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During discrimination between two sequential vibrotactile stimulus
patterns, the primate dorsal premotor cortex (DPC) neurons exhibit a
complex repertoire of coding dynamics associated with the work-
ing memory, comparison, and decision components of this task. In
addition, these neurons and neurons with no coding responses
show complex strong fluctuations in their firing rate associated with
the temporal sequence of task events. Here, to make sense of this
temporal complexity, we extracted the temporal signals that were
latent in the population. We found a strong link between the individ-
ual and population response, suggesting a common neural sub-
strate. Notably, in contrast to coding dynamics, these time-dependent
responses were unaffected during error trials. However, in a non-
demanding task in which monkeys did not require discrimination for
reward, these time-dependent signals were largely reduced and
changed. These results suggest that temporal dynamics in DPC
reflect the underlying cognitive processes of this task.

behaving monkeys | dorsal premotor cortex | temporal signals | context-
dependent signals | ramping activity

Our ability to anticipate the occurrence of future events is
crucial when performing many cognitively demanding be-
haviors. For example, the benefits of anticipating the arrival of
sensory inputs can be decisive in our perceptual behavior (1-3).
In this way, neural circuits engaged in cognitive processes of this
type would profit from employing temporal signals. Thus, the
timing information contained in those signals may then consti-
tute a mechanism to anticipate future task events. In fact, during
experiments it is common to find neurons that display note-
worthy temporal dependencies in their firing rate (4-9). In
particular, a large proportion of the individual neurons from
the frontal lobe cortices exhibit intricate time-dependent re-
sponses that mesh in myriad ways with stimulus identity and
decision outcomes during behavioral tasks (4, 10-12). How-
ever, individual neurons must be reflecting a more widespread
response across the network; temporal signals that represent
anticipation of task events and stimulus identity must be
coded at the population level. Recently, these neuronal pop-
ulation signals from the frontal lobe cortex were studied
employing methods that reduced the dimensionality of net-
work dynamics (11, 13). These methodological approaches
facilitated the recognition of latent population responses
during cognitive tasks (14-17). Notably, large differences
between the population variance related to purely temporal
signals and task parameter coding were observed (11, 13).
Markedly, even if the tasks examined were completely dif-
ferent and employed two types of animal models, the temporal
signals always captured more than 65% of the total variance.
These results indicate that temporal signals occupy a central
role during the execution of any behavioral task.

Here, to further investigate the temporal responses in single units
and neuronal population, we employed the network activity recor-
ded in dorsal premotor cortex (DPC) during a temporal pattern
discrimination task (TPDT) (18, 19). Monkeys were trained to
report whether the temporal patterns of two vibrotactile stimuli
(P1 and P2) of equal mean frequency were the same or different
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(Fig. 14 and SI Appendix) by pressing one of two push-buttons
(pbs). In two prior works, we studied the coding capacity of DPC
single neurons (18) and population responses (19). In the first work,
we showed that DPC neurons coded the stimulus patterns as broader
categories and signaled them during the working memory, compari-
son, and decision periods of the TPDT. Furthermore, neurons
exhibited mixed selectivity (20) and an extreme heterogeneity in their
coding dynamics (21, 22). In our second work, we showed that this
heterogeneous population activity can be condensed into two major
coding components: one that persistently represented in working
memory both the first stimulus identity and the postponed informed
choice, and another that transiently coded the initial sensory in-
formation and the result of the comparison between the two
stimuli. These dynamics, hidden in the neuronal coding hetero-
geneity, emerged in the DPC population response.

An important hypothesis is that the temporal signals should ad-
just to different cognitive contexts. Here, we tested this conjecture
employing single-unit and population methodological approaches.
First, focusing on the cognitively demanding TPDT, we compared
the variance related to coding against time-dependent variance,
using both single DPC neurons and population average. In the two
cases, the results were analogous: the proportion of variance related
with timing is much higher than that associated with task parameter
coding. This means that temporal dynamics is responsible for the
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Fig. 1. Temporal pattern discrimination task (TPDT), A TDPT B
single DPC neuron, and population variances. (A) Trial 2-4s 1s 2s 1s 2s

sequence of events. The mechanical probe is lowered P1 P2 Ku i
(pd), indenting the glabrous skin of one fingertip of ~ "\kd /*—H*—‘\ /4—’“—*\ oo

the right restrained hand; the monkey places its free  pd \ / \ / pu \
hand on an immovable key (kd). After a variable C

prestimulus period (uniformly distributed from2to4 25, — Var P1

s), the probe vibrates, generating one of two possible  « — Var P2

stimulus patterns [P1, either grouped (G) or extended g_ n=1574 — Var Dec E

(E); 1 s duration; mean frequency of 5 Hz]; after a first % — Var Cod o
delay (2-s length, from 1 to 3 s) between P1 and P2, e g

the second stimulus is delivered, again either of the % %40
two possible patterns (P2, either G or E; 1-s duration; > <
mean frequency of 5 Hz); after a second fixed delay 0 7 ; T T T T T %

(2-s length, from 4 to 6 s) between P2 and pu, the D (>m
monkey releases the key (ku) and presses the push- 25, £
button (pb) to indicate whether P1 and P2 were the o 38
same or different (P2 # P1). (B) Top (Left) and lateral £ n=1574 — Var Temp s 20
(Right) views of the brain. Dark orange spots mark the % ;::
location of the dorsal premotor cortex (DPC). Single e %

DPC neurons were recorded from both hemispheres, -g 2
while trained monkeys performed the TPDT. (C) = n
Population instantaneous coding variance (Varcop, 0 T T T T T T T 0 y v
blue, SI Appendix, Eq. S$1), P1 variance (Varp;, cyan 0 4 time [s] Single Neuron Temporal Variance (sp/s)’

trace), P2 variance (Varp,, light green trace), and de-

cision variance (Varpgc, black trace). (D) Population instantaneous temporal variance (Varremp, green trace). (E) Single-neuron temporal variance (x axis, S/ Ap-
pendix) is plotted against single-neuron coding variance (y axis, S/ Appendix). Each dot corresponds to one neuron (n = 1,574). Diagonal line (45°) indicates
equality between both measures. Inset histogram show angular distributions for the population (<6> = 36.0°). In general, SNVar"Tmp is higher than SNVari, .

large proportion of DPC firing rate fluctuations during the TPDT.
In addition, we identified several DPC neurons with pure temporal
responses. These responses also proved to be heterogeneous. Fur-
thermore, we focused on the pure temporal signals that emerged
from the DPC population. Most of the population variance was
captured by these pure temporal components. These signals were
engaged during relevant periods of the task: they reflected stimulus
arrival and button presses, and had ramping activity during delays.
To further address our hypothesis, we investigated the role of
these temporal signals in two different cognitive contexts. First,
when the monkeys performed the TPDT and after during a
nondemanding variation of the task [light control task (LCT)].
During this control task, no parameter encoding was found in
single neurons and population dynamics. Notable, the time-
dependent signals observed in the TPDT reduced their intensity
or completely vanished during this nondemanding task. Addi-
tionally, the temporal variance was diminished in single-unit
responses and in their population average. Several temporal
neurons reflected this decline in their temporal responses. These
results show that pure temporal responses were bound to the
cognitive processes of the TPDT. Second, we focused on the
relevance of the temporal responses during error trials. Note-
worthy, temporal variance remained unaffected in both single
neurons and population average during the animals’ hit and er-
ror responses. These findings support the idea that the temporal-
dependent signals code the temporal sequence of this task.
Collectively, our results indicate that time-dependent signals
observed in both levels, single units and population dynamics,
could be interpreted as a necessary substrate on which the coding
responses can develop to reach a decision during the TPDT.

Results

Previously, we identified and classified single neurons associated
with relevant task parameter coding during the TPDT (ref. 18
and SI Appendix, Fig. S1 A-L). DPC neurons (Fig. 1B) exhibited
a high heterogeneity among their responses during the TPDT.
Additionally, several single units coded more than one task pa-
rameter throughout the task. This is illustrated in SI Appendix,
Fig. S1, where we display 12 DPC neurons that coded different
task parameters (P1, decision and class identity). Most of these
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neurons showed mixed selectivity in their coding responses (18,
20). We then condensed these heterogeneous single-unit responses
into two major population signals that built an elegant and compact
solution for the task, consistent with the monkeys’ psychophysical
performance (19).

Here, to measure the response’s variability associated with
task parameters coding, we calculated the population instanta-
neous coding variance during the TPDT (Varcop, SI Appendix;
Fig. 1C, blue trace). This metric quantified the firing rate fluc-
tuations among classes and neurons at each time point. Clearly,
time bins in which more neurons code task parameters usually
give rise to higher instantaneous coding variance. Additionally,
we calculated the population variance associated with each task
parameter: P1 (Varp;, SI Appendix; Fig. 1C, cyan trace), P2
(Varp,, SI Appendix; Fig. 1C, light green trace), and decision
period (Varp,., SI Appendix; Fig. 1C, black trace). In a previous
work (18), we quantified the coding dynamic as the percentage of
cells that coded each task parameter. Notably, those coding dy-
namics closely resembled the specific task parameter variances
observed here. This means that there was a close relationship
between the number of neurons coding a task parameter and the
population coding variance associated with it. Notice that before
the arrival of P1 (prestimulus period), there is no task parameter
to be coded. Thus, one could expect that the population variance
associated with each task parameter should be zero. Neverthe-
less, all of the traces shown in Fig. 1C exhibit a positive value
before P1. This nonzero instantaneous variance observed during
the prestimulus period could be interpreted as an estimate of the
basal variances associated with residual fluctuations. When each
type of variance is higher than its basal value, these larger
fluctuations must be associated with task parameter coding.

Population and Single-Unit Temporal Variance During the TPDT. We
wondered how much population variance could be associated with
temporal dynamics during the TPDT. To quantify this, we calcu-
lated the population instantaneous temporal variance with respect
to its mean response (Var ey, SI Appendix; Fig. 1D). At each time
bin, Vary,,,, quantifies the quadratic square sum among the neu-
ron’s responses of the difference between their mean firing rates for
each time bin [//(f)] and mean firing rates across the whole task
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Fig. 2. Temporal and coding latency variances. (A)
Latency distribution for neurons with temporal (green;
n = 1,436) or coding (blue; n = 946) variance statisti-
cally different from their basal values during P1. In
general, pure temporal signal (<Latremp> = 283 +
181 ms) appeared before coding signals (<Latcos> =
546 + 192 ms). (B) Neurons with significant latencies
of temporal and coding variances (n = 920). Latremp
(x axis) is plotted against Latcoq (v axis). Each dot cor-
responds to one neuron. Single-neuron latencies were
higher for coding than for temporal variances. (C)
Latency distributions of temporal variance for neurons

0.8 1
Latency (s)

(¢, from —1 to 7.5 s). Whenever the mean population activity departs
from its mean value, the temporal variance will increase. Re-
markably, the instantaneous temporal population variance was
much higher than the coding variance at any time bin (Fig. 1C vs.
Fig. 1D). The same effect was observed using the temporal pop-
ulation fluctuation Flucry,,,, computed with respect to the mean
basal firing rate (S Appendix, Fig. S24 and Eq. S6). Hence, most of
the population variance in firing rate over the extent of a trial
corresponded to variability across the sequential events of the
task rather than across classes. Even though Flucy,,, was highest
at stimulus arrival, it exhibited large values during both working
memory (from 1 to 3 s) and postponed decision (from 4 to 6 s)
delay periods. Additionally, Vary,,, and Flucy,,,, displayed high
values after pb presses.

To further study temporal variance, we focused on single-
neuron responses. For each unit, we compared the variance as-
sociated with parameter coding (SNVarl,p) with the temporal
variance (SNVafTemp) during the whole task period (from —1 to

7.5 s). On one hand, SNVarl,, measures the variance of the
firing rate among classes from each individual cell (S Appendir,
Eq. S7). On the other hand, SNVar"Temp computes the average
temporal variance for each neuron across the whole task (S/
Appendix, Eq. S8). Note, in these single-neuron metrics (Fig.
1E), we averaged across time bins for each unit, whereas in Fig.
1D we averaged across neurons for each time bin. Each point in
Fig. 1E represents one neuron response, and the position in the
plot was defined by SNVar,,,, (x axis) and SNVargop, (v axis). In
concordance with the results observed in Fig. 1D, individual
neurons displayed higher values of SNVarf,,,, than SNVarep.
Hence, the mean value of the angular distributions was <6> =
36.0° (Fig. 1E, red dotted line), which means that most of the
neurons were closer to the temporal than the coding axis.
Analogous results were found computing the single-neuron
temporal fluctuation (SNFluciTEmp, SI Appendix, Eq. S9) with
respect to their mean basal firing rate (from —1 to 0 s, SI Ap-
pendix, Fig. S2B). Looking at the distribution shown in Fig. 1E
and SI Appendix, Fig. S2B, we can see that there were no neurons
with coding variance only. Thus, it is unlikely to find cells with
significant task parameter coding and where the firing rate curves
cancel out when averaged over trials of different classes.

Temporal Versus Coding Latencies. We wondered whether the pure
temporal responses increased earlier than the task parameter
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temporal latencies were very much alike for neurons
with significant temporal and coding responses and
for neurons with only significant temporal signals.

coding variances. For each neuron, we quantified the time bin at
which the temporal and the coding variance increased signifi-
cantly with respect to its basal value during P1 (from 0 to 1 s).
These time bins defined two different latencies: Latg,,,, and
Latcyy. Fig. 24 shows the latency distributions for Laty,,, and
Latc,y. During P1, more neurons displayed a significant increase
in the temporal variance (n = 1,436; 91.2%) than in the coding
response variance (n = 946; 60.1%). Importantly, the tempo-
ral signals emerged before than the coding signals (Fig. 24,
<Latry,p> = 283 + 181 ms vs. <Latc,q> = 546 + 192 ms). Thus,
pure temporal responses could act as a precursor for task pa-
rameter coding. Previously, similar response and coding latencies
were found using a completely different approach (18). In addi-
tion, most of the neurons with significant Latc,, exhibit significant
Latze,,, (n = 920). For each of these neurons, we plotted Latze,,,
(Fig. 2B, x axis) against Latc,y (v axis). In general, the single-
neuron temporal responses appeared before the coding signals.
This was further documented by dividing the temporal latency
(n = 1,436) during P1 into two groups: one with significant coding
latency (n = 920) and another without coding (n = 516). Notably,
we show that Latr,,,, distributions were statistically the same for
these two groups of neurons (Fig. 2C). This means that the tem-
poral signals from single neurons emerged independently of
whether the neurons significantly encoded task parameters.

Temporal Responses of Single DPC Neurons. We employed
SNVart,,,, and SNFluc',,, to identify neurons with strong tem-
poral signals. Fig. 3 and SI Appendix, Fig. S3 illustrate typical
temporal activity of single DPC neurons. Clearly, all of these
neurons’ responses are not essentially related with task parameter
coding. Most of these neurons do not code any task parameters
during the task. These neurons exhibit response dynamics that
vary over time, but not in a manner that encodes task variables.
Furthermore, DPC neurons exhibited a large repertoire of neu-
ronal responses associated with pure temporal dynamics. Some of
these neurons were involved in stimulus arrival with positive (Fig.
3F and SI Appendix, Fig. S3 B, D, and F-H), negative (Fig. 3E and
SI Appendix, Fig. S3 C and I), or mixed (Fig. 3C and SI Appendix,
Fig. S34) responses. Another group of neurons was associated
with ramping activity during the delay periods (Fig. 3 4, B, and D
and SI Appendix, Fig. S3 A, F, G, and I). Finally, another over-
lapping group of neurons was related to temporal responses after
pb (Fig. 3 4, D, and F and SI Appendix, Fig. S3 A, C-E, and G-I).
Interestingly, there were neurons that only respond during pb,
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Fig. 3. Single DPC neurons with notable temporal activity during the TPDT.
(A-F) Raster plots of six temporal exemplary neurons sorted according to the
four possible classes. Each row of ticks is one trial, and each tick is an action
potential. Trials were randomly delivered and were sorted by class afterward
(only 10 out of 20 trials per class are shown). Correct and incorrect trials are
indicated by black and dark red ticks, respectively. Traces below the raster
plots are average per-class firing rates [peristimulus time histograms (PSTHs)]
for each temporal neuron. Each color refers to one of the four possible
classes: G-G (red); G-E (orange); E-G (green); and E-E (blue). Neurons exhibit
pure temporal dynamics without coding any task parameter.

independently of the decision outcome (SI Appendix, Fig. S3E).
Therefore, even for temporal signals, the complexity and diversity
of responses was broad. To handle this temporal heterogeneity, we
applied dimensional reduction methods of the population activity
to reveal temporal latent signals.

Population Principal Components Exhibit Temporal Signals. Such
dimensional reduction was done using a condensed population-
level representation of the data, based on the state space of
neural responses. The state of the DPC population was repre-
sented by a point in a n-dimensional (n = 1,574) space of firing
rate responses. Each dimension, at each time point, corre-
sponded to the firing rate of one neuron. The dynamics of the
network was described by combining 1,574 firing rates mostly
recorded separately (15, 19, 23-25). As neurons’ activity evolves
over time, the point moves through the space, forming a tra-
jectory that represents the response of the population.

We first employed principal-component analysis (PCA) to
identify a lower dimensional subspace underlying the DPC net-
work dynamics (26). The covariance matrix used for PCA was
quantified from the whole task (SI Appendix, Eq. S10). Even if
PCA could be used to reduce the dimensionality of the dynamics,
the new subspace was deficient in highlighting temporal signals
or task parameter dynamics (S Appendix, Fig. S4). Overall, PCA
gave a much more complex picture of the population dynamics,
dominated by strong temporal signals mixed with parameter
coding responses. The first five PCs were ordered by the amount
of explained total variance (ETV) (SI Appendix, Eq. S15). For
each PC, we displayed the population activity projections sorted
by classes. In general, PCs exhibited strong temporal signals that
dominate the population dynamics. Notice that the fifth PC dis-
played a ramping temporal activity during the first (from 1 to 3 s)
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and second (from 4 to 6 s) delay periods (SI Appendix, Fig. S4).
Even though PCA was a fully unsupervised approach, it was
possible to recognize almost pure temporal responses such as
the fifth PC.

Population Temporal Dynamics. Then, to focus on the task timing
signals from the population activity, we applied demixed PCA
(dPCA) (13). Employing dPCA, we were able to extract a low-
dimensional subspace more sensitive to the pure temporal re-
sponses. Contrary to other approaches, dPCA split the population
variability associated with different task parameters employing
marginalized matrices. Here, we center our analysis on decom-
posing the population temporal responses. In a previous study
(19), we studied the population components associated with coding
task parameters. Fig. 44 displayed the first five temporal dPCs
that captured most of the variance during the task. To calculate
the temporal dPCs, we applied a temporal marginalization of the
population activity. Then, we averaged the responses of all of the
trials without considering class identity. The temporal dPCs were
optimized to maximize (SI Appendix, Eq. S13) the ETV (SI
Appendix). Due to this optimization, the population activity of
the four classes overlapped when they were projected onto this
axis (Fig. 44). We selected class E-G (c3, green trace) to be on
top of the other four traces.

The first temporal dPC displayed an intense response during
P1 and P2 periods (Fig. 44). This component captured 23.9%
ETV and represented the most relevant demixed signal. We
remark that there was no component with higher variance as-
sociated with task parameter coding. This means that the sensory
stimulation gave rise to strong temporal dynamics that underlay
the coding of the stimulus pattern. Notably, second temporal
dPC (Fig. 44) exhibited a strong temporal response immediately
after the pb press. This signal contrasted highly with the first
dPC: It was less involved in stimulus presentation and more
engaged with a population dynamic after the animals reported
their decisions. Although this component was related with the
last period of the trial, it explained 13.5% of the total variance.
This signal was presumably linked with the strong decision signal
that emerged after pb (ref. 18 and Fig. 1C). By construction, this
second temporal dPC was orthogonal to the first dPC. This means
that the sensory temporal signal (first dPC) was independent of
the signal after pb presses (second dPC). The third temporal dPC
projections showed a mixed dynamic with sensory and persistent
responses (Fig. 44, 9.5% ETV). It exhibited a stepped change
during P1 followed by persistence during the first delay; after that,
it showed another stepped response during P2, again followed by
persistence during the second delay between P2 and pu. Re-
markably, the neural projections onto the fourth temporal dPC
presented a temporal pacemaker during both delays (Fig. 4A4).
This component, which explained 8.25% ETV, begins in each
stimulus period with a negative value and reaches peak values
during P1, P2, and pb. We notice the resemblance between this
component and the fifth PC shown in SI Appendix, Fig. S4. We
hypothesize that this pacemaker component could act as an in-
ternal time estimator that allows the network to predict the arrival
of relevant events during this cognitively demanding task. Last, the
fifth temporal dPC showed a ramping temporal activity during the
first delay, and with markedly smaller one during the second delay
(5.84% ETV).

Task Dimensionality and Temporal Signals. Subsequently, we stud-
ied the dimensionality of the population across the TPDT. We
wonder: How many dimensions or components were necessary
to explain the network dynamics? Moreover, how many of these
relevant dimensions were pure temporal signals? To estimate
quantitatively the dimensionality, we used both dPCA and PCA. We
constructed a noise population covariance matrix that only included
single-trial variability (X;,.;s; SI Appendix, Eq. S16). Using this noise
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'% ¥ * temporal dPC Population activity, sorted by classes, was projected
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for dPCs. The gray trace represents the percentage of
noise variance explained by the dPCs. The green points
indicate which dPCs are temporal. (C) Central graph:
For each neuron, we use its first and second temporal-
dPC weights to plot its location on the plane. Heat-map
Inset (Bottom Left) shows the joint weight distribu-
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covariance matrix, we estimated the fraction of the “signal-plus-
noise” variance that was related to noise. The percentage
of variance that was related with signal and not with noise
(1 = Varnyise) determined the red dashed line in Fig. 4B. In Fig.
4B, Left, we compared the cumulative explained variance for
PCs and dPCs. Using both techniques, we obtained analogous re-
sults: Few components are necessary to reach the signal variance
estimation. In addition, the dimensionality of the population re-
sponses estimated with dPCA was equivalent to the one calculated
with PCA. Consistently, in Fig. 4B, Right, we showed that there were
only few dPCs that captured higher explained signal-plus-noise
variance (ESNV) than noise variance (SI Appendix). This means
that the inherent population fluctuations (noise) projected onto the
dPCs captured significantly less variance, but only compared with
the first few components. Keep in mind that there were 1,574 pos-
sible dimensions. However, few components are enough to explain
the relevant dimensions of the network. We calculated that around
12 dPCs are at least 50% above inherent noise variance. This
number estimates the dimensionality of the population responses
during the TPDT. In a previous study, this approach was applied to
estimate the dimensionality of the dynamic in a frequency discrim-
ination task (11).

Most notably, 7 out of 12 relevant dimensions are pure temporal
signals (green dots in Fig. 4B). Then, a large proportion of the di-
mensions of the network are only related to time. Even more, the first
four dimensions, which captured 55.15% ETV (48.1% of ESNV), are
temporal signals. These results are strong evidence that temporal
signals are a relevant part of the network response and that they
might act as a substrate for coding dynamics.

A Common Anatomical Substrate for Temporal Signals. We specu-
lated on whether there were separate categories of neurons in-
volved in different temporal components. To explore this
possibility, we plotted for each neuron their first and second
temporal-dPC weights (Fig. 4C). We did not identify evidence
for separate clusters of neurons. Even if we showed individual
neurons with responses that resembled each of these two com-
ponents (SI Appendix, Fig. S3 G and F for first dPC, and SI
Appendix, Fig. S3E for second dPC), this was not the general
trend. Analogous results were observed when we plotted the
weights of other temporal dPCs. Thus, although these temporal

Rossi-Pool et al.

tion (20 x 20 grid, 0.01 bin side length, corresponds
to black dashed square; color scale goes from 0 to
2.5%). First temporal-dPC weight distribution tends
to positive values: p = 0.028; ¢ = 0.035 (Top). Second
temporal-dPC weights are equally distributed for
positive and negative values: p = 0.0001; ¢ = 0.029
025 (Right).
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signals can be read out independently, they were built from the
same anatomical substrate. Analogous results were found in
previous studies for other types of components and tasks (11, 13,
19, 27).

Additionally, we calculated the distribution of the weights
given by this dPCs for each of the 1,574 neurons. Note that the
weight distribution for the first temporal dPC (Fig. 4C, Top)
exhibited a bias to positive values (p = 0.028; o = 0.035). This
means that the sensory temporal signals were in general positive
(excitatory). Although it was possible to identify negative (in-
hibitory) temporal sensory neurons (Fig. 3E and SI Appendix,
Fig. S3 C and I), they were not as abundant as the positive
sensory neurons (Fig. 3F and SI Appendix, Fig. S3 B, D, and F-
H). However, the weights given by the second temporal dPCs
(Fig. 4C, Right) were equally distributed for both positive and
negative values. These results agree with previous studies that
found that coding components behave like zero-centered
Gaussians distributions (11, 13, 19). Similar distributions were
found for higher-order temporal dPCs. Thus, except for the first
dPC, the other components exhibited zero-centered weight dis-
tributions. Furthermore, the unimodal weight distributions also
suggested that there was not a clear division between single
neurons that might have participated in temporal signals from
those neurons that did not.

Population and Single-Unit Temporal Variances During the LCT. To
further quantify whether the DPC temporal signals depended on
the animal’s task performance, many of the neurons (n = 462)
were also tested in a control variant of the TPDT. In each trial,
the monkeys received identical stimuli as in the TPDT, but the
correct answer was indicated by a continual visual cue (Fig. 54).
We refer to this task as LCT.

As before, we calculated the population instantaneous coding
variance during the LCT (Varcop, SI Appendix; Fig. 5B). Analo-
gously, we calculated the population variance associated with each
task parameter: P1 (Varp;; Fig. 5B), P2 (Varp,), and decision
(Varpec). Under the LCT, the population coding variance was no
longer related to the identity of the stimulus pattern or the de-
cision report (Fig. 5B). Accordingly, the population coding vari-
ance stayed constant and equal to its basal value during the whole
task. These results agree with the coding dynamics of individual

PNAS | April9,2019 | vol. 116 | no. 15 | 7527

NEUROSCIENCE


https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820474116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820474116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820474116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820474116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820474116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820474116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820474116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820474116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820474116/-/DCSupplemental

L T

/

1\

BN AS  DNAS P

Fig. 5. Single DPC neuron and population variances
during the LTC. (A) During LCT, events proceeded
exactly as in Fig. 1A, except that when the probe
touched the skin, the correct pb was illuminated. The
light was turned off after pu, triggering the pb press.
Thus, stimuli and movements were identical to the
TPDT, but were cued by visual stimuli. Performance
in the LCT was 100% across classes. (B) LCT pop-
ulation instantaneous variances: Varcop (blue, SI Ap-
pendix); Varp; (cyan trace), Varp, (light green trace),
and Varpgc (black trace). Note the marked differences
with Fig. 1. (C) LCT population instantaneous temporal
variance (Varremp, green trace). (D) Single-neuron
temporal variance during LCT (x axis, S/ Appendix) is
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neurons observed before (18). Even though stimuli and final
movements were the same as in the TPDT, no coding variance
modulation was observed. Thus, the population coding variance
increased above its basal state only when the task demanded it.
Again, we wonder how much population variance could be
associated with temporal dynamics. We remark that although
coding variance was not modulated, the firing rate of the
neurons evolved during the LCT. To further show this, we
quantified the population instantaneous temporal variance
(Varremp, SI Appendix, Fig. 5C) during the LCT. In contrast to
coding variances, Varge,, evolved during the LCT. Thus,
fluctuations in firing rate are only involved in timing of the
task events. However, the values Vary,,,, are not as high as
during the TPDT (compare Fig. 5C with Fig. 1D). Thus, we
could speculate that part of the temporal signals were still
present during LCT, but other temporal dynamics diminished
or disappeared. In addition, we compared the variance asso-
ciated with coding (SNVarg,,,) and temporal (SNVar%,,, ) for

each neuron during the LCT. Each dot in Fig. 5D represents

Single Neuron Temporal Variance (sp/s)’

compared against single-neuron coding variance dur-
ing LCT (y axis). Each dot corresponds to one neuron
(n = 462). Inset histogram show angular distributions
for the population (<0> = 25.2°). During the LCT,
SNVarr,,,, is much higher than SNVarf ;.

one neuron during LCT (SNVar,,, x axis; SNVarep, y axis).
In concordance, neurons displayed much higher temporal than
coding responses. Coding variance remained at small values for all
462 neurons and the angular distribution was biased to small angles
(<> = 25.2°% Fig. 5D).

Temporal Responses of Single Neurons in the TPDT vs. the LCT. Do
the responses of single neurons undergo their own decrease in
temporal variability during LCT? To quantify this, we chose
neurons with high temporal variance during the TPDT that were
also tested in the LCT. In Fig. 6 and SI Appendix, Fig. S5, we
show typical DPC temporal activity under both task conditions.
In concordance with the differences in Vary,,,, between Figs. 1D
and 5C, most of the temporal responses declined or vanished during
LCT. Notably, even the sensory temporal signal during the stimulus
arrival are diminished noticeably during the LCT (Fig. 6 and SI
Appendix, Fig. S5 A-C). All ramping activity observed during the
TPDT ceased (Fig. 6 A and C and SI Appendix, Fig. S5 A-E). Some
of the temporal signals after pb presses remained during both task

ng rate
(Hz) o

Fig. 6. Single DPC neurons with notable temporal
activity compared between TPDT and LCT. (A-D)
Raster plots of four temporal exemplary neurons

O)Fri

Firing rate
(Hz)

tested in both conditions: TPDT (Left) and LCT
(Right). Responses are sorted according to the four
possible combinations of G and E stimulus patterns
delivered during P1 and P2. Correct and incorrect
(only in TPDT) trials are indicated by black and dark
red ticks, respectively. Traces below the raster plots
are average per-class firing rates (PSTHs) for each
neuron and condition. Each color refers to one of the
four possible stimulus combinations of G and E; the
resulting four classes are ¢1 (G-G, red), c2 (G-E, or-
ange), c3 (E-G, green), and c4 (E-E, blue). Note that

ti?ne[s] 0 4 ti(rsne[s] 4 time[s]

7528 | www.pnas.org/cgi/doi/10.1073/pnas.1820474116

6 these neurons are different from those shown in
time[s]  other figures.
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conditions (SI Appendix, Fig. S5 D-F). In summary, during the LCT,
the temporal signals of individual neurons diminished or ceased,
while the coding responses disappeared (18).

Population PCs During the LCT. To investigate whether population
temporal signals depended on the cognitive context, we imple-
mented the same population analysis to a subgroup of neurons (n =
462) recorded during TPDT and LCT. First, we applied PCA to the
population response under each condition (SI Appendix, Fig. S6).
We displayed the first five PCs during the TPDT for this sub-
population. We remark that although the number of neurons de-
creased from 1,574 to 462 (29.3%), the dynamics remained
approximately the same (compare SI Appendix, Fig. S4 with SI Ap-
pendix, Fig. S6A4). This suggests that network dynamics was robust
and stable under changes in the number of neurons.

Next, we computed the PCs for the same group of neurons under
the LCT (SI Appendix, Fig. S6B). Although the PCs did not show
task-related coding, they exhibited prominent temporal responses.
Moreover, all of the components appeared to be associated with the
stimulus arrivals or the pb presses. Notably, the PCs’ dynamics
during delay periods are much weaker than in TPDT. Furthermore,
the ramping temporal activity was no longer present under LCT.

Single-Neuron Temporal Variance Compared Between the TPDT and
LCT. Based on the results shown in the previous three sections, we
speculated that single neurons may diminish their temporal vari-
ance under a nondemanding cognitive task (LCT). To test this
hypothesis, we compared SNVaﬂ}Bmp under both task variants.
Each point in Fig. 74 was determined by the two values: the
TPDT SNVar,,,, (x axis) and the LCT SNVary,,, (v axis). In
concordance, cells presented much higher temporal variance un-
der the demanding task (TPDT) than the nondemanding task

e
o
<@

>

404

Signal Variance Estimation

(LTC). Additionally, the distribution (Fig. 74) was biased to small
angles (<0> = 27.5°). Similar results were found comparing
SNFluciTemp for each task condition (SI Appendix, Fig. S7A). This is

further evidence that several temporal signals were recruited only
when the task was demanding enough.

Task Dimensionality and Temporal Signals During the LCT. We ap-
plied dPCA to obtain the temporal components optimized for
the LCT population. Then, we estimated the dimensionality of
the responses during LCT. In Fig. 7B, Top, we displayed the
cumulative sum of total variance captured by the dPCs. We
computed the fraction of the total population variance associ-
ated with the signal variance (red dashed line). Consistently, few
components were enough to reach the estimated signal variance.
Additionally, the first six components are pure temporal dPCs.
In Fig. 7B, Bottom, we estimated ESNV from each LCT com-
ponent and its fraction associated with noise (gray trace). No-
tably, only six temporal components were significantly above the
noise variance estimate. This means that the dimensionality of
the network dynamic diminished from 12 dPCs during the TPDT
to 6 dPCs during the LCT. Similar results were found using the
same neurons (n = 462) to calculate the dimensionality of the
network under both task conditions (SI Appendix, Fig. S6 C and
D). This dimensionality reduction was due to two factors: the
lack of coding dynamics and the decline of temporal signals
during LCT.

In Fig. 7C, we show the temporal dPCs optimized for the LCT
activity. Comparing the temporal dPC from TPDT and LCT, the
persistent activity and the ramping responses of Figs. 44 and 7D
were no longer present in Fig. 7C. This means that temporal
signals are not equivalent in LCT and TPDT, except for those
related to stimuli or pb presses. Nevertheless, the intensity of the

(%)

Fig. 7. DPC population temporal signals during the
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LCT. In this figure, we restricted our analysis to the
neurons that were recorded during both TPDT and
LCT (n = 462). (A) SNVarTem in TPDT (x axis, S/ Ap-
pendix) is compared with SNVarf,,,. in LCT (y axis).
Each dot corresponds to one neuron tested in both
conditions (n = 462). Inset histogram show angular
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the percentage of noise variance explained by each
dPCs. The green points indicate the temporal dPC.
(C-E) Population activity, sorted by class identity, was
projected onto each dPC. Components were ordered by
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their explained total variance (ETV). The same y scale
was used among projections to facilitate comparison.
(C) First five temporal dPCs optimized for the LCT. First
ETV, 30.5%; second ETV, 19.5%; third ETV, 10.6%;
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fourth ETV, 6.4%; fifth ETV, 4.3%. (D) dPCA was ap-
plied to the temporal marginalized covariance matrix
obtained from the whole TPDT (n = 462). These signals
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are similar to those in Fig. 4A. First ETV, 25.1%; second
ETV, 14.8%; third ETV, 10.3%; fourth ETV, 9.1%; fifth
ETV, 6.4%. (E) LCT activity was projected into exactly
the same axes than in D. Since dPCs were optimized for
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TPDT population activity, projections of LCT activity
showed more fluctuations.
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sensory component clearly diminished during the LCT. The most
plausible explanation is that as task parameter coding was not
necessary during LCT, the temporal responses that supported
this coding ceased or disappeared. Note that the first temporal
dPC explained 30.5% of the total variance and was mainly as-
sociated with the signal after pb presses. Furthermore, the sec-
ond dPC was involved with stimulus arrival and pb signal (19.5%
ETV). Moreover, the absence of coding during LCT, except for
the timing of the task events, entailed similar results when we used
dPC or PC projections (compare Fig. 7C vs. SI Appendix, Fig. S6B).

Context-Dependent Temporal Signals. To examine the differences
between TPDT and LCT temporal signals, we benefited from the
462 neurons recorded in both task conditions. We calculated the
temporal dPCs, now restricted to only those neurons during
TPDT. The results were presented in Fig. 7D. Again, as with
PCA, the temporal dPCs of this subgroup of neurons (n = 462)
matched those of the full population (Fig. 44). Then, the num-
ber of neurons was reduced from 1,574 to 462, and the temporal
components remained unaltered. On the other hand, when we used
the TPDT temporal dPCs to project the LCT population activity,
we observed a pronounced disappearance of most of the temporal
signals (Fig. 7E). Thus, the same temporal axes were used to project
the TPDT (Fig. 7D) and LCT (Fig. 7E) population activities. This
analysis allowed us to compare between task conditions, the tem-
poral signals that remained or disappeared within the components.
Consistent with our previous result, the persistent and ramping re-
sponses calculated during the TPDT (Fig. 7D) were no longer present
in LCT projections (Fig. 7E). However, the temporal responses ob-
served after pb during TPDT, remained unaltered across all LCT
projections. This is evidence that pb temporal signals are uncon-
nected to those during the delays. All of these results agree with what
was observed across the exemplary neurons (Fig. 6 and SI Appendix,
Fig. S5). Collectively, our population findings suggest a close re-
lationship between the temporal dynamics and task execution. These
results are strong evidence that some temporal signals were only
recruited when parameter coding was needed to solve the TPDT.

Population and Single-Neuron Temporal Variances During Hit and
Error Trials. We wanted to determine to what degree the pure
temporal signals in the DPC population predicted the monkeys’
performance. We investigated whether the evoked temporal
variance was somehow different between correct (hit) vs. in-
correct (error) trials during the TPDT. For this, we computed

>

P1 P2 pupp  C D

N

n=547 = Error Trials

P1 P2 pu pb P1

(Varremp) during hit and error trials (Fig. 84). We restricted this
analysis to a subgroup of neurons with at least three error trials
in each of the four classes (n = 547). Note that during LCT there
were no error trials to analyze; the performance was consistently
100%; this reflects that this guided task was not cognitively de-
manding, which was part of the intended design.

Notably, Fig. 84 shows that Varr,,,, evolved together during
hit and error trials (the same conclusion was obtained employing
Fluctenp; SI Appendix, Fig. STB). In other words, at each time
point, the quadratic distance between the population mean and
the basal firing rate during hit and error trials was approximately
the same. This means that it is impossible to use Varze,,, or
Fluc e, to predict the animals’ choice. This result gave us a first
suggestion that temporal responses were the same for error and
correct choices. We then evaluated the error effect in temporal var-
iance of single neurons. This was made by measuring the SNVar"Temp
for each cell during hit and error trials. Similar as we have done
previously, on Fig. 8B we compared on the same plot the SNVar"Temp
associated with hit (v axis) and error (y axis) trials for each single
neuron (n = 547). We found that SNVar%,,,, evoked by the two types
of trials were statistically identical (Fig. 8B; <0> = 46.9 + 10.1°). The
same effect was observed when SNFluciTemp is compared in hit vs.

error trials (S Appendix, Fig. S7C). This means that it would also be
impossible to differentiate between hit and error trials, based on the
temporal variance of single DPC neurons.

Population Temporal Signals During Hit and Error Trials. Finally, we
investigated the relationship between the population temporal
signals and monkeys’ behavior. For this purpose, we studied the
differences between hit and error trials on the temporal dPCs.
We constructed single-trial activity matrices by pseudorandomly
selecting trials from all neurons. Then, we plotted the average and
SD of repeated projections (1,000) of single-trial activity onto the
temporal axis used in Fig. 44. For error trials, we randomly chose
one error trial per iteration for each neuron in each class. Since all
neurons (n = 1,574) had at least one error trial per class, we
employed the full population for this analysis. The average (solid
lines) and SD (shading) of single-hit trial projections are shown in
Fig. 8C. Note the similarity between the traces in Figs. 44 and 8C. In
addition, the single-trial projection onto each temporal dPC pro-
duced small values of SD throughout the task.

Even if it is possible to think that an error in the temporal signal
could contribute to an error report, this is not in agreement with our

Error Trials
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Fig. 8. DPC temporal signals during hit vs. error
trials. (A and B) We restricted our analysis to the
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neurons (n = 547) with at least three error trials for
each dlass. (A) Varremp (SI Appendix) for hit (red) and
error (orange) trials. (B) SNVarQemp during hit trials (x
axis) is compared against SNVarr,,, during error

N
<

trials (y axis). Each dot corresponds to one neuron
(n = 547). Inset histogram show angular distributions
(<6> = 46.9°). SNVarf,,, are statistically the same in

hit and error trials. (C) Temporal dPCs, calculated
with hit trials, were used to repeatedly project the
population activity of single hit trials. First five tem-
poral dPCs were ordered according to their ETV.
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Traces show the average (solid line) and SD (shading)
for 1,000 hit trial projections. (D) The same temporal
dPCs as for C (calculated with hit trails) were used to
project the population activity in single-error trials.
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& The solid lines and shadings were constructed in the
fime[s]  same manner, but with error trial population activities.
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results. Clearly, there was a high correspondence between the temporal
signals in error (Fig. 8D) and hit (Fig. 8C) trials. In general, our
findings suggest that errors were not associated with the temporal
signals. This finding is complemented by previous studies that have
shown strong evidence that error trials were associated with task pa-
rameter miscoding (18, 28). We remark the notable differences be-
tween the temporal signals found in error trials (Fig. 8D) with the LCT
temporal components (Fig. 7C). On one hand, a nondemanding task
led to a decline in temporal responses (Fig. 7C). On the other hand,
during error trials, the temporal signals remained unchanged (Fig. 8D).

Discussion

Previously, we showed that DPC codes the relevant task pa-
rameters of the TPDT. Here, we found that although a large per-
centage of DPC neurons were involved in coding dynamics, the
variance related to coding task parameters was small in comparison
with the size of temporal variance over time. We observed this by using
both single-unit and population-averaged approaches. In both cases,
the time-dependent responses showed higher variance than task
parameter coding.

Contrary to the neuronal responses recorded in the active task
(TPDT), during the control task (LCT), DPC neurons did not
code task parameters. Furthermore, the only task-related responses
that remained during LCT were some pure temporal fluctuations, but
their variance were reduced in comparison with the TPDT. Again,
this observation was corroborated using both single-unit and
population-averaged approaches. Nevertheless, focusing on the error
trials, the total amount of temporal variance was similar to hit trials.
Then, fluctuations in firing rate related to time were not affected
during the animals’ errors. Thus, it is not possible to predict an error
employing neither single neurons nor population temporal variance.

To extend our analyses to the neuronal population level, we
employed dimensionality reduction methods (15, 23-25, 29). We
found that the population dynamics were robust and stable de-
spite the high variability in the single neuron’s responses. Con-
sistently, a recent study has shown that population responses are
unaffected using multiunit threshold crossing activity instead of
sorted individual neurons (30). Although PCA served to reduce
the dimensionality of the data, most of the components did not
reveal a useful representation of the data (13, 14). Consequently,
we used dPCA to focalize on the temporal signals of the network
responses (13). Thus, we split the whole DPC responses into a
more tractable problem. Notable, although temporal dPCs are
not linked to task parameter coding, their high explained vari-
ance suggested that they constituted a crucial element of task
execution. Importantly, these temporal population signals were un-
affected during error trials. However, previous studies have shown
that coding signals noticeably changed during animals’ errors (18, 19,
28). Combining both results, we hypothesize that errors emerge as
task parameter miscoding, but not due to the pure temporal signals.
This is further supported by the fact that LCT temporal population
signals significantly decreased their intensities or disappeared. These
results agree with the decreased in variance measured in single units
during the LCT. Thus, a big proportion of the temporal signals
appeared only when the animals performed the TPDT. The pop-
ulation signals that remained during LCT were only associated with
the stimulus arrival and pb responses. To further understand the
role of temporal signals during nondemanding tasks, future studies
could employ passive tasks (31-34). Under this condition, stimuli
remain the same, but animals are not required to push a button to
receive reward. Since there was no decision report and no overt
attention is necessary in this context, temporal signals in DPC could
cease entirely. In support of this conjecture, other studies have
shown that coding dynamics vanish completely in frontal cortices
during the passive condition (31, 34).

Several studies have shown that neural activity was often
sensitive to the temporal task sequence. In particular, a signifi-
cant proportion of frontal lobe cortex neurons respond to the
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amount of time elapsed during the delay period between two
events. Cells with these types of responses are generally called
ramping neurons (4, 10). Note that it was not necessary for the
subject to estimate the duration of the delay period to provide an
appropriate answer. If they appear, as they do, it should be be-
cause they offer some advantage or alternatively, due to some
constraint upon the network dynamics. Here, we showed that
these ramping responses are commonly found in DPC neurons
during both delays (from 1 to 3 s and from 4 to 6 s). Further-
more, we observed that peacemaker-shaped signals prominently
emerged from the population response during the TPDT. No-
tably, they disappeared during the nondemanding task. This suggests
that ramping signals were only generated during the active task. Since
the network did not code task parameter during the LCT, it did not
need to infer the arrival of the task events. Based on those results, we
speculate that as the pacemaker component was no longer necessaty,
it vanished. Future studies could examine the relevance of this
ramping activity during task designs in which each trial consists of
delay periods of different durations (6, 35-37). Under duration
uncertainty, peacemaker signals could adapt, or become useless
to predict the stimulus arrival.

We would like to emphasize that a large proportion of the TPDT
network dimensions were only associated with time events. In ad-
dition, there was a large disparity between the variance captured by
population temporal signals vs. the variance associated with task
parameters coding. Furthermore, most of the significant TPDT
components were only associated with the temporal sequences of
task events: 7 out of 12 relevant dimensions were pure temporal
signals. However, during the LCT the dimensionality was even
smaller than in the TPDT, and all significant components were
associated with the temporal signals. These results are in concor-
dance with a recent theoretical work (38) that showed that network’s
dimensionality increases from a simple task to a more complex one.
Altogether, this is further evidence that time-dependent signals
emerging in relation to different stages in the task constitute an es-
sential element of the network dynamics during cognitive tasks.

A functional distinction between task coding components and
time-dependent variations in firing rates has been proposed
previously (11, 39). These studies suggested that functional
separation appears at the population level, but not at the single
neuron’s responses. Our results indicate that temporal readouts
arose from diffuse combinations of the single neuron’s re-
sponses. The distributions of the weights given to each neuron
indicate that they share a common anatomical substrate: the
distributions were unimodal and Gaussian-like. Despite this, it
was still possible to identify single neurons with temporal dynamics
that resembled the population dynamics. This means that although
these temporal signals emerge at the population level, there are
usually stereotypical neuron responses that mimic these temporal
responses. However, we were not able to separate them into dif-
ferent categories or give them labels; neuronal response exists in a
continuum. This agrees with the notion that the functional sepa-
ration does not emerge at the single-neuron level (13, 27).

Another important question regarding time-dependent signals
is how they are generated. One possibility is that they are gen-
erated by a mechanism independent of the task parameter coding
dynamics; a sort of master clock that could allow timing across a
variety of contexts (40). However, we are inclined to think that our
results point in the direction of a different mechanism that has been
already proposed: Neuronal populations can inherently produce
temporal signals relevant to the task being performed (41). Many
networks models have been put forth to address this issue: Re-
current networks could supply a robust and flexible dynamics to
encode the passage of time (42-44).

In previous studies, it was suggested that pure time-dependent
signals could adapt much faster than task coding components
(5, 10, 11). In other words, temporal signals during delays could
readapt in blocks of trials with different durations. This mechanism
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could increase the flexibility for coding dynamics to solve the same
task under different durations (45-47). Although in our experiment
we could not test this hypothesis, it is an important question to
address in future experiments.

To conclude, we propose that the temporal signals in DPC (or
in any other brain areas) could be interpreted as a substrate
necessary to supply a framework on which the task parameter
coding dynamics can be computed during sequential events re-
quired to reach a decision report. Whether these signals are grad-
ually constructed, beginning in sensory areas or whether they arise
abruptly in the frontal lobe cortex remain open questions. This
yields at least two possibilities: there exist specific brain areas that
construct temporal signals such as the ones extracted here, which are
broadcast to other regions, or, rather, the capacity to estimate time
through these signals is embedded in the circuits across the brain.
Further work is needed to answer these possibilities.
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Materials and Methods

Monkeys were trained to report whether the temporal structure of two
vibrotactile stimuli of equal frequency was the same or different (S/ Appendix).
Neuronal recordings were obtained in DPC while the monkeys performed the
TPDT. Methods for single-unit and population analysis are provided in S/
Appendix. Animals were handled in accordance with standards of the Na-
tional Institutes of Health and Society for Neuroscience. All protocols were
approved by the Institutional Animal Care and Use Committee of the Insti-
tuto de Fisiologia Celular, Universidad Nacional Auténoma de México.
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