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The classic picture of soft material mechanics is that of rubber
elasticity, in which material modulus is related to the entropic
elasticity of flexible polymeric linkers. The rubber model, how-
ever, largely ignores the role of valence (i.e., the number of
network chains emanating from a junction). Recent work pre-
dicts that valence, and particularly the Maxwell isostatic point,
plays a key role in determining the mechanics of semiflexi-
ble polymer networks. Here, we report a series of experiments
confirming the prominent role of valence in determining the
mechanics of a model system. The system is based on DNA
nanostars (DNAns): multiarmed, self-assembled nanostructures
that form thermoreversible equilibrium gels through base pair-
controlled cross-linking. We measure the linear and nonlinear
elastic properties of these gels as a function of DNAns arm num-
ber, f , and concentration [DNAns]. We find that, as f increases
from three to six, the gel’s high-frequency plateau modulus
strongly increases, and its dependence on [DNAns] transitions
from nonlinear to linear. Additionally, higher-valence gels exhibit
less strain hardening, indicating that they have less configura-
tional freedom. Minimal strain hardening and linear dependence
of shear modulus on concentration at high f are consistent with
predictions for isostatic systems. Evident strain hardening and
nonlinear concentration dependence of shear modulus suggest
that the low-f networks are subisostatic and have a transient,
potentially fractal percolated structure. Overall, our observations
indicate that network elasticity is sensitive both to entropic
elasticity of network chains and to junction valence, with an
apparent isostatic point 5 < fc ≤ 6 in agreement with the Maxwell
prediction.
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Hydrogels are water-laden, cross-linked polymer or colloidal
networks that occur naturally in cells and tissues. They have

been synthesized and developed for a wide range of applica-
tions from hygienic and food products to diagnostic and ther-
apeutic technologies. Much of the utility of hydrogels derives
from their viscoelastic nature, which combines the stress-bearing
abilities of a solid with the permeability and flow character-
istics of a liquid (1). Understanding the microscopic origins
of these mechanical properties is an important goal for both
directing hydrogel engineering and deciphering their biological
designs.

In general, hydrogel mechanics derive from the elastic prop-
erties of their constituent polymer/colloidal chains, the stability
of cross-links, and the connectivity of the network (2). Network
connectivity can be defined in terms of junction multiplicity or
valence, f (i.e., the average number of network chains that meet
at a node). While connectivity is a potent effector of mechanics
in principle (3–5), it is relatively difficult to determine and con-
trol in practice (6–9). This is because cross-links are traditionally
made by entanglement, by weak bonds (hydrogen bonds, van der
Waals forces, hydrophobic or electrostatic interactions), or by
chemically reactive side groups, with junctions in which valence
is uncontrolled or relatively small (typically 3≤ f ≤ 4) and is not
revealed by either scattering or imaging techniques.

The programmability and thermal reversibility of Watson–
Crick base pairing make DNA intriguing as a model material
in which to study the effect of network connectivity on hydro-
gel mechanics. Multiarmed “immobile junctions” were among
the first DNA nanostructures to be rationally designed and self-
assembled (10). Pioneering work by Luo and coworkers (11)
demonstrated the feasibility of producing macroscopic quantities
of fully synthetic DNA hydrogels based on three- and four-armed
junctions that bind via complementary “sticky ends” and explored
their potential for various biotechnological applications (12).

More recently, Sciortino and coworkers (13–18) engineered
greater flexibility into the immobile junction design by incor-
porating unpaired bases at the vertex and sticky ends to create
“DNA nanostars” (DNAns) (Fig. 1). They found that tetrava-
lent DNAns transition from a fluid to an equilibrium gel on
cooling (16–18), with network dynamics controlled by the sticky-
end interaction strength (13, 15, 19). Equilibrium gel formation
requires both limited valence (f < 12) (13, 15, 20–22) and signif-
icant flexibility (16, 23) as conferred by the unpaired bases in the
DNAns design (Fig. 1A).

Here, we apply bulk oscillatory rheology to solutions of f=
3-, 4-, 5-, and 6-armed DNAns equilibrium gels over accessible
[DNAns] and temperatures to probe the effect of valence on
network mechanics and structure. The equilibrium and liquid-
like nature of DNAns networks ensures that material handling
is easy and that the network’s mechanical and structural proper-
ties are history independent. We find that the trends with valence
of network stiffness (plateau modulus) and strain hardening are
consistent with a network in which mechanics are controlled by
a combination of entropic elasticity of network chains and an
isostatic critical point occurring at a DNAns valence of 5< fc ≤ 6.

Significance

Maxwell (1864) predicted that 3D networks of beams fixed to
junctions through freely rotating joints will be rigid only if at
least six beams emanate from each junction. This concept is
key to macroscopic design of trussed structures, but its rel-
evance to microscopic networks, where thermal fluctuations
are large, such as in biomolecular gels, is not as clear. Here, we
exploit DNA nanotechnology to create gels of defined connec-
tivity and demonstrate that gel mechanics are controlled by
an interplay between entropic effects, network structure, and
Maxwell’s rigidity criterion.
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Fig. 1. (A) A 2D cartoon depicting the formation of a five-arm DNAns net-
work as a function of temperature. Every DNAns has unpaired adenines
at the base of each arm to enhance vertex flexibility. Each arm is a 21-bp
double helix ≈ 8.5-nm long that ends in a single-stranded overhang con-
sisting of an unpaired adenine and a 6-nt palindromic sequence, called the
sticky end (box on the right). (B) Frequency-dependent mechanical response
of DNAns networks at γ= 5% and Tref = 20 ◦C. The storage modulus G′

(solid lines) and the loss modulus G
′′

(dashed lines) cross at a frequency, ωc,
that is the inverse of the relaxation time, τc. (Inset) Arrhenius fits to τc(T)
have a common slope corresponding to the activation energy for network
rearrangement. Orange triangles, blue diamonds, green squares, and red
circles correspond to f = 3, 4, 5, and 6 at DNAns concentrations of (500± 10),
(490 ± 10), (490 ± 20), and (450± 30) µM, respectively.

Results
An f -armed DNAns consists of f dsDNA arms emanating from a
common vertex, each terminating in a palindromic sticky end. On
thermal annealing, DNAns first self-assemble from f partially
complementary DNA oligomers, and then, at lower tempera-
tures, they bind together via sticky ends to form a network
(Fig. 1A).

We used oscillatory rheology to measure the frequency-
dependent storage, G ′, and loss, G

′′
, moduli of solutions of

DNAns with different arm numbers at various concentrations
and temperatures. Then, for each solution, we used time–
temperature superposition to shift curves in both frequency and
modulus, thus generating master rheological curves that spanned
six decades of frequency, ω, at a reference temperature of 20 ◦C
(Fig. 1B and SI Appendix, section S2). At this temperature, a
thermodynamic model of sticky-end hybridization predicts >
98% binding (24) (SI Appendix, section S1b).

Frequency sweeps were performed at a constant strain γ=5%,
well below the onset of nonlinearity (see Fig. 3). For all f ,
repeated measurements of G ′ and G

′′
were independent of rates

of cooling and heating for ≤ 15 ◦C/min (SI Appendix, Fig. S5),
confirming that DNAns form thermoreversible equilibrium
networks (13).

DNAns solutions of every arm number behaved like
Maxwellian viscoelastic fluids, with low-frequency liquid behav-

ior (G
′′
>G ′, with G ′∼ω2 and G

′′
∼ω) separated by a cross-

over frequency ωc from high-frequency solid-like behavior (G ′>
G
′′

, with a plateau modulus G ′p) (Fig. 1B) (2, 17). While it
is possible for such a cross-over to result from solvent drag
effects (25–27), we estimate that a drag-induced cross-over
would occur at megahertz frequencies, well above our mea-
sured values of ωc (SI Appendix, section S2b). Instead, we note
that the characteristic time for network reconfiguration shows
an Arrhenius dependence, τc =2π/ωc ∝ eEa/RT (Fig. 1B, Inset)
with an activation energy Ea that is the same for all f and
approximately equal to the enthalpy of hybridization of a single-
nanostar overhang sequence (SI Appendix, Fig. S8), consistent
with previous dynamic measurements (13, 15, 19). We thus inter-
pret τc as corresponding to bond-breaking events, meaning that
the high-frequency plateau modulus reflects the stiffness of an
instantaneously bonded network.

To test how DNAns valence, f , affects network stiffness and
structure, we measured the plateau modulus, G ′p , as a func-
tion of DNAns concentrations, [DNAns], for f = {3, 4, 5, 6}. G ′p
increased with f more than might be expected based on den-
sity alone (Fig. 2). That is, an (f +1)-armed network was always
stiffer than an f -armed network with the same volume fraction,
φ, of DNAns arms (Fig. 2, Inset). Furthermore, G ′p increased
with [DNAns] as a power law, G ′p ∼ [DNAns]t , with a best-fit
exponent that decreases from t =1.8± 0.1 for f =3 to t =1.0±
0.2 for f =6.

We assessed the various networks’ nonlinear elasticity by per-
forming oscillatory stress–strain measurements at a temperature
(20 ◦C) and frequency (ω≥ 63 rad/s) corresponding to the elastic
plateau regime of all valences. For γ≤ 10%, all networks exhib-
ited linear elasticity (constant G ′) (Fig. 3). At higher γ, most
networks showed signs of strain hardening as discussed below.
Finally, in all cases, the G ′(γ) curve terminated with a sudden
decrease or yielding of the network typically associated with bond
breaking (2, 28, 29).

We define the yield strain γm as that which resulted in the
largest measured G ′. The f =3 and f =4 networks were exten-
sible, showing relatively large yield strains of γm ≈ 1.3 and
0.5, respectively. Accordingly, in those networks, the strain-
hardening regime was broad and amenable to analysis: for γ <
γm , the regime was well fit by a relation proposed by Seitz et al.

Fig. 2. Log–log plot of the plateau modulus, G′p, as a function of DNAns
concentration at T = 20 ◦C and γ= 5% for f = 3 (orange triangles), 4 (blue
diamonds), 5 (green squares), and 6 (red circles). Solid lines show fitted
power laws, G′p∼ [DNAns]t ; labels give best-fit exponents with standard fit-
ting error estimates. (Inset) Log–log plot of G′p as a function of DNAns arm

volume fraction, φ= f · v· [DNAns], where v = 26.7 nm3 is the solid cylinder
volume equivalent of a DNAns arm. Solid lines connecting the data points
are guides for the eye.
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Fig. 3. Normalized plateau modulus, G′p(γ)/G′p(γo), of DNAns networks as
a function of strain, γ, in the elastic plateau regime (ω= 63 rad/s, T = 20 ◦C)
for f = 3 (orange triangles) and 4 (blue diamonds) at [DNAns] of (500± 10)
and (490± 10) µM, respectively. Solid lines are fits of exp[(γ/γ*)2] for
(γ≤ γm), where γm (vertical dash-dot line) is the strain that maximizes G′p
and γ* is the characteristic strain scale for stiffening. (Inset) Same plots for
f = 5 at [DNAns] of (300± 10) µM (light green) and (550± 30) µM (dark
green) and for f = 6 at [DNAns] of (350± 20) µM (pink) and (550± 30)
µM (dark red). The solid black line denotes exp((γ/1.1)2), which captures
the nonlinear elasticity of the two lower-concentration f = 5 and f = 6
networks.

(30), G ′(γ)/G ′(γ→ 0)∼ exp ((γ/γ∗)2), with best-fit values of
γ∗≈ 1.8 and 1.2 for f =3 and f =4, respectively (31, 32). γm
and γ∗ did not vary significantly with [DNAns] (SI Appendix,
Fig. S11).

For f =5 and f =6, relatively small yield strains (γm ≈
0.2) curtailed the strain-hardening regime, but all f =5 curves
showed a resolvable strain hardening as did the f =6 curve at the
lowest [DNAns] (Fig. 3, Inset). These strain-hardening behav-
iors, while modest, could also be fit to the Seitz expression, with
γ∗≈ 1.1 for the least concentrated f =5 and f =6 curve (SI
Appendix, Fig. S11A).

Discussion
An Isostatic Picture Explains Plateau Modulus Behavior of DNAns
Networks. The trend of DNAns network stiffness, G ′p , with
DNAns valence, f , is qualitatively consistent with the expectation
that junctions of greater valence augment network modulus by
creating a greater density of stress-bearing chains. The “Phantom
network” elastic model (2, 6) quantifies this relation by extending
classic rubber elasticity models to account for valence-dependent
fixation of the junctions connecting network chains. Specifically,
it predicts G ′∝φ · (f − 2)/f . Our data are not consistent with
this picture. G ′p increases nonlinearly with φ for f =3, 4, and
5 (Fig. 2). More strikingly, at constant φ, G ′p increases roughly
10-fold from f =3 to f =6, far exceeding the phantom network
model’s prediction of 2-fold stiffening for those valences (Fig. 2,
Inset and SI Appendix, Fig. S9).

We instead posit that the variation of DNAns network elas-
ticity with valence is explained by the presence of a Maxwell
isostatic point (3, 33) at a critical valence value, fc . The utility
of the isostatic point in explaining biomolecular gel mechan-
ics has recently been explored (4, 5, 34–39). The isostatic point
occurs when the translational freedom of a junction is exactly
constrained by the connections (network chains) emanating from
that junction (3–5, 33–37). If each network chain supplies only
central forces between the two junctions that it connects (i.e.,
it acts only by resisting stretching), then fc =6. In practice, real
network chains also supply tangential forces due to a combi-
nation of nonzero bending stiffness and rotational constraints
imposed at the point of fixation to the junction. The effect of

nonzero bend stiffness is to decrease fc below six by an amount
dependent on the relative magnitudes of bend and stretch
stiffness (4, 37).

Regardless of the precise value of fc , the presence of an iso-
static point alters network modulus in a manner consistent with
our observations. Networks with f < fc have underconstrained
junctions in which positions are easily perturbed without signifi-
cant stretching of network chains (4, 33–35, 37). These networks
are thus intrinsically floppy, with a low modulus dictated by chain
bend behavior. In contrast, f > fc networks have fixed junctions
that can only be moved by stretching network chains (4, 33–35,
37) and are accordingly relatively high-modulus materials. The
isostatic model thus predicts a steep increase in modulus as f
increases through fc (4), which is in qualitative agreement with
our data (Fig. 2 and SI Appendix, Fig. S9).

Other features of our data also agree with isostatic model pre-
dictions. Stretch-dominated, superisostatic (f > fc) networks are
expected to have a linear scaling of G ′p with φ (32, 40–44) as
seen at f =6 but not at smaller valences (Fig. 2). This implies
that the critical valence of our DNAns network is between
5< fc ≤ 6, consistent with the prediction of fc =6 for network
chains that have vanishing bending stiffness and little rota-
tional constraint at the junction (4, 34, 37). In the DNAns, we
posit that these features are a consequence of the unpaired
bases flanking the double-helical arms at the overhang and at
the junction, consistent with flexibility seen in simulations of
DNAns (18).

It is intriguing that network stiffness is not perfectly monotonic
with valence. The f =3 and f =6 networks show strongly diver-
gent behaviors, demarcating clear end points in the exponent t .
The f =4 and 5 networks both are unambiguously between those
end points; however, their trend is not monotonic: t is larger
for f =5 than for f =4. This disagrees with the monotonicity in
valence expected from a purely isostatic explanation. We spec-
ulate that this is due to a fundamental asymmetry in the f =5
nanostars. Electrostatics favor ground states in which the nega-
tively charged DNA arms are equally distant from their nearest
neighbors. For f =4 and 6, there are well-defined ground-state
configurations in which the arms point to the vertices of corre-
sponding platonic solids. However, there is no such configuration
available for f =5. The resulting frustration could explain the
more underconstrained behavior of f =5 (i.e., with t values
closer to f =3 than f =6).

Valence Dependence of Strain Hardening Is also Consistent with
an Isostatic Picture. As seen in Fig. 3, the f =3 and 4 net-
works exhibit marked strain-hardening behaviors, with modulus
increasing by ∼60 and ∼ 15%, respectively, before the mate-
rial yields. Strain hardening of polymeric materials generally
occurs when network chains, initially in an unstretched, ther-
mally fluctuating configuration, rigidify under strain as they are
straightened to lengths approaching their contour length (2, 30–
32, 34, 35). Thus, the strain hardening of the f =3 and 4 networks
indicates that stress-bearing chains have significant configura-
tional freedom, and therefore, they are underconstrained and
subisostatic (34), consistent with the interpretation from the G ′p
vs. [DNAns] behavior (37, 43).

This interpretation is also supported by the observation that,
as with many polymeric and fibrous materials (30–32), DNAns
networks strain harden according to G ′∼ exp (γ/γ∗)2 (Fig. 3).
As described by Seitz et al. (30), the fitting parameter γ∗ can
be related to the network chain’s maximum uniaxial extension
ratio, λmax, which measures the ratio of chain contour length to
initial (unstretched) extension (SI Appendix, section S3c and Fig.
S13). Fits to our data give λmax≈ 2.3± 0.1 and 1.7± 0.1 for f =3
and 4, respectively, indicating that the stress-bearing chains in an
f =3 network are initially less stretched than those in an f =4
network, presumably due to being floppier.
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The nonlinear elastic response of the f =5 and f =6 networks
is subtler but still consistent with the isostatic viewpoint (34).
For f =5, at all concentrations measured, the material hardens
before yielding but only by∼ 2%. The curves are again well fit by
the Seitz equation (30–32) with λmax =1.9± 0.2, indicating that
the network chains are initially more stretched than f =3. This
is consistent with the f =5 network being subisostatic but closer
to the critical point than f =3.

For f =6, a similarly small (∼ 2%) strain hardening is seen at
the lowest concentration, but at the other two concentrations,
strain hardening is not evident. We interpret the lack of strain
hardening as an indication that junctions in those networks lack
configurational freedom and consequently, that the networks are
isostatic (34, 35).

Analysis of Yield Behavior Measures Cluster Size and Confirms
Entropic Origin of Elasticity. More insight into network structure
is enabled by analysis of yield behavior. Yielding occurs at a
stress σy ∼Fc/ξ

2, where Fc is the characteristic bond-breaking
force and ξ is the characteristic distance between the first bonds
that break (43). Single-molecule manipulation experiments have
directly quantified Fc for DNA overhangs loaded in shear, typi-
cally finding Fc ≈ 50 pN for overhangs of 20–30 bp (45). Thus, for
the shorter 6-bp overhang used here, Fc ≈ 10 pN is a reasonable
estimate for a scaling calculation.

Using this estimate and our measured σy , we find that ξ
decreases from ξ≈ 200− 300 nm at the lowest [DNAns] to ξ≈
100 nm at the highest [DNAns] for f =3, 4, 5 (Fig. 4A). For
f =6, however, ξ is smaller (≈ 90± 30 nm) and independent
of [DNAns] (Fig. 4A). In all cases, ξ is much larger than the
nanostar size (≈ 15 nm). It is thus an emergent length scale of
the system of roughly 5–20 DNAns in width. We interpret ξ as
a measure of cluster size: the characteristic distance between
bonds that carry large forces on strain. Within a cluster (i.e.,
between those vulnerable bonds), the force is dispersed across
many DNAns in parallel.

This interpretation is consistent with simulations that report
cluster-like inhomogeneities in equilibrium gels (46). We empha-
size that these clusters are different from those found in
(nonequilibrium) colloidal gels (47). In DNAns gels, the clusters
are transient, enduring only for timescales less than τc . On longer
timescales, the network restructures and behaves as a liquid, with
an effectively homogeneous density.

Given ξ, we can interpret network modulus in terms of the
spring constant per cluster, Kξ, which provides a clue to the fun-
damental origin of elasticity in the system. From Kξ ≈G ′p · ξ, we
find that Kξ increases with valence and concentration (Fig. 4B)
(43). To interpret these values, we compare them with the spring
constant, KFJC, of the fundamental entropic elastic unit in the
system: a bonded pair of DNAns arms that connect two junc-
tions. Considering the pair of arms as a two-segment, freely
jointed chain with segment (Kuhn) length b equal to the DNAns
arm length, the expected spring constant is KFJC =3kBT/2b

2≈
85 µN/m at T =20 ◦C, which is in the middle of the esti-
mated Kξ values. This similarity indicates that entropic elasticity
arising from DNAns arm configurational freedom controls net-
work modulus. For f =3, Kξ <KFJC as would occur for DNAns
loaded in series; this is consistent with the f =3 cluster con-
taining a single dominant stress-bearing chain of DNAns. For
the higher-valence networks, Kξ >KFJC, likely due to clusters
containing more parallelized and interconnected stress-bearing
chains.

The entropic origin of network elasticity explains why G ′p
increases only about 10-fold as f goes from three to six (SI
Appendix, Fig. S9). Simulations of networks of nonentropic
(athermal) springs predict enormous, multidecade increases in
modulus as f increases through the isostatic point (4). The com-
paratively modest increase that we observe can be attributed to

Fig. 4. Log–log plots of (A) cluster size, ξ, and (B) cluster spring constant,
Kξ , as a function of [DNAns] for f = 3 (orange triangles), 4 (blue diamonds),
5 (green squares), and 6 (red circles) at a temperature of T = 20 ◦C. In A, the
dashed line denotes the predicted scaling relation for 3D percolated clusters
with c, the particle concentration from refs. 2 and 48. In B, the dashed line
denotes the spring constant, KFJC, of an entropic spring composed of two
freely jointed (Kuhn) segments of length b = 8.5 nm (i.e., with length of a
DNAns arm), and the solid lines denote the measured power law relation for
Kξ ∼ [DNAns]r . (Inset) Log–log plot of Kξ as a function of ξ for f = 3 at T =

20 ◦C. The solid line denotes the relation Kξ ∼ ξ−1.2±0.1, with SE estimated
from fitting.

entropic rigidification, which is predicted to mask the modulus
increment across the isostatic transition (38, 39).

Origin of Elastic Exponents in Subisostatic Networks. A poten-
tial explanation for the nonlinear power law behaviors of the
subisostatic networks can be found by comparing our mea-
sured exponents with the results of percolation theory. We
focus on the f =3 system for which we have the broadest
range of [DNAns] and thus, the best estimates. The expo-
nent of ξ vs. DNAns concentration, −0.8± 0.1, is consistent
with the prediction from percolation theory in three dimen-
sions for the scaling of correlation length with bond concen-
tration, ν≈−0.88 (2). Furthermore, the f =3 exponent of G ′p
vs. [DNAns] t =1.8± 0.1, which was measured independent of
ξ, is also consistent with 3D percolation theory predictions of
t ≈ 1.9 (48). Experimentally, similar values of t were measured in
gels formed from trivalent gelatin and attributed to percolation
behavior (49–51).

Within percolation models, the value of t ultimately derives
from fractal exponents describing network structure within clus-
ters. For example, theory predicts that the shortest path through
a 3D percolated cluster has a fractal dimension dmin =1.25 (52).
If that shortest path dominates cluster elasticity (consistent with
the single-chain interpretation of Kξ for f =3) and taking the
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path to consist of N DNAns in series, we expect that Kξ ∼
1/N ∼ ξ−dmin . This is indeed close to the measured scaling of
Kξ ∼ ξ−1.2±0.1 (Fig. 4B, Inset). Since G ′p ∼Kξ/ξ, we see that the
measured estimates of dmin≈ 1.2 and of ν≈−0.8 give rise to the
value t =−ν(dmin +1)≈ 1.8.

Although the correspondence of our concentration-dependent
scaling with percolation exponents is intriguing, some caution
is warranted. First, our measurements show power law behav-
iors of G ′p and ξ with nonnormalized concentration, while the-
ory (2, 52) and prior experiment (49) observe such behavior
only after correcting for a critical concentration; the reason
for this discrepancy is unclear. Second, scattering studies can
measure the cluster size, ξ, directly, and such direct structural
evidence is needed to give a percolation interpretation firm
support.

Conclusion
Our work highlights the key role of valence in controlling the
elasticity of a hydrogel. Notably, for the same density of DNAns
arms, a 10-fold gain in stiffness results from using f =6 rather
than f =3 DNAns. At the same time, increasing valence dramat-
ically diminishes network extensibility, because junctions become
more constrained as network connectivity increases. Our results
are consistent with an isostatic interpretation: there exists a criti-
cal connectivity threshold beyond which stress-bearing elements
become fully constrained and the network loses configurational
freedom, leading to dramatically increased stiffness, reduced
yield strain, and a loss of strain hardening.

In this interpretation, the f =3, 4, 5 networks are subisostatic,
with enough configurational freedom at the particle level to
exhibit strain-stiffening behavior and a nonlinear dependence of
plateau modulus on particle concentration. The rigidity of these
floppy networks is attributed to the entropic elasticity of network
chains, with another role potentially played by a percolation-
like network structure. In contrast, the f =6 network is at or
above the isostatic threshold, with highly constrained junctions
and minimal freedom in the stress-bearing chains. The lack of
contortions results in little to no extensibility or strain stiffening.
The location of the critical threshold at f =6 behavior is consis-
tent with expectations for a network with flexible junctions (4, 38,
39), here insured by the unpaired bases present in the center of
the DNAns.

We suggest that the insights gained here regarding the inter-
play of valence, entropic elasticity, and network structure can
be extended to other DNAns-like particles to open avenues for
tuning material elasticity.

Materials and Methods
DNAns Design and Oligos. Each f-armed DNAns is formed from f oligos 49
nt in length (SI Appendix, Fig. S1). Each arm consists of a 20-bp dsDNA seg-
ment terminating in a 7-nt ssDNA segment with sequence 5′-ACGATCG-3′.
The self-complementary subsequence 5′-CGATCG-3′, commonly referred to
as a sticky end, mediates binding between any two DNAns arms. Unpaired
adenines at the vertex and preceding the sticky end increase the internal
conformational freedom of the DNAns and the conformational freedom of
the DNAns–DNAns bond, respectively (16, 17, 23).

All oligos were purchased purified with standard desalting from Inte-
grated DNA Technologies (https://www.idtdna.com/pages). Nucleotide

sequences for the f = 3 and f = 4 DNAns designs were taken from Biffi et al.
(13). Additional sequences for f = 5 and f = 6 DNAns were designed using
NUPACK (24) with the goal of having DNAns form at T = 65 ◦C and bind one
another around T = 35 ◦C.

DNAns Solution Preparation. DNAns solutions were prepared from ssDNA
oligo stocks by mixing equal amounts of each of the f oligos. After mix-
ing, the solutions were completely dehydrated in a vacuum concentrator
(Savant; Speedvac) with a filter over the sample tube opening to prevent
dust from entering the sample. The sample was then rehydrated to the
desired DNAns concentration in a buffer solution of 150 mM NaCl, 40
mM Tris, 40 mM acetate, and 1 mM EDTA (pH 8.0). To dissolve the DNA
completely, samples were placed in an aluminum heat block at 60 ◦C and
mixed vigorously for 15–30 s every 15 min until no visible dehydrated DNA
remained. Finally, the solutions were annealed by heating to 90 ◦C for
20 min in the heat block, turning off the power, and allowing the sam-
ple to cool to room temperature in the block over ∼ 5 h. During the entire
annealing procedure, a Styrofoam box covered the heat block to insulate
the samples from the surrounding environment. After they were annealed,
DNAns solutions were stored in a refrigerator (4 ◦C to 6 ◦C) and used
within 10 d.

DNAns Concentration. Concentration was determined from A260 of solutions
that were diluted 100- and 10,000-fold in deionized water (SI Appendix,
section S1c). Concentration measurements were made 1 d after annealing
and again, immediately after recovery from the rheometer.

The range of DNAns concentrations explored was limited at the high end
to< 800 µM by solubility and at the low end to>X µM by phase separation
(13, 15, 16, 18, 23). Phase separation was inferred from the onset of erratic
variations in rheological data observed at X < {190, 280, 280, 350}µM for
f = {3, 4, 5, 6}, respectively.

Rheology Measurements. Oscillatory shear measurements were performed
in a parallel-plate geometry using a stress-controlled direct-strain rheometer
(AR-G2 Rheometer; TA Instruments). Parallel plates were chosen to minimize
sample volume (80 µL). The bottom plate was a stationary, temperature-
controlled stage (±0.020 ◦C). The top plate was a circular steel plate of
radius r = 10 mm that rotated freely via a magnetic bearing.

To load the rheometer, solutions were heated to 60 ◦C—a temperature at
which DNAns are stable but do not bind one another, making the solution
easy to manipulate. Solution was delivered onto the bottom plate of the
rheometer, which was at room temperature, and sandwiched between both
plates until the desired gap size, g = 200 µm, was achieved.

Before any rheological measurements were performed, the solution was
quickly annealed a final time while loaded in between the rheometer plates:
it was quickly heated at |dT/dt| ≤ 15 ◦C/min to 60 ◦C, held there for 5 min,
and then quickly cooled (|dT/dt| ≤ 15 ◦C/min) to the first measurement
temperature. A layer of low-viscosity mineral oil (Fisher Scientific CAS 8012-
95-1; Saybolt viscosity = 162) was placed over the exposed sample to prevent
solvent evaporation during the experiment.

Two types of oscillatory shear flow measurements were performed: fre-
quency sweeps and strain sweeps. During the frequency sweep, the storage
modulus (G′) and loss modulus (G

′′
) were measured as a function of oscil-

lation frequency (0.63 <ω< 63 rad/s) at a single strain (γ= 5%). During
the strain sweep, torsional stress, σ, was measured as a function of strain
γ= (r∆θ/g), where ∆θ is the angular displacement of the steel plate, at
a single frequency. We measured σ over the range 1<γ < 200% at ω≥ 63
rad/s and T = 20 ◦C (SI Appendix, section S3).

ACKNOWLEDGMENTS. We thank Matthew Helgeson for helpful conversa-
tions and use of the rheometer. This project was supported by NSF Grant
CMMI 1363135. O.A.S. thanks the Alexander von Humboldt Foundation for
support.

1. Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: A
review. J Adv Res 6:105–121.

2. Rubinstein M, Colby RH (2003) Polymer Physics (Oxford Univ Press, New York), pp
253–305.

3. Maxwell JC (1864) On the calculation of the equilibrium and stiffness of frames.
London, Edinburgh, and Dublin Phil. Mag J Sci 27:294–299.

4. Broedersz CP, Mao X, Lubensky TC, MacKintosh FC (2011) Criticality and isostaticity in
fibre networks. Nat Phys 7:983–988.

5. Mao X (2018) Mechanics of disordered fiber networks. Gels and Other Soft Amor-
phous Solids, eds Horkay F, Douglas JF, Gado ED (American Chemical Society,
Washington, DC), pp 199–210.

6. Zhong M, Wang R, Kawamoto K, Olsen BD, Johnson JA (2016) Quantifying the impact
of molecular defects on polymer network elasticity. Science 353:1264–1268.

7. Ozaki H, Koga T (2017) Network formation and mechanical properties of telechelic
associating polymers with fixed junction multiplicity. Macromol Theor Simul
26:1600076.

8. Skrzeszewska PJ, et al. (2009) Physical gels of telechelic triblock copolymers with
precisely defined junction multiplicity. Soft Matter 5:2057–2062.

9. Tanaka F, Nishinari K (1996) Junction multiplicity in thermoreversible gelation.
Macromolecules 29:3625–3628.

10. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247.
11. Li Y, et al. (2004) Controlled assembly of dendrimer-like DNA. Nat Mater 3:38–42.

7242 | www.pnas.org/cgi/doi/10.1073/pnas.1819683116 Conrad et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819683116/-/DCSupplemental
https://www.idtdna.com/pages
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819683116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819683116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819683116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1819683116


PH
YS

IC
S

12. Lee JB, et al. (2012) A mechanical metamaterial made from a DNA hydrogel. Nat
Nanotech 7:816–820.

13. Biffi S, et al. (2013) Phase behavior and critical activated dynamics of limited valence
DNA nanostars. Proc Natl Acad Sci USA 110:15633–15637.

14. Nava G, Rossi M, Biffi S, Sciortino F, Bellini T (2017) Fluctuating elasticity mode in
transient molecular networks. Phys Rev Lett 119:078002.

15. Biffi S, et al. (2015) Equilibrium gels of low-valence dna nanostars: A colloidal model
for strong glass formers. Soft Matter 16:3132–3138.

16. Rovigatti L, Smallenburg F, Romano F, Sciortino F (2014) Gels of dna nanostars never
crystallize. ACS Nano 8:3567–3574.

17. Fernandez-Castanon J, Bianchi S, Saglimbeni F, Leonardo RD, Sciortino F (2018)
Microrheology of DNA hydrogel gelling and melting on cooling. Soft Matter
14:6431–6438.

18. Rovigatti L, Bomboi F, Sciortino F (2014) Accurate phase diagram of tetrava0lent dna
nanostars. J Chem Phys 140:154903.

19. Jeon BJ, et al. (2018) Salt-dependent properties of a coacervate-like, self-assembled
DNA liquid. Soft Matter 14:7009–7015.

20. Bianchi E, Largo J, Tartaglia P, Zaccarelli E, Sciortino F (2006) Phase diagram of patchy
colloids: Towards empty liquids. Phys Rev Lett 97:1–4.

21. Sciortino F, Zaccarelli E (2017) Equilibrium gels of limited valence colloids. Curr Opin
Colloid Interf Sci 30:90–96.

22. Zaccarelli E (2007) Colloidal gels: Equilibrium and non-equilibrium routes. J Phys Cond
Mat 19:323101.

23. Nguyen DT, Saleh OA (2017) Tuning phase and aging of DNA hydrogels through
molecular design. Soft Matter 13:5421–5427.

24. Zadeh JN, et al. (2011) Nupack: Analysis and design of nucleic acid systems. J Comput
Chem 32:170–173.

25. Yucht MG, Sheinmanb M, Broedersz CP (2013) Dynamical behavior of disordered
spring networks. Soft Matter 9:7000–7006.

26. Rocklin DZ, Hsiao LC, Szakasits M, Solomon MJ, Mao X (2018) Elasticity of colloidal
gels: Structural heterogeneity, floppy modes, and rigidity. arXiv 1808.01533v1:1–7.

27. Tighe BP (2012) Dynamic critical response in damped random spring networks
dynamic. Phys Rev Lett 109:1–5.

28. Pouzot M, Nicolai T, Benyahia L, Durand D (2006) Strain hardening and fracture of
heat-set fractal globular protein gels. J Coll Sci 293:376–383.

29. Gisler T, Ball RC, Weitz DA (1999) Strain hardening of fractal colloidal gels. Phys Rev
Lett 82:1064–1067.

30. Seitz ME, et al. (2008) Fracture and large strain behavior of self-assembled triblock
copolymer gels. Soft Matter 5:447–456.

31. Erk KA, Henderson KJ, Shull KR (2010) Strain stiffening in sythentic and biopolymer
networks. Biomacromolecules 11:1358–1363.

32. Douglas JF (2009) Elasticity of networks with permanent and thermoreversible cross-
links. MRS Proc 1234:1234.

33. Thorpe M (1983) Continuous deformations in random networks. J Non-Cryst Sol
57:355–370.

34. Feng J, Levine H, Mao X, Sander LM (2015) Alignment and nonlinear elasticity in
biopolymer gels. Phys Rev E 91:042710.

35. Onck PR, Koeman T, van Dillen T, van der Giessen E (2005) Alternative expla-
nation of stiffening in cross-linked semiflexible networks. Phys Rev Lett 95:
178102.

36. Zhang L, Rocklin DZ, Sander LM, Mao X (2017) Fiber networks below the isostatic
point: Fracture without stress concentration. Phys Rev Mat 1:052602.

37. Huisman E, Lubensky T (2011) Internal stresses, normal modes, and nonaffinity in
three-dimensional biopolymer networks. Phys Rev Lett 106:1–4.

38. Dennison M, Sheinman M, Storm C, MacKintosh FC (2013) Fluctuation-stabilized
marginal networks and anomalous entropic elasticity. Phys Rev Lett 111:1–5.

39. Zhang L, Mao X (2016) Finite-temperature mechanical instability in disordered
lattices. Phys Rev E 93:1–8.

40. den Tempel MV (1961) Mechanical properties of plastic-disperse systems at very small
deformations. J Coll Sci 16:284–296.

41. den Tempel MV (1978) Rheology of concentrated suspensions. J Coll Sci 71:
18–20.

42. Bremer LGB, van Vliet T (1991) The modulus of particle networks with stretched
strands. Rheol Acta 30:98–101.

43. Mellema M, van Opheusden JHJ, van Vliet T (2002) Categorization of rheological
scaling models for particle gels applied to casein gels. J Rheol 46:11–29.

44. de Rooij R, van den Ende D, Duits MHG, Mellema J (1994) Elasticity of weakly
aggregating polystyrene latex dispersions. Phys Rev E 49:3038–3049.

45. Ho D, et al. (2009) Force-driven separation of short double-stranded DNA. Biophys J
97:3158–3167.

46. Zaccarelli E, et al. (2006) Gel to glass transition in simulation of a valence-limited
colloidal system. J Chem Phys 124:1–14.

47. Shih WH, Shih WY, Kim SI, Liu J, Aksay IA (1990) Scaling behavior of the elastic
properties of colloidal gels. Phys Rev A 42:4772–4779.

48. Clerk JP, Giraud G, Laugier JM, Luck JM (1990) The electrical conductivity of binary
disordered systems, percolation clusters, fractals and related models. Adv Phys
39:191–309.

49. Guo L, Colby RH, Lusignan CP, Howe AM (2003) Physical gelation of gelatin studied
with rheo-optics. Macromolecules 36:10009–10020.

50. Djabourov M, Leblond J, Papon P (1988) Gelation of aqueous gelatin solutions. II.
Rheology of the sol-gel transition. J Phys 49:333–343.

51. Adam M, Delsanti M, Durand D, Hild G, Munch J (1981) Mechanical properties near
gelation threshold, comparison with classical and 3D percolation theories. Pure App
Chem 53:1489–1494.

52. Daoud M (2000) Viscoelasticity near the sol-gel transition. Macromolecules 33:3019–
3022.

Conrad et al. PNAS | April 9, 2019 | vol. 116 | no. 15 | 7243


