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Abstract
Complex diseases are usually associated with multiple correlated phenotypes, and the analysis of composite scores or disease
status may not fully capture the complexity (or multidimensionality). Joint analysis of multiple disease-related phenotypes in
genetic tests could potentially increase power to detect association of a disease with common SNPs (or genes). Gene-based
tests are designed to identify genes containing multiple risk variants that individually are weakly associated with a univariate
trait. We combined three multivariate association tests (O’Brien method, TATES, and MultiPhen) with two gene-based
association tests (GATES and VEGAS) and compared performance (type I error and power) of six multivariate gene-based
methods using simulated data. Data (n= 2000) for genetic sequence and correlated phenotypes were simulated by varying
causal variant proportions and phenotype correlations for various scenarios. These simulations showed that two multivariate
association tests (TATES and MultiPhen, but not O’Brien) paired with VEGAS have inflated type I error in all scenarios,
while the three multivariate association tests paired with GATES have correct type I error. MultiPhen paired with GATES
has higher power than competing methods if the correlations among phenotypes are low (r < 0.57). We applied these gene-
based association methods to a GWAS dataset from the Alzheimer’s Disease Genetics Consortium containing three
neuropathological traits related to Alzheimer disease (neuritic plaque, neurofibrillary tangles, and cerebral amyloid
angiopathy) measured in 3500 autopsied brains. Gene-level significant evidence (P < 2.7 × 10−6) was identified in a region
containing three contiguous genes (TRAPPC12, TRAPPC12-AS1, ADI1) using O’Brien and VEGAS. Gene-wide significant
associations were not observed in univariate gene-based tests.

Introduction

Genome-wide association study (GWAS) is a primary tool
to identify association of genetic variants with phenotypes
[1, 2]. GWAS has been successfully applied to a variety of
complex diseases and identified genetic factors underlying
complex diseases [3, 4]. However, there is still a con-
siderable heritability of complex diseases that could not be
explained by conventional GWAS [5, 6]. One plausible
reason for unexplained heritability is due to the genetic
architecture of complex diseases, which are affected by
many common variants with low penetrance (i.e., small
effect) [5]. Gene-based analysis, which considers the
aggregate effect of multiple genic variants in a single test, is
an alternative approach to overcome the genetic hetero-
geneity problem [7, 8]. Conventional GWAS may also be
limited by phenotypic heterogeneity [5, 6, 9]. Most GWASs
consider a univariate clinical outcome (e.g., disease diag-
nosis or a composite score of several disease-related traits).
It is well understood that some variants may influence
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multiple traits associated with a single complex disease, but
association of those variants may not be detected in a model
with a broadly defined outcome [10]. Thus multiphenotype
analysis, which simultaneously considers more than one
phenotype pathologically or clinically related with the dis-
ease, may help identify additional disease-related genetic
associations.

Several gene-based association methods [11, 12] and
multivariate association methods [9, 13, 14] have been
developed and successfully applied to GWASs of complex
diseases. Recently, van der Sluis et al. developed a multi-
variate gene-based test (MGAS) [15] that combines the
TATES [9] method for multivariate single-nucleotide
polymorphism (SNP) association testing and the GATES
method [8] for gene-based univariate association testing. In
this study, we evaluated the statistical performance of
combinations of multivariate association methods and gene-
based association methods in various simulation models.
The gene-based methods tested in this study include
VEGAS [16] and GATES [8], which have been frequently
used for analyzing common SNPs. The tested multivariate
association methods were O’Brien [17], TATES [9], and
MultiPhen [13]. These methods have been implemented in
freely available standalone software or in an R library that
accepts as input files produced by commonly used GWAS
tools. The goal of this study is to provide guidance on how
to optimally select multivariate gene-based association
method for analyzing common variants given the correla-
tion of phenotypes and genetic background (e.g., linkage
disequilibrium [LD]).

Methods

The information in detail about the multivariate and gene-
based association methods are described in Table 1.

Approaches for multiphenotype association testing

The O’Brien method combines univariate test statistics (i.e.
Z scores or β) of all SNPs from GWAS of multiple phe-
notypes to compute a test statistic for pleiotropic effect
[17, 18] and is implemented in an R library, CUMP [19].
This method calculates a statistic assumed to follow a
multivariate normal distribution with mean (combined Z
scores of all SNPs) and covariance matrix of the multiple
phenotypes. The covariance matrix among phenotypes can
be approximated by the sample covariance matrix of the Z
scores of all SNPs [17, 19].

The Trait-based Association Test that uses the Extended
Simes procedure (TATES) was developed to detect effects
across correlated traits measured in the same individuals
using summary association statistics in the form of P value Ta
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for each trait [9]. For each variant, the approach takes the
minimum P value across a set of univariate tests carried out
on each phenotype and then applies a weight to the P value
to account for the number of phenotypes tested and their
correlation. TATES requires univariate test statistics (i.e., P
values) and a correlation matrix of the multiple phenotypes.

MultiPhen performs ordinal regression using an inverted
model whereby the genotype or imputed SNP allele dosage
is the outcome variable and the phenotypes are the pre-
dictors [13]. This program uses individual-level data (gen-
otypes and phenotypes) for computing regression models,
whereas the O’Brien method and TATES use summary
statistics (β and SE or P values) and tests association
between a SNP and a set of phenotypes by conducting
likelihood ratio test for model fit, testing whether all
regression coefficients in the model are jointly significantly
different from zero. MultiPhen is an R package available
from CRAN.

Approaches for gene-based testing

The Gene-based Association Test using the Extended Simes
procedure (GATES) computes a gene-based P value using
SNP-based P values and correlations between SNPs (or
pairwise LD information) in a gene [8]. The individual SNP
P values are combined in a manner that appropriately
controls for the effective number of independent SNPs in a
gene. The effective number of independent SNPs is esti-
mated from the eigenvalues of the square root of LD matrix.

The Versatile gene-based test for Genome-wide Asso-
ciation Studies (VEGAS) allows the SNP-based chi-square
test statistics in a gene to be combined in a gene-based test
statistic [16]. An empirical null distribution for this gene-
based test statistic is obtained through a simulation of
multivariate standard normal random vectors (Z statistics)
with mean 0 and the correlations (or LD) between SNPs in a
gene. The simulated gene-based test statistic is the sum of
the squared Z statistics (with a chi-square distribution). The
observed gene-based test statistic is the sum of chi-squares
(converted from P values). The empirical gene-based
P value is the proportion of simulated gene-based test sta-
tistics that surpass the observed gene-based test statistics.
To compute the empirical gene-based P value, we per-
formed 106 simulations.

Genotype simulation settings

Simulation studies under a range of scenarios were per-
formed to assess and compare the performance (type I error
and power) of the three multivariate association methods
(O’Brien, TATES, and MultiPhen) each paired with one of
the gene-based association methods (GATES and TATES).
For all scenarios, we generated sequence genotypes of 22

autosomal chromosomes. HAPGEN2 software [20] was
applied for generating the sequence genotypes for
2000 samples, and the European ancestry populations in the
1000 human genome reference panel (GRCh37; Mar 2012)
[21] was used as reference to incorporate realistic genetic
background. Only common SNPs with minor allele fre-
quency (MAF) ≥1% were evaluated in the simulation tests
for this study. For each simulation replicate, a 10-kb region
containing at least 20 common SNPs was randomly selec-
ted. EIGENSTRAT [22] was used to generate principal
components of the simulated genotypes to adjust for
population structures in the simulation tests.

Correlated multiphenotype simulation settings

Van der Sluis et al. suggested various genotype–phenotype
models for genetic architecture of complex disease [9].
Among these models, we used the primary model, “single
common factor model,” which implies that individual
phenotypes related with a complex disease result from one
shared latent factor influenced by genetic factors. Three
correlated phenotypes of 2000 sample were simulated for
each simulation test. The covariance matrix of three corre-
lated phenotypes with the common factor were simulated
according to this model:

Σ ¼ Λ � ΛT þ Θ;

where Σ is the 3 × 3 covariance matrix among the three
phenotypes, Λ is the 3 × 3 matrix of factor loadings, T is
matrix transpose, and Θ is the 3 × 3 diagonal matrix of
residual variances (see details elsewhere [9]). The factor
loading is the proportion of variance of a complex disease
explained by a factor, and the residual variance is the
proportion of variance of phenotypes that is not explained
by the factor. In general, when a factor loading value
increases, the correlations among phenotypes simulated by
the model above increase.

Type I error simulation

We simulated three phenotypes that were multivariate nor-
mally distributed with mean 0 and covariance Σ for
2000 samples. Five million simulation tests were performed
to evaluate whether the combined methods for multi-
phenotype gene-based test maintained the correct type I
error rate. Type I error rate was evaluated through four
scenarios by different factor loadings (Λ= 0.15, 0.35, 0.55,
or 0.75, see Supplementary Table 1).

Power simulation

To simulate multiphenotype data for the power evaluation,
we randomly chose causal SNPs in the selected 10-kb
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region. We simulated three continuous phenotypes for
2000 samples using the formula

Y ¼ β1G1 þ β2G2 þ � � � þ βnGn þ ε;

where βi is the effect size of the causal SNP i, Gi is the
genotype of the causal SNP i, and ε is error term that
follows a multivariate normal distribution with means 0 and
covariance matrix Σ. The effect size, β, was generated by

βi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2q
2�MAFi � ð1�MAFiÞ

s

;

where h2q, the proportion of variance explained by each
causal SNP, was fixed at 1% for all scenarios and MAFi is
the MAF of the causal SNP i. We considered various
scenarios in terms of different factor loadings (Λ= 0.15,
0.35, 0.55, and 0.75), i.e., different correlation between
phenotypes and either 5% or 15% of causal SNPs as shown
in Supplementary Table 1.

Simulation test procedure

For each simulation replicate, multiphenotype association tests
of SNPs were first conducted using the O’Brien, TATES, and
MultiPhen approaches, and the association P values of SNPs
from the three multivariate tests were combined into single
gene-based P values using GATES and VEGAS. The O’Brien
method requires genome-wide association statistics to com-
pute a null distribution. To reduce the computation time, we
generated a pruned set of uncorrelated SNPs on all chromo-
somes. The pruned SNP set was used for computing genome-
wide association statistics, which were applied to compute the
covariance matrix for the O’Brien approach. The full set of
unpruned SNPs were used for the rest of simulation replicates.
We used linear regression to compute univariate associations
(βs and SEs or P values) between SNPs and each phenotype
after adjusting the first three PCs, and the univariate SNP
associations results were then used as input for analyses using
the O’Brien and TATES multivariate association methods.
MultiPhen computes multivariate associations with
individual-level simulated data (SNPs and three phenotypes)
after adjusting the three PCs. Because we simulated genotypes
in the European ancestry population from the 1000 Genomes
reference panel [21], the European LD structure from this
panel (GRCh37; Mar 2012) was used for GATES and
VEGAS to correct for the correlation between SNPs.

Scenario setting

We investigated statistical performance, both type I error
and empirical power, of each pair of multivariate gene-
based association methods in various scenarios for four

different factor loadings (Λ= 0.15, 0.35, 0.55, and 0.75)
and proportions of independent SNPs in a gene. The
effective number of independent SNPs in a gene was esti-
mated in the manner applied in GATES [8], and proportions
of independent SNPs out of the total number of SNPs in a
gene were classified into three groups (low: <40%, mod-
erate: 40–60%, and high: >60%).

We further considered additional scenarios for assessing
the empirical power by varying (1) the percentage of causal
variants (5% and 15%) in a gene, (2) phenotype direction (i.e.,
correlations of phenotypes are all in same direction or not),
and (3) the number of phenotypes affected by the causal
variants. We randomly selected 5% or 15% of causal variants
among the total number of SNPs in a gene. We compared the
empirical power of the paired multivariate gene-based asso-
ciation methods when all three phenotypes were positively
correlated, with the sign of the pairwise correlation= (+++)
or one phenotype was inversely correlated with the others
(+−−). Also, we investigated the empirical power for the
scenarios where the causal variants in a gene affect one or two
phenotypes only, rather all three phenotypes. The simulation
studies for the scenarios with varying phenotype correlation
direction and the number phenotypes affected by causal var-
iants were conducted with the factor loading fixed to 0.55.
The complete range of simulation scenarios is summarized in
Supplementary Table 1.

Application to neuropathological traits related to
Alzheimer disease (AD)

Genetic and phenotypic data for 3135 AD cases and 463
clinically and pathologically confirmed controls of Eur-
opean ancestry from 12 datasets (participant characteristics
shown in Supplementary Table 2) who have genotypes and
AD-related neuropathological phenotypes including neuritic
plaque (NP), neurofibrillary tangles (NFT), and cerebral
amyloid angiopathy (CAA) were obtained from the Alz-
heimer’s Disease Genetics Consortium. A total of
3598 subjects have both NP and NFT phenotype data, but
only 2403 subjects have CAA data. GWAS of each of these
three phenotypes has been conducted previously [23], and
GWAS summary statistics of the three traits were obtained
from NIAGADS (https://www.niagads.org) [24].

Neuropathological traits are correlated, but the correla-
tions among traits vary, which is not covered by our
simulations scenarios. Although our simulation study may
provide sufficient information to infer statistical perfor-
mance, especially type I error, of the proposed methods, we
performed one more simulation study to assess the type I
error for phenotypes with correlation structure similar to the
neuropathological traits. An R multivariate normal gen-
erating (“mvrnorm”) function of the MASS library was
applied to generate sets of phenotypes to mimic the
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neuropathological traits. The rest of the simulation setting
were identical to the main simulation study.

Summary statistics of the three neuropathological phe-
notypes were used to evaluate the O’Brien and TATES
multivariate association methods. The MultiPhen program
was applied to each dataset and the SNP association results
were combined across datasets using METAL with the
weighted Z-score method based on sample sizes [25]. It
should be noted that the sample size used for MultiPhen (#
actual sample size for computation= 2403) is much smaller
than the other multivariate association methods (O’Brien
and TATES; #= 3135) because MultiPhen requires
individual-level genotype and phenotype data (NP, NFT,
and CAA). For the gene-based tests (VEGAS and GATES),
we used SNPs within 10 kb of both ends of transcripts after
removing low-frequency SNPs (MAF ≤ 1%) and SNPs with
low imputation quality (R2 < 0.4). To evaluate the perfor-
mance of the multivariate association methods in a con-
sistent condition (i.e., the same subjects), we also performed
a sensitivity analysis using a subset of individuals who had
all genotype and no missing phenotype data (n= 2403).

The genome-wide significance level for gene-based tests
was set as 2.7 × 10−6, which was calculated as the nominal
significant level divided by the total number of genes tested
(n= 18,500). We defined a gene having a pleiotropic effect
on the three phenotypes when the multivariate gene-based P
value was at least one order of magnitude lower than the
univariate gene-based P value of each phenotype.

Results

On average, 60 SNPs were observed in each gene region
(10-kbp length). On average, correlation estimates (Pearson

correlation, r) between phenotypes that were simulated by
factor loadings (Λ) in scenarios were 0.01, 0.21, 0.57, and
0.86 for Λ= 0.15, 0.35, 0.55, and 0.75, respectively. Of
note, simulated phenotypes were not significantly correlated
(P > 0.05) when the factor loading was equal to 0.15.

Type I error simulations

The empirical type I errors of multivariate association
methods with the gene-based tests are shown in Table 2
(VEGAS) and Table 3 (GATES) at different α levels based
on the proportion of independent SNPs in a gene (low,
moderate, and high) and factor loading (Λ= 0.15, 0.35,
0.55, and 0.75). Applying VEGAS to the multivariate out-
put by O’Brien (VEGAS-O’Brien) yielded slightly inflated
type I errors at all α levels in the three scenarios by factor
loadings (Λ= 0.15, 0.35, and 0.55) regardless of proportion
of independent SNPs but not in the scenario of higher factor
loading (Λ= 0.75). Applying VEGAS to rest of the multi-
variate association methods has inflated type I errors at α=
0.0001 for TATES and at all α levels for MultiPhen for all
scenarios irrespective of factor loadings or independent
SNP proportions. When GATES was applied, type I errors
for all three multivariate association methods were deflated
at all α levels in all scenarios.

Power simulations

Power simulation results of multivariate association meth-
ods with gene-based association methods are shown in
Fig. 1 and Supplementary Tables 3 and 4. As the proportion
of independent SNPs in a gene increased, the power of all
multivariate association methods decreased regardless of
gene-based association method. Most of the multivariate

Table 2 Type I error rate of multivariate association methods with a gene-based association method, VEGAS

Factor loading
(Λ)

Proportion of independent
SNPs (%)

VEGAS

α= 0.01 α= 0.001 α= 0.0001

O’Brien TATES MultiPhen O’Brien TATES MultiPhen O’Brien TATES MultiPhen

0.15 0–40 0.00 0.00 0.02 0 0.0005 0.001 0 0.0005 0.0002

40–60 0.00 0.00 0.02 4.1 × 10−5 0.0004 0.003 1.4 × 10−5 0.0003 0.0005

60–100 0.00 0.00 0.02 4.8 × 10−5 0.0002 0.003 0 0.0002 0.0007

0.35 0–40 0.00 0.00 0.02 0.0002 0.0006 0.002 0 0.0006 0.0002

40–60 0.01 0.00 0.02 0.0002 0.0004 0.003 3.3 × 10−5 0.0004 0.0004

60–100 0.01 0.00 0.02 0.0003 0.0003 0.003 5.7 × 10−5 0.0003 0.0006

0.55 0–40 0.01 0.00 0.02 0.002 0.0010 0.003 0.0001 0.0008 0.0002

40–60 0.01 0.00 0.02 0.002 0.0005 0.003 0.0002 0.0004 0.0003

60–100 0.02 0.00 0.02 0.001 0.0004 0.003 0.0002 0.0004 0.0006

0.75 0–40 0.06 0.00 0.02 0.01 0.0008 0.002 0.0015 0.0005 0.0006

40–60 0.12 0.00 0.02 0.02 0.0007 0.003 0.0032 0.0006 0.0003

60–100 0.19 0.00 0.02 0.03 0.0003 0.005 0.0071 0.0003 0.0009

Comparison of methods for multivariate gene-based association tests for complex diseases using common. . . 815



association methods, except for MultiPhen, using VEGAS
or GATES showed low power (<10%) in scenarios when
the proportion of causal SNPs in a gene is equal to 5%. In
the scenarios for the proportion of causal SNPs fixed at
15%, the power of O’Brien and TATES, regardless of the
gene-based association methods, remained almost constant
in the scenarios when factor loading (Λ) increases from 0.15
to 0.35, 0.55, and 0.75. In contrast, the power of MultiPhen
combined with VEGAS or GATES was highest in the
scenario including the lowest factor loading (Λ= 0.15), and
it was reduced by about 20% when the factor loading
increased from 0.15 to 0.75. All pairs of multivariate and
gene-based association methods had similar power in the
scenarios of the highest factor loading (Λ= 0.75). Applying
VEGAS to the three multivariate association methods
showed slightly greater power than GATES in all scenarios.
However, this might be related to the inflated type I errors
observed in most of the multivariate association methods
using VEGAS.

In the scenario with phenotypes positively and negatively
correlated (+−−), O’Brien combined with both GATES
and VEGAS yielded low or zero power (Table 4a), while
the empirical power of TATES and MultiPhen, regardless
of the gene-based association methods, remained almost
constant compared to the scenario with positively correlated
phenotypes (+++; Table 4b). We also observed that, as the
number of phenotypes not affected by causal variants
increased, the power of all multivariate association methods
decreased regardless of gene-based association methods
(Table 5). This can be seen most clearly with the results of
the O’Brien method paired with both gene-based associa-
tion methods, where power is very low when the effect of

causal variants is on only one phenotype among the three
phenotypes.

Among the pairs of multivariate gene-based association
methods that correctly controlled type I error, MultiPhen
and GATES outperformed other combinations in most
scenarios, suggesting that the pairing GATES with Multi-
Phen is an omnibus method for multivariate gene-based
association testing.

Application to AD-related neuropathological traits

The correlation estimates (r) between the three neuro-
pathological phenotypes were 0.68 between NP and NFT,
0.56 between NP and CAA, and 0.40 between NFT and
CAA. For the investigation of pleiotropic effects on the
three neuropathological phenotypes, we planned to apply
multivariate gene-based association methods that properly
controlled the type I error in the simulation tests. From the
extra simulation study for the phenotypes with correlation
most similar to the neuropathological phenotypes, we found
that the pairing of GATES with all three multivariate
association methods maintained correct type I error. The
method combined by O’Brien and VEGAS exhibited
slightly inflated type I errors (0.0001–0.0003 at α=
0.0001), while the pairing of VEGAS with the other mul-
tivariate association methods (TATES and MultiPhen)
showed substantial inflated type I error (0.0002–0.0008 at
α= 0.0001; see Supplementary Table 5). Therefore, the
pairing of GATES with all three multivariate association
methods (O’Brien, TATES, and MultiPhen) plus the com-
bination of VEGAS and O’Brien were used for analysis of
the neuropathological phenotypes.

Table 3 Type I error rate of multivariate association methods with a gene-based association method, GATES

Factor Loading
(Λ)

Proportion of independent
SNPs (%)

GATES

α= 0.01 α= 0.001 α= 0.0001

O’Brien TATES MultiPhen O’Brien TATES MultiPhen O’Brien TATES MultiPhen

0.15 0–40 0.000 0.006 0.010 0.0000 0.0004 0.0000 0.0000 0.0001 0.0001

40–60 0.000 0.003 0.000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000

60–100 0.000 0.002 0.000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000

0.35 0–40 0.000 0.006 0.010 0.0000 0.0008 0.0000 0.0000 0.0001 0.0001

40–60 0.000 0.003 0.000 0.0000 0.0003 0.0010 0.0000 0.0000 0.0001

60–100 0.000 0.002 0.000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

0.55 0–40 0.002 0.006 0.010 0.0000 0.0009 0.0000 0.0000 0.0001 0.0001

40–60 0.001 0.004 0.010 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000

60–100 0.001 0.002 0.000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000

0.75 0–40 0.010 0.008 0.010 0.0000 0.0005 0.0010 0.0000 0.0000 0.0000

40–60 0.010 0.005 0.000 0.0000 0.0005 0.0000 0.0000 0.0001 0.0000

60–100 0.000 0.002 0.000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
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Fig. 1 Power comparisons of multivariate association methods
(O’Brien, TATES, and MultiPhen) with gene-based association
methods (VEGAS and GATES) in various scenarios by varying the

proportion of independent SNPs in a gene. a Causal variant percen-
tage= 15% and b causal variant percentage= 5%. Empirical power
calculated at α level of 0.0001
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Association findings from multivariate gene-based
methods are shown in Table 6 for previously reported AD
genes [26–29] and Table 7 for new genes identified in this
study with at least suggestive association (P < 10−4). Only 8
of the 27 previously known AD genes attained at least a
nominally significant level of association with at least 1 of
the phenotypes. Five of the previously reported AD genes—
BIN1, PICALM, TSPOAP1, CASS4, and APOE—were at
least nominally associated in the multivariate gene-based
analyses at a significance level of at least one order of
magnitude smaller than the results from the univariate
analyses of three neuropathological phenotypes. APOE was
detected as a gene with pleiotropy effect on the three phe-
notypes in the pairs of methods: GATES with O’Brien (P=
1.6 × 10−68) and TATES (P= 2.1 × 10−44). O’Brien with
VEGAS also found the significant association for APOE
(P < 1.0 × 10−6) in the multivariate gene-based analysis.
However, O’Brien with VEGAS could not differentiate
whether or not the multivariate association in APOE is more
significant than its associations from each of univariate
analyses because VEGAS generated a gene-based P value
from a permutation approach that was not precise enough to
detect a change of one order of magnitude. Nominally
significant multivariate gene-based associations (P < 10−3)
in BIN1, PICALM, and CASS4 were observed from O’Brien
with VEGAS, and nominal association in TSPOAP1 was
detected from MultiPhen with GATES (Table 6).

Three neighboring genes including TRAPPC12,
TRAPPC12-AS1, and ADI1 on chromosome 2p25.3 were
identified at a gene-wide significant level (P < 2.7 × 10−6) in
the MGAS for the three phenotypes (NP, NFT, and CAA)
by O’Brien with VEGAS (Table 7). It should be noted that
suggestively significant association with SNPs (best SNP:
chr2:g:3474085C>T [rs35067331]; P= 5.5 × 10−7 in
TRAPCC12) in the multivariate model (NP, NFT, and
CAA) by the O’Brien method was observed in this region
(Supplementary Fig. S1). A genome-wide sensitivity ana-
lysis showed that only APOE attained gene-wide significant
association in all the pairings of multivariate gene-based
association methods, and the P values of APOE from the
multivariate association tests paired with GATES were
similar for all approaches (Supplementary Table 6). In
addition, we observed that the pairing of MultiPhen with
GATES yielded similar association strengths (i.e., P values)
for the new genes, except for KRT2, compared with the
other combinations of multivariate gene-based association
methods (Supplementary Table 6).

Discussion

In this study, we proposed a multivariate gene-based asso-
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multivariate association method (O’Brien, TATES, or
MultiPhen) with a gene-based association method (GATES
or TATES) to identify genes with pleiotropic effects on
multiple phenotypes related to a complex disease. We
limited the multivariate gene-based association tests of
common SNPs (MAF ≥ 1%) because those methods were
originally designed for common variants. We performed
numerous simulations to depict the genetic (proportion of
causal SNPs and independent SNPs) and phenotypic (var-
ious correlations between phenotypes in same or opposite
direction) architecture of a complex disease to assess the
performance of multivariate gene-based methods. Con-
tinuous phenotypes, which are normally distributed, were
used for the simulation, but other types of phenotypes such
as binary or survival outcomes could be analyzed with the
three multivariate association methods.

Compared with other combinations of multivariate gene-
based methods, selecting GATES for gene-based test and
MultiPhen for multivariate test is robust for type I error and
advantageous for power when the correlation between
phenotypes is relatively low (r ≤ 0.57). However, MultiPhen
requires individual-level data (genotypes and phenotypes),
which is not available in most cases. This also means that
MultiPhen omits samples with any missing values in any of
the phenotypes, which will reduce the study power. For

these cases in which MultiPhen has limited power, our
simulation study suggests O’Brien with VEGAS or TATES
with GATES as the second optimal multivariate gene-based
method. When analyzing phenotypes with high correlations
(r ≥ 0.86), we did not see noticeable difference in statistical
power among the three multivariate association methods
with GATES. O’Brien with VEGAS maintain the accep-
table type I error in most scenarios for all factor loadings (or
correlation between phenotypes) except for the highest
factor loading (Λ= 0.75, r= 0.86). This suggests that
applying VEGAS to the multivariate associations of SNPs
from O’Brien method is appropriate when the phenotypic
correlation is relatively low (r ≤ 0.57).

We also gained additional knowledge from the simula-
tion studies with scenarios for phenotype in different
directions and inclusion of phenotypes that were affected by
causal variants. The O’Brien lost substantial power when
the phenotypes are not correlated in same direction. Also,
O’Brien yielded low power when phenotypes not
affected by causal variants are included into the association
tests. This may indicate that O’Brien may have better spe-
cificity compared to other multivariate methods
(TATES and MultiPhen) to identify genetic loci with
pleiotropy effects across the entire set of phenotypes
included in a test.

Table 5 Power of multivariate association methods (O’Brien, TATES, and MultiPhen) with gene-based association methods ((a) VEGAS and (b)
GATES)

# of phenotypes affected
by causal variants

Proportion of
independent SNPs (%)

α= 0.01 α= 0.001 α= 0.0001

O’Brien TATES MultiPhen O’Brien TATES MultiPhen O’Brien TATES MultiPhen

(a) VEGAS

1 0–40 0.20 0.65 0.68 0.08 0.52 0.54 0.03 0.42 0.44

40–60 0.08 0.38 0.41 0.02 0.24 0.41 0.01 0.24 0.18

60–100 0.55 0.23 0.26 0.01 0.12 0.26 0.00 0.12 0.08

2 0–40 0.57 0.76 0.79 0.37 0.63 0.68 0.25 0.52 0.58

40–60 0.34 0.52 0.56 0.15 0.36 0.41 0.08 0.25 0.30

60–100 0.23 0.35 0.39 0.08 0.21 0.24 0.03 0.13 0.16

3 0–40 0.81 0.82 0.80 0.65 0.69 0.70 0.52 0.58 0.60

40–60 0.62 0.60 0.58 0.40 0.43 0.42 0.26 0.31 0.31

60–100 0.49 0.45 0.42 0.26 0.28 0.26 0.14 0.17 0.17

(b) GATES

1 0–40 0.05 0.58 0.60 0.02 0.45 0.46 0.01 0.36 0.37

40–60 0.01 0.28 0.30 0.00 0.17 0.18 0.00 0.11 0.12

60–100 0.00 0.13 0.13 0.00 0.06 0.07 0.00 0.03 0.04

2 0–40 0.32 0.68 0.74 0.20 0.54 0.62 0.13 0.44 0.53

40–60 0.10 0.38 0.45 0.04 0.24 0.31 0.02 0.15 0.22

60–100 0.03 0.19 0.24 0.01 0.93 0.14 0.00 0.05 0.08

3 0–40 0.63 0.74 0.76 0.47 0.59 0.64 0.37 0.48 0.55

40–60 0.32 0.45 0.47 0.19 0.28 0.32 0.12 0.18 0.23

60–100 0.14 0.25 0.26 0.06 0.12 0.15 0.03 0.06 0.09

The factor loading and percentage of causal variants among the variants in a gene were fixed at 0.55% and 15%, respectively
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In the multivariate gene-based analyses of the three
neuropathological phenotypes (NP, NFT, and CAA), five
known AD genes—BIN1, PICALM, TSPOAP1, CASS4, and
APOE—reached significant association with a P value at
least one order of magnitude smaller than each of the uni-
variate association P values. The improved association in
APOE was found in most of multivariate gene-based
methods except for the method by MultiPhen with
GATES. We noticed that the sample analyzed through
MultiPhen was 33.2% smaller than the sample analyzed by
O’Brien and TATES. This is because MultiPhen requires
individual-level data (genotypes and phenotypes), while
other multivariate association methods use summary sta-
tistics for each phenotype. Multiphen tests including a
smaller number of subjects, for whom genotype data and
information for all three phenotypes were available, yielded
relatively weak associations in APOE. Our sensitivity ana-
lysis confirmed that the decrease significance of the APOE
association in the pairing of MultiPhen with GATES com-
pared to other combined methods was due to the smaller
sample size. The improved association in TSPOAP1 com-
pared to univariate associations for the individual traits was
observed only in the multivariate gene-based method by
combining MultiPhen with GATES, and associations with
BIN1, PICALM, and CASS4 were detected only by O’Brien
with VEGAS.

We identified gene-level significant (P < 2.7 × 10−6)
associations with contiguous genes TRAPPC12,
TRAPPC12-AS1, and ADI1 using the multivariate gene-
based approach based on O’Brien paired with VEGAS. The
association findings for these three genes using other
methods (O’Brien with GATES and TATES with GATES)
are also moderately significant (P < 7.0 × 10−5), except for
MultiPhen with GATES (P < 0.01). Recently, we identified
associations with these same genes in a bivariate analysis of
NFT and CAA using the O’Brien method with VEGAS
[30]. Association of rs35067331 from the bivariate model
(NFT+CAA; P= 5.8 × 10−8) was more significant than the
association of rs35067331 from the trivariate model (NP
+NFT+CAA; P= 5.5 × 10−7). However, we obtained
gene-wide significant evidence that these three genes have
pleiotropy effects on the three neuropathological
phenotypes.

In general, genes that yielded at least a moderately sig-
nificant (P < 1.0 × 10−4) association using any of the mul-
tivariate gene-based methods (Table 4) contained an
effective number of independent SNPs that accounted for
<40% of the total number of SNPs in that region, a finding
which is consistent with our observation from the simula-
tion tests of statistical power.

It should be noted that our simulation scenarios do not
represent all possible genotype–phenotype models for
complex diseases. Therefore, the statistical performanceTa
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(type I errors and powers) for the tested methods in this
study cannot be assumed in all genome-wide multivariate
gene-based studies. However, our simulation results based
on diverse scenarios may indicate which multivariate
association tests are most appropriate based on the pheno-
typic correlations.

Taken together, our comparison of multivariate gene-
based association methods for detecting pleiotropy effects at
the gene-level showed noticeable differences in type I error
and power among the tested methods. This comparison study
also provides practical and useful information for choosing a
multivariate gene-based method, which can maximize power
for gene-level pleiotropy analysis. For studies where
individual-level data are available, MultiPhen with GATES
can be the best option since this pair of methods performed
best for the tested scenarios. When the proportion of missing
data is high, however, we observed from the pleiotropy
analysis using AD-related neuropathological traits that Mul-
tiPhen with GATES loses substantial power. This was
especially true for the study of phenotypes with high corre-
lation (r ≥ 0.86), when we observed no substantial difference
in power among the tested methods. Therefore, we suggest
O’Brien with VEGAS or TATES with GATES as alternative
approaches when the proportion of missing data is high or the
individual-level data are not available.
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