformed into sonograms. Sonogram
parameters for short duration vocalization are: nfft =0.0032s,
overlap = 0.0028 s, window = 0.0032 s. Sonogram parameters for
long duration vocalizations are: nfft=0.01s, overlap =0.005s,
window = 0.01s. These sonograms were then passed to the
“Tools—Network Training—Train Network” function which trains a
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Faster RCNN object detector neural network (Table S2). These
initial networks were used to isolate thousands of USVs
automatically. These new USVs were manually reviewed and used
to re-train each network on a higher variety of vocalizations,
resulting in networks with extremely high recall, defined as the
ratio of detected true USVs to total true USVs in the file. To make
detection more robust to variable recording methods, the user
may also choose to augment the training set by added
procedurally generated noise and variable microphone gain in
order to artificially inflate its size and variability. This method was
used to generate the high sensitivity rat and mouse network, and
details regarding this function are outlined in the wiki.

Detecting USVs using DeepSqueak

Recordings of vocalizations stored as .WAV or .FLAC files can be
passed into DeepSqueak individually or in a batch (Fig. 1a).
DeepSqueak will split the audio file into short segments and
convert them into sonograms (Fig. 1b). These images are then
passed to a Faster-RCNN object detector. Segment length,
frequency range, and detection network can all be user-defined.
The first stage of detection is a region proposal network, which
segments the image into proposed areas of interest which may
contain USVs (Fig. 1c). The sections of the image within these
boxes are then passed to the classification network which
determines whether the image contains a call or background
noise (Fig. 1d). All USVs are saved to a detection file along with call
parameters and classification confidence. These parameters can
be used to automatically review USVs further.

Training a post-hoc de-noising network

The primary Faster RCNN object detector was designed to be
highly sensitive to ensure that vocalizations are not missed in the
audio files, at the cost of occasional false positives. Every
experimental setup is subject to unique mechanical and electrical
noise, a problem that plagues most automatic USV detection
software. We have included a secondary detection network to
identify and exclude these types of interfering noise by detecting
them from several experimental conditions, and manually labeling
individual detections as “Noise” or “USV” with “Tools—Call
Classification—~Add Custom Labels”. These manually labeled
detection files were passed to “Tools—Network Training—Train
Post Hoc Denoiser” which trained a neural network capable of
discriminating USVs from common types of background noise
(Table S3). If a user’s particular experimental setup produces noise
not recognized by the included network, they may create custom
de-noising networks from their own recordings.

Automatic and manual selection review

To ensure the highest possible accuracy, DeepSqueak allows for
multiple methods to review detections and remove noise. The
primary detection network generates a confidence score for all
detections. This score, as well as spectral power and call tonality,
may be used to automatically reject or accept all calls above or
below user-defined values under “Tools—Automatic Review—-
Batch Reject by Threshold”. Furthermore, the post-hoc denoising
network described above may be applied to all detection files
under “Tools—Automatic Review—Post Hoc Denoising”. All
rejected detections remain in the detection file but will not be
analyzed while in a “rejected” state. Finally, because unsupervised
clustering tends to place false positive into distinct clusters, the
user may classify entire clusters of detections as noise.

While USV detection and analysis with DeepSqueak can be
completely automated, it retains a complete set of manual
selection review features. Each detection can be viewed as a
sonogram and played back at any speed. Detections can be sorted
by time or score, can be accepted or rejected, classified with user-
defined labels through keyboard shortcuts, and the boxes
defining calls can be redrawn.

Neuropsychopharmacology (2019) 44:859 - 868
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Contour detection and call statistics

Robust contour detection is an extremely important aspect of
automatic call classification, and a key feature of DeepSqueak.
Each USV's contour is constructed by first calculating the
frequency at maximum amplitude for each time point in the
spectrogram, and then cleaned by removing non-tonal features
such as silence or broad spectrum noise. The tonality of each
audio signal is calculated by dividing the geometric mean of the
power spectrum by the arithmetic mean and subtracting from 1.

exp (= Inx(n))
N 2 no x(n)

1—

This is critical for extracting clean contours from noisy
backgrounds, because it allows for quantification of whistle-like
quality to provide clear separation between USVs and broad
spectrum mechanical noise of similar amplitude. All of the
statistics generated for each call are extracted from the contour.
The minimum, maximum, and mean frequency, duration, slope,
sinuosity, and power are all calculated based on the position of
the contour. This allows us tight control over what parts of the
sonogram are used to calculate these statistics and filters out any
non-tonal aspects of the sonogram.

Unsupervised syllable clustering
Optimization of unguided clustering comprises two main issues.
The first is how to extract from raw data, the meaningful
dimensions by which discrete USV categories are encoded, and
second is how to determine the quantity and distinctness of these
categories. We chose to highlight how different methods of call
parameterization alter clustering, and ultimately allow the user to
determine which USV features were most important to include in
the clustering algorithm. Call contours from any number of
detection files can be loaded into “Tools—Call Classification—Un-
supervised Clustering”. Currently, two unsupervised clustering
algorithms are implemented in DeepSqueak, although the K-
means-based approach will be used to highlight cluster optimiza-
tion, as is has been shown to work exceedingly well in similar work
in dolphins [32]. DeepSqueak allows the user to adjust three
weighted input features: shape, frequency, and duration. The
frequency of each call is reduced 10 segments, shape is defined as
the first derivative of the contour at 10 segments, and duration is
defined as the duration of the contour. The scale of each input is z-
score normalized and divided by the number of input segments
so that each dimension is initially equally weighted. These inputs
are then multiplied by the user-defined input weights to alter each
parameter’s effect on clustering. DeepSqueak allows the user to
choose a number of clusters, or can then attempt to automatically
pick the ideal number of clusters based on the elbow method. This
method works by first calculating the total sum of squared error
(TSS) for all USVs, and then the within-cluster sum of squared error
(WSS) for clusters. When clustering a non-random dataset, this
procedure produces a logarithmically decreasing curve, where the
addition of new clusters initially reduces the WSS drastically, but
eventually the addition of new clusters produces diminishing
returns on error reduction. This point is operationalized as the
elbow (inflection point) of the curve. More formally, the elbow is
calculated by walking along the curve one bisection point at a
time and fitting two lines, one to all the points to left of the
bisection point and one to all the points to the right of the
bisection point. The knee is judged to be at a bisection point
which minimizes the sum of errors for the two fits (Fig. 4a). This
concept of diminishing returns is very useful for USVs because it
minimizes over-clustering, and allows for a reasonable number of
statistical comparisons between call types.

The second clustering algorithm implemented is based on
dynamic time-warping and an adaptive resonance theory neural
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network [33]. This method does not require any input for the
number of clusters detected, but the thresholds can be changed
for determining when a new cluster should be formed. This
method is considered experimental and we have made no
attempt to optimize it.

Clustering interface

Once USVs are clustered, DeepSqueak will load the clustering
graphical user interface. This will generate a complete syllable
repertoire, as well as allow the user to view every single call in
every cluster. Calls are sorted by similarity to the cluster center and
may be inspected for obvious misclassifications which may be
manually removed by clicking on the individual sonograms.
Clusters can be assigned names and detection files can be
updated with classifications. Clusters labeled as “noise” will be
automatically removed from all future analyses.

Supervised neural network-based classification

DeepSqueak allows the user to create manual classification
categories and label USVs during selection review; however, it is
far more efficient to use the aforementioned unsupervised
clustering to categorize vocalizations. These clusters may then
be manually reviewed, and misclassifications can be removed. The
clusters can be named and passed to “Tools—Network Training—-
Train Network Classifier” which will train a classification network
(Table S4). We have included a simple mouse call classification
network that classifies mouse vocalizations into five categories
(Split, Inverted U, Short Rise, Wave, and Step). These categories are
by no means exhaustive and this network is included with
DeepSqueak as an example of what is possible when researchers
have large datasets of manually classified calls. We have also
attempted to optimize unguided clustering but included a
network that highlights DeepSqueak’s ability to perform user-
guided neural network-based classification. To produce this
network, DeepSqueak was used to detect ~56,000 USVs from
B6D2F1 mouse recordings obtained from Mouse Tube [34]. These
USVs were clustered with k-means clustering and the previously
mentioned five categories of USVs were isolated, manually
reviewed, labeled, and used to train the classification neural
network. All USVs from the aforementioned dataset were then
classified using this neural network and an analysis of male mouse
syntax during exposure to male mice, female mice, and female
urine was performed (Figure S1).

Syntax analysis

DeepSqueak can perform automated syntax analysis from
classified USVs. This analysis may be performed on manually
classified USVs, supervised classified USVs, or unsupervised
classified USVs. Any number of detection files (.mat) or output
statistics files (xlIsx) can be loaded into “Tools—Call Classifica-
tion—Syntax Analysis” and call categories can be selected for
analysis. Syntax is analyzed within bouts—bursts of USVs with
short inter-call intervals. The inter bout interval may be manually
specified by the user. DeepSqueak then calculates transition
probabilities between call categories within call bouts, and
outputs transition probability tables, heat-maps, and syntax flow
paths. This type of analysis can reveal complex patterns of calling
that are not evident when considering call frequency and call rate
alone.

RESULTS

Software availability and cost

DeepSqueak may be downloaded from “https://github.com/
DrCoffey/DeepSqueak”. DeepSqueak is free to use and modify
and alternate versions or neural networks may be shared in their
own branches. While we recommend using DeepSqueak in
conjunction with high-quality condenser microphones such as

SPRINGERNATURE

the UltraSoundGate CM16/CMPA (Avisoft Bioacoustics, Germany),
DeepSqueak is capable of analyzing recordings from low-cost USB
ultrasonic microphones such as the Ultramic250K (Dodotronic) or
M500-384 (Pettersson Elektronik), without sacrificing detection
accuracy. These microphones suffer from comparatively lower
sensitivity and higher noise but are economical and may allow
more units to be purchased by individual labs.

Analysis time

Analysis speed in DeepSqueak is fast and based on the computer’s
graphics processor. On a modest NVIDIA Quadro K1100M (CUDA
Cores: 384, graphics clock: 705 MHz, dedicated video memory: 2
GB GDDR5) DeepSqueak detects short USVs at least ~10x real
speed and long USVs at ~20x real speed. These speeds can be
increased to ~40x by using a modern high-powered GPU such as
the NVIDIA 1080ti.

Systematic interrogation of detection accuracy across varying
conditions

Most USV detection software performs well with high quality, high
signal-to-noise recordings. However, real-life experimental condi-
tions usually contain unpredictable noise sources from the
operation of the behavioral apparatus, nearby electrical equip-
ment, lights, ventilation, etc, and most previously available USV
detection software programs lose accuracy under these conditions
since the recordings are suboptimal. In order to compare
detection accuracy across varying recording conditions, we
measured two signal detection metrics, precision and recall.
Precision refers to the ratio of detected true USVs to false
positives; this measure is diminished by the over-detection of false
positives. Recall refers to the ratio of detected true USVs to total
true USVs in the file; this measure is reduced by failing to detect
true USVs present in the file. The mean and 95% confidence
intervals (Cl) for each software’s recall and precision were modeled
with binomial distributions.

In order to test detection accuracy systematically across
varying recording conditions, we manipulated two features of a
recording to degrade its quality and compared detection
accuracy with three automated programs: DeepSqueak, MUPET
[17], and the commercially available software program Ultravox
(Noldus; Wageningen, NL). We began with an ideal recording
from an online resource, Mouse Tube [34] and added increasing
levels of Gaussian “white” noise to the recording, replicating the
effect of lower quality signal-to-noise recordings (Fig. 2a). This
manipulation did not affect the precision of DeepSqueak or
MUPET (Fig. 2b), while Ultravox was no longer able to detect any
USVs once any noise was introduced. Lowering signal-to-noise
ratio did affect recall with each software program, although
DeepSqueak performed markedly better than MUPET across all
Gaussian noise levels, with MUPET falling well below the 95% for
DeepSqueak’s binomial distribution (Fig. 2c). Next, we progres-
sively added real-life environmental noise recorded in a
behavioral suite to the recording, such as mechanical rattling,
knocking, and movement by the animals (Fig. 2d). This type of
manipulation does not affect recall (Fig. 2f), but it reduced
precision in all cases. Still, DeepSqueak maintained the highest
precision across all noise addition levels (Fig. 2e) with both
Ultravox and MUPET falling well below the 95% Cl for
DeepSqueak’s binomial distribution.

Detection accuracy compared to hand scoring in representative
recordings

In order to test the ability of DeepSqueak to maintain high
detection accuracy across species and call type, we manually
scored rat and mouse files as a “gold standard” analysis. When
comparing detection accuracy between software, it is important to
consider correctly detected “hits”, false negative “misses”, and
false positives. We must also consider a measure of call quality. For

Neuropsychopharmacology (2019) 44:859 - 868
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Fig. 2 DeepSqueak excels under varying noise conditions. a A single USV shown with progressively increasing white noise addition.
Computer generated Gaussian noise added to the entire file 4 times, with the amount of white noise doubling each time. b Adding Gaussian
noise does not affect the detection precision for DeepSqueak or MUPET, but Ultravox could no longer detect any calls. ¢ Adding Gaussian
noise lowered the recall for MUPET and DeepSqueak, however DeepSqueak maintained the highest recall rate across all noise additions. d Five
different calls showing representative additions of natural noise designed to mimic loud experimental noise. Natural noise was added in 4
times in progressively greater amounts and volumes. e Natural noise addition lowered the precision of MUPET and Ultravox by increasing the
rate of false positive detection. Due to DeepSqueak’s noise detection neural network, it maintained the highest precision rate across all noise
additions. f Natural noise addition did not affect the recall rate of any detection algorithm

all files, calls were ranked by tonality, which is a measure of a
sound'’s distinguishability from noise. The higher a vocalization’s
tonality, the more distinguishable it is from background noise. For
rats, we analyzed recordings from a saccharin preference test
session that contain frequent ~55kHz USVs associated with
positive affect [10]. DeepSqueak maintained the highest recall rate
across all tonalities (Figure S2) and also had the lowest miss and
false positive rates (Figure S2d,g,j). When analyzing a very low
noise mouse recording, all three software programs performed
similarly well for high-frequency USVs, although DeepSqueak still
had the highest recall rate (Figure S2b), with the lowest miss and
false positive rates (Figure S2e,h,k). Finally, both DeepSqueak and
Ultravox were equally capable of detecting long ~22kHz
vocalizations from a rat stressed by reward omission of saccharin
(Figure S2c¢f,i), while MUPET is not designed to detect USVs below
30 kHz.

Neuropsychopharmacology (2019) 44:859 - 868

Tonality-based contour extraction

Robust contour detection in DeepSqueak is based around the
mathematical concept of tonality, wherein contours are only
extracted for samples in which calculated tonality is greater than a
defined threshold. Accepting low tonality samples (>0.15) will
extract noise (Fig. 3a, d), while accepting only high tonality
samples (>0.45) will exclude some of the USV's contour (Fig. 3¢, d).
We find that a simple cutoff (>0.3) is ideal to isolate calls from both
silence and broad spectrum noise (Fig. 3b, e, g). While a cutoff of
0.3 works in almost all circumstances we have tested, the user
retains the ability to alter the contour threshold in real time via a
slider.

Elbow optimized syllable repertoires from the B6D2F1 mouse

Syllable repertoires were generated from B6D2F1 mouse USV's
recorded by Chabout and colleagues [3] and obtained from Mouse
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Fig. 3 DeepSqueak extracts contours based on the concept of tonality. a A contour extracted from a rat “trill” using only peak amplitude. b A
contour extracted from a rat “trill” using a tonality threshold of >0.3 to eliminate silence and noise. c A contour extracted from a rat “trill” using
a tonality threshold of >0.45 eliminates too much of the call contour. d A contour extracted from a mouse USV using only peak amplitude. e A
contour extracted from a mouse USV using a tonality threshold of >0.3 to eliminate silence and a large piece of broad spectrum noise. f A
contour extracted from a mouse USV using a tonality threshold of >0.45 eliminates too much of the call contour. g The first 90 USV contours

from a B6D2F1 mouse recording

Tube [34]. DeepSqueak was used to detect ~56,000 USVs from the
aforementioned dataset. Contours extracted from these USVs
were passed through DeepSqueak’s “elbow optimized” k-means
based clustering algorithm with 4 different input parameters. USVs
were clustered by duration, frequency, shape, and all three
parameters combined and equally weighted. K-means clustering
was performed repeatedly from 1 to 100 clusters, and the elbow of
the within-cluster error curve was calculated (Fig. 4a). When
clustering based on the combination of shape, frequency, and
duration, the optimal number of clusters was 20 (Fig. 4b); when
clustering based on duration, the optimal number of clusters was
5 (Fig. 4c); when clustering based on shape, the optimal number
of clusters was 20 (Fig. 4d); when clustering based on frequency,
the optimal number of clusters was 13 (Fig. 4e). Cluster
visualizations were generated by calculating the mean intensity
projection for the first 20 calls in each cluster. Clusters in Fig. 4c-e
are shown with consistent durations, while clusters in Fig. 4b have
variable durations, and are magnified for clarity. While there is no
perfect way to parameterize USVs or optimize cluster number, we
believe using elbow optimization on k-means clusters generated
from the combination of shape, duration, and frequency provides
an empirical and unbiased method to separate USVs into a
reasonable repertoire of commonly produced syllables.

Elbow optimized syllable repertoire from Sprague Dawley rats
during saccharin consumption

A syllable repertoire was generated from Sprague Dawley rats
recorded during saccharin consumption. DeepSqueak was used to
detect ~100,000 USVs which were passed through DeepSqueak’s
“elbow optimized” k-means based clustering algorithm. When
clustering based on the combination of shape, frequency, and
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duration, the optimal number of clusters was 18 (Figure S3). This
repertoire is similar to the one presented by Wright and
colleagues [13], but not identical. While most categories are
represented, pure trills appear difficult to isolate via contour-based
clustering. Accordingly, there is an ongoing effort to produce a
classification neural network from manually labeled calls that
conforms to the Wright classifications.

Syntax guided cluster optimization

Cluster number optimization in DeepSqueak is mathematically
derived, and based upon reducing the within-cluster error.
However, determining the optimal input parameters is not
straightforward. We have chosen to explore the effect of
clustering input parameters on the syntax of male mice with
known behavioral outcomes. The vocalizations in this analysis
were previously recorded and analyzed by Chabout and
colleagues [3]. They found that mice had a higher likelihood of
repeating syllables than transitioning to a new syllable. They also
found that male mice exposed to anesthetized males had the
highest rate of syllable repetition, while male mice exposed to
female urine had the lowest rate. Therefore, our automated
syllable clustering aims to maximize syllable repetition in male
mice exposed to males and maximize the difference in syllable
repetition between mice exposed to males and mice exposed to
female urine.

We found that clustering vocalizations based solely on duration
produced a syllable repertoire with minimal odds of within-cluster
repetition (Fig. 5a) and no significant difference in syllable
repetition between groups. Clustering based on frequency
produced an increase in within-cluster repetition, as well as an
overall difference between groups (Fig. 5a; (107) = 2.27, p = 0.08).

Neuropsychopharmacology (2019) 44:859 - 868
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logarithmically reduced by increasing the number of clusters. The elbow of each curve represents the point of diminishing returns for
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Fig. 5. ¢ When clustering using only duration as the input parameter, DeepSqueak determined the optimal number of syllables to be 5. A mean
intensity projection of the top 20 USVs in each cluster are shown on a fixed time scale. d When clustering using only shape as the input
parameter, DeepSqueak determined the optimal number of syllables to be 20. A mean intensity projection of the top 20 USVs in each cluster
is shown on a fixed time scale. e When clustering using only frequency as the input parameter, DeepSqueak determined the optimal number

of syllables to be 13. A mean intensity projection of the top 20 USVs in each cluster are shown on a fixed time scale

Specifically, mice exposed to anesthetized males showed greater
odds of within-cluster repetition than all other groups. Clustering
based on shape also produced an increase in within-cluster
repetition, as well as an even greater difference between groups
(Fig. 5a; f(107) = 5.28, p = 0.002). Specifically, male mice exposed
to anesthetized males showed greater odds of within-cluster
repetition than all other groups, male and mice exposed to
anesthetized or awake females showed greater odds of within-
cluster repetition than male mice exposed to female urine. Finally,
clustering with all parameters combined produced the most
within-cluster repetition, as well as the greatest difference
between groups (Fig. 5a; f(107) =9.56, p <0.001). Specifically,
male mice exposed to anesthetized males showed greater odds of
within-cluster repetition than all other groups, and male mice
exposed to female urine showed greater odds of within-cluster
repetition than all other groups. DeepSqueak also automatically
generated syntax flow diagrams for each condition which can be
used to visualize transitions probabilities (Figure S4). This result
forms the basis for our default parameterization for clustering. We

Neuropsychopharmacology (2019) 44:859 - 868

have chosen to parameterize calls with equally weighted
combinations of duration, frequency, and shape. Still, DeepSqueak
retains the ability for the user to change the weights of each
parameter such that the individual user can cluster based around
whatever feature they deem most relevant.

Finally, we highlighted DeepSqueak’s automated clustering
and syntax analysis by replicating the results of Chabout and
colleagues [3]. In that report calls were segmented into only 5
clusters, whereas our automated pipeline determined there to
be 20 syllable types. Regardless, we arrived at similar conclu-
sions to the original report. We found that males use a simpler
syntax when vocalizing around other males, predominantly
producing short simple USVs, and transition from complex USVs
back to simple USVs (Fig. 5d). Male mice produced more
complex patterns of USVs when exposed to females, with the
most complex syntax occurring during exposure to female urine
(Fig. 5e). This more complex structure of USV syntax has been
theorized as a method of attracting females with complex
courtship songs [3].
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DISCUSSION

USV recording and analysis is a valuable tool for numerous
behavioral neuroscience models, including drug abuse, depres-
sion, fear or anxiety, neurodegenerative disease, aging, and
reward processing. Most conventional behavioral measures such
as actions, movement or place preference must be interpreted to
reflect emotional state based on the experimental design, whereas
USVs provide direct, ethologically relevant expressions that can be
measured as an endpoint themselves or used to annotate other
coincident behaviors. DeepSqueak’s ability to analyze large
numbers of USVs very precisely allows for nuanced explorations
of the interplay between vocalizations and behaviors.

DeepSqueak is accurate and flexible primarily because it is
built around biomimetic, “deep”, artificial neural networks,
allowing it to perform human quality USV detection and
classification automatically and at high speeds. Neural networks
are ideal for signal detection problems where the signal is
variable and often embedded in noise. We have shown
systematically that DeepSqueak is capable of detecting USVs
with low signal or in high environmental noise recordings. These
two features make DeepSqueak robust and generalizable to
myriad experimental conditions. The robust nature of DeepS-
queak’s detection architecture also makes recording USVs with
less expensive equipment significantly more feasible. DeepS-
queak is also fast compared to other automatic detection
pipelines, allowing researchers to add USVs as a rapid and
simple emotional assay in experiments where USVs are not the
primary outcome measure. Further, DeepSqueak is flexible and
customizable by the end user. If the release version of
DeepSqueak is unfamiliar with a particular experimental noise
and as a result detects that noise as a call, it is simple for the end
user to create a new noise detection and elimination network
from their own recordings. This is possible without the need for
programming capabilities, or an understanding of how neural
networks are trained using simple, point and click menus. The
DeepSqueak interface also retains all of the features necessary
for manual analyses alongside automated analyses.

One major hurdle for USV researchers, beyond detection and
de-noising, has been categorizing USVs into syllable types and
unraveling the meaning of their syntactic structure. Clustering
USVs is an extremely difficult problem to optimize, and to date
few people have tried to automate the process. One such
attempt was by Van Segbroeck and colleagues, creators of
MUPET [17]. In our experience, MUPET is an extremely capable
software package that revolutionized automated syllable clus-
tering. In MUPET, clustering is applied on the spectral
magnitude of the segmented syllables, whereas clustering in
DeepSqueak is amplitude invariant and contour-based. To
compare these methods, we analyzed the same file with
DeepSqueak and MUPET twice; once with a full volume file
and once with the volume reduced by 50%. DeepSqueak’s
clustering placed calls in the same category despite amplitude
changes at a substantially higher rate than MUPET (Figure S5).
This is important because most behavioral experiments include
freely moving animals that produce calls of different volume,
and it would be beneficial to maintain high fidelity of call
categories irrespective of the animal’s position relative to the
microphone. The clustering models generated by DeepSqueak
may also be saved and applied to future datasets.

Using fully automated clustering with elbow optimization, we
identified 20 syllables produced by the B6D2F1 mouse, whereas
Van Segbroeck and colleagues identified 100-140 syllables. We
favor the perspective that produces a smaller number of essential
call types, but with substantial variation within classes and a lack
of distinct boundaries. This lack of distinct boundaries between
syllables can be visualized directly by plotting the call sonograms
in t-distributed stochastic neighbor embedding (t-SNE) space
(Figure S6) and is supported by the high correlation between
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many syllable shapes when they are separated into ~100
categories [17]. DeepSqueak provides the first fully automated
and reproducible way to categorize calls into a limited number of
syllables. Finally, DeepSqueak offers the first fully automated
syntax analysis that can be performed on an arbitrary number of
syllables. Using these features, we have shown that our
automatically generated syllable repertoire for B6D2F1 mice
contains behaviorally relevant syntactic information comparable
to manual analysis. It is our hope that the many features of
DeepSqueak will improve the accuracy, ease, reproducibility, and
meaningfulness of future USV analyses.
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