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Abstract

Rationale and Objectives: Healthy aging is associated with pervasive declines in cognitive, 

motor, and sensory functioning. There are, however, substantial individual differences in 

behavioral performance among older adults. Several lines of animal research link age-related 

reductions of gamma-aminobutyric acid (GABA), the brain’s primary inhibitory neurotransmitter, 

to age-related cognitive, motor, and sensory decline. Our study used proton magnetic resonance 

spectroscopy (MRS) at 3T to explore whether occipital GABA declines with age in humans and 

whether individual differences in occipital GABA are linked to individual differences in fluid 

processing ability.

Materials and Methods: We used a MEGA-PRESS sequence that combines frequency spectral 

editing with a point-resolved spectroscopy sequence to quantify GABA. Spectra were obtained 

from a 30 × 30 × 25 mm voxel placed in the occipital cortex of 20 young adults (mean age 20.7 

years) and 18 older adults (mean age 76.5 years). Participants also performed 11 fluid processing 

tasks outside the scanner, the results of which were z-scored and averaged to calculate a summary 

measure of fluid processing ability. Regression analysis was employed to determine the 

relationship between GABA concentrations in the occipital cortex and a summary measure of fluid 

processing ability.

Results: Occipital GABA was significantly lower in older participants compared to the younger 

participants. We also observed a significant positive relationship between occipital GABA and 

fluid processing ability. In fact, higher GABA was associated with better task performance in 10 of 

the 11 tasks.

Conclusion: These findings suggest that GABA levels decline with age in humans and are 

associated with declines in fluid processing ability.
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INTRODUCTION

Healthy aging is associated with reduced fluid processing as indexed by impairments in 

working memory, long-term memory, and speed of processing. However, there are 

substantial individual differences in the effects of age on cognition. Some healthy older 

adults exhibit significant fluid processing impairments while others do not (13,15,39). Given 

the enormous personal and societal costs that are associated with age-related cognitive 

decline, it is important to determine factors that influence the severity of this phenomenon.

One factor may be age-related reductions of gamma-amino-butyric acid (GABA), the 

primary inhibitory neurotransmitter of the brain. Genes related to GABA-ergic function are 

down-regulated during normal aging in humans and rhesus macaques (20), and several lines 

of research in animals suggest that GABA function declines with age. For example, the 

number of GABA-immunoreactive neurons declines with age in the inferior colliculus (6), 

hippocampus (35), and striate visual cortex (17). There are also age-related reductions in 

baseline GABA, GABA release, and GABA receptor binding (6).

Furthermore, GABA function is linked with behavior in animals. For example, reduced 

hippocampal GABA(B) receptor expression is associated with spatial learning impairments 

in rats (22). In addition, apolipoprotein E4 knock-in mice exhibit age-related reductions in 

GABAergic interneurons that are associated with learning and memory impairments. 

However, those impairments are eliminated by daily injections of a GABA(A) receptor 

potentiator (1) and return if the injections are subsequently with-held (37). These findings 

raise the possibility that age-related declines of cognition are associated with age-related 

declines of GABA functioning.

Recently, it has become possible to study GABA in humans using magnetic resonance 

spectroscopy (MRS), a noninvasive technique that can estimate regional metabolite levels in 

vivo. Using this technique, researchers have revealed age-related declines in GABA in 

frontal, parietal, and posterior brain regions (11,12,27). MRS studies have also reported 

relationships between GABA measures and behavioral performance in a number of domains, 

including visual function (9,40), motor control (5), tactile function (14,28), and executive 

function (18,23,40).

These studies suggest that GABA levels tend to decline with age and that GABA function 

predicts behavior. Recent evidence also suggests that cognitive declines associated with 

aging may be related to age-related declines in GABA concentration, with declines in frontal 

GABA concentration associated with lower scores on the Montreal Cognitive Assessment, a 

widely used screening assessment for detecting cognitive impairment (27).

Here, we investigated whether age-related declines of GABA are associated with a very 

important aspect of age-related cognitive decline: reduced fluid processing ability (e.g., 

speed of processing and executive functioning). The aim of the present study was to test this 

hypothesis by combining MR spectroscopy with behavioral methods for assessing cognitive 

functioning.

Simmonite et al. Page 2

Acad Radiol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We focused on the occipital cortex for three reasons. First, orientation and direction 

discrimination decline with age at both the neural (33) and behavioral (3) levels. Second, 

age-related declines in the orientation selectivity of visual cortex neurons can be reversed by 

the administration of GABA or a GABA agonist (19), thereby demonstrating that GABA 

plays a causal role in visual functioning. Third, prior findings from our group indicate that 

functional magnetic resonance imaging measures of heightened object selectivity in the 

human occipital cortex are associated with increased fluid processing ability (26).

METHODS

Participants

Twenty older participant (8 males; aged, 59–87 years; mean = 76.5 years, SD = 8.73 years) 

and nineteen younger participants (9 males; aged 18–23 years, mean = 20.74 years, SD = 

1.37 years) were recruited for this study. All participants provided informed consent 

following a protocol approved by the Institutional Review Board of the University of 

Michigan and were screened for magnetic resonance contraindications. Individuals were 

eligible to participate if they were fight handed and beleen 18 and 30 years old (young 

group) or over 59 (older group). Exclusion criteria included pregnancy, any history of 

neurological or psychiatric disorder, or any history of drug or alcohol abuse.

Participants attended a behavioral testing session, followed approximately two weeks later 

by an imaging session (intersession interval, 2–28 days, mean = 11.97 days, SD = 7.10 

days). Participants were paid $10 per hour for the behavioral session, and $20 per hour for 

the imaging session.

Behavicral Testing

During the behavioral session, participants completed the Mini-Mental State Exam, the 

extended range vocabulary test, and 11 fluid processing tasks. Of the 11 tasks, seven 

measured perceptual processing (Contour detection, Digit-symbol coding, Pattern 

comparison, Cambridge Face Perception Test - Upright (CFPT upright), Cambridge Face 

Perception Test - Inverted (CFPT inverted), Dot speed and Dot coherence), three measured 

executive function (Controlled Oral Word Association test (COWAT), Trail making test A 

and Trail making test B) and one measured memory (Cambridge Face Memory Test 

(CFMT)). Of importance, performance on all of these tasks typically declines with age.

CFMT, (8): Participants are introduced to six male target faces, and asked to learn each face 

in three views. Participants are presented with three faces and asked to choose the learned 

face from two distractors. For each target face, three test items contain views identical to 

those studied in the introduction, five present novel views and four present novel views with 

noise. Performance on the CFMT has been shown to decline with age (4).

Contour Detection: Participants were presented with groups of lines and asked to 

determine whether some of the lines formed a circle or an ellipse. A staircase procedure was 

used to determine how much jitter in line orientation participants could tolerate, while still 
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being able to make a correct judgment. Age-related impairments in contour integration have 

previously been observed (30).

Digit-Symbol Coding: Participants viewed nine digit-symbol pairs followed by a list of 

digits, and were asked to write the symbol that corresponded to each digit as quickly as 

possible. The number of correct symbols participants produced within 90 seconds was 

measured. The task was taken from the Wechsler adult intelligence scale-third edition (38), 

and performance on this task shows a robust age related decline from around the age of 45 

(16).

Pattern Comparison (31): Participants were asked to determine if two patterns of lines 

were the same or different. Participants performed this task on three sets of 32 pattern pairs 

with 30 seconds to complete each set. The total number of correct judgments across all three 

sets was measured. Notably, performance on pattern comparison tasks declines with age 

(32).

COWAT, (2): Participants were instructed to name as many words as they could that started 

with a target letter in 1 minute. The target letters were “F,” “A,” and “S.” The total number 

of words generated across all three letters was measured. Verbal fluency measures such as 

this have been observed to be sensitive to the effects ofaging (36).

CFPT upright (7): Participants ranked six upright faces with respect to their similarity to a 

target face. Average deviation from the correct rank order was measured. Performance on the 

CFPT upright declines with age (4).

CFPT inverted (7): Participants ranked six inverted faces with respect to their similarity to 

a target face. Average deviation from the correct rank order was measured. As with the 

CFPT upright, performance on the CFPT inverted demonstrates a marked decline with age 

(4).

Dot Speed: Participants viewed two groups of moving dots and were asked to determine 

which group was moving faster. A staircase procedure was used to find individual 

thresholds. Participants completed two blocks of the task, each containing approximately 55 

trials. An age-related loss of sensitivity to visual motion has been observed in older 

individuals (34).

Dot Coherence: Participants viewed two groups of dots and determined which group 

moved more coherently. A staircase procedure was used to find individual thresholds. 

Participants completed two blocks of the task, each of which contained approximately 55 

trials. An age-related deficit in motion coherence thresholds for slow speeds has been 

observed (34).

Trail Making Test A: Participants were asked to draw lines connecting the numbers 1–25 

in order. The numbers appeared in random positions on a sheet of paper. The amount of time 

it took to complete the task was measured. Significant age-related increases in completion 

time have been observed in this task (29).
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Trail Making Test B: Participants were asked to draw connecting lines between 

alternating numbers and letters in ascending order (e.g., 1, A, 2, B, 3, C, etc.). The characters 

appeared in random positions on a sheet of paper. The amount of time it took to complete 

the task was measured. As with the Trail Making Test A, significant age-related increases in 

completion time have been observed on the Trail Making Test B (29).

MR Spectroscopy

MR spectroscopy data were acquired using a 3T Phillips Ingenia system (Best, The 

Netherlands) with a 32-channel head coil. For each subject, we performed a T1 weighted 

3D-MPRAGE sequence with 0.9 mm3 resolution for MRS voxel placement and subsequent 

tissue segmentation. Magnetic resonance spectroscopy spectra were collected from a 30 × 30 

× 25 mm voxel placed in the primary visual cortex (Fig 1). Single-voxel point resolved 

spectroscopy spectra (PRESS) were collected using the following scanning parameters: 

TR/TE = 2000/35 ms and “VAPOR” water suppression with 32 averages (approximately 1 

minute). A MEGAPRESS sequence combining frequency spectral editing with point-

resolved spectroscopy was used to distinguish GABA from other metabolites. Details of this 

sequence were as follows: TE = 68 milliseconds (TE1 = 15 milliseconds, TE2 = 53 

milliseconds); TR = 1.8 seconds; 256 transients of 2000 data points; spectral width = 2 kHz; 

frequency selective editing pulses (14 milliseconds) applied at 1.9 ppm (ON) and 7.46 ppm 

(OFF); total scan time of approximately 10 minutes per voxel; refocusing performed using 

an amplitude-modulated pulse “GTST1203” (length = 7 milliseconds, bandwidth = 1.2 

kHz). The signal detected at 3.02 ppm using these experimental parameters is expected to 

contain contributions from both macromolecules and homocarnosine, and is therefore 

referred to as “GABA+.”

DATA PREPROCESSING/ANALYSIS

Spectral Fitting

The PRESS spectra were analyzed using LCModel (http://s-provencher.com/lcmodel.shtml), 

which estimates the concentrations of glutamate and glutamine (Glx), N-acetyl aspartate 

(NAA), choline, and Myo-inositol (Myo). GANNET, a MATLAB toolbox (10), was used to 

preprocess and quantify the GABA+ signal in the MEGA-PRESS scans, using the default 

parameters, including frequency and phase correction of time-resolved data using spectral 

registration (24). The MEGA-PRESS scans are more vulnerable to field drifts and 

movement artifacts than typical PRESS scans because of the addition of an editing pulse and 

the subtraction of ON and OFF scans to obtain difference spectra, potentially leading to 

subtraction artifacts. Frequency correction can reduce quantification errors. All spectra were 

visually inspected for subtraction artifacts and noise levels. All metabolite concentrations 

were estimated relative to creatine as occipital creatine has been shown to be stable in the 

aging population (21). Metabolite concentrations were only used for statistical analysis from 

the LC model if the Cramer-Rao bounds were less than 20%.

Statistical Analysis

Statistical analyses were performed using the Statistical toolbox of MATLAB R2016a 

(MathWorks, Natick). To test the hypothesis that metabolite ratios in the visual cortex are 
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reduced in older individuals compared to younger ones, onetailed, two-sample t tests were 

performed. Age-related differences in performance on behavioral tasks were also 

investigated using one-tailed, two-sample t tests, since lower performance was predicted in 

the older participants. To investigate the link between behavioral performance and GABA 

concentrations, a summary measure of fluid processing was extracted from the data. 

Performance on each of the eleven tasks was z-scored, resulting in eleven z-scores for each 

participant. Each of these z-scores reflected a participant’s performance on one of the 11 

tasks relative to the performance of all other participants. The eleven z-scores for each 

participant were then averaged to obtain a single summary measure of fluid processing 

ability. As the 11 behavioral tasks could be classified into two groups—those in which better 

performance was indicated by higher scores (e.g., accuracy or number of items completed) 

and those in which better performance was indicated by lower scores (e.g., reaction time)—

the sign was flipped (from negative to positive) for the z scores of the tasks in which lower 

scores are indicative of better performance. This ensured that positive z-scores would always 

reflect better performance.

Regression analyses were employed to determine the relationship between metabolite ratios 

in the occipital cortex and the summary measure of fluid processing ability. The main 

analyses investigated relationships between GABA and fluid processing ability, but 

relationships between other metabolites and fluid processing ability were also explored. 

Following the main analyses, correlations between GABA concentration and performance 

on each of the individual tasks were computed. Regressions were also performed separately 

for young and old participant groups, to explore age-specific relationships.

RESULTS

The demographic characteristics of the participants are summarized in Table 1. We found no 

significant age-related differences in the mean score of Mini-Mental State Exam. Older 

participants performed significantly better on the extended range vocabulary test.

GABA+ spectra were unanalyzable for young and two old participants due to poor signal to 

noise, and PRESS spectra were unanalyzable for one old participant. Behavioral measures 

were collected from 18 young participants and 19 old participants. GABA+ concentrations 

are presented in Figure 2, and the results for all metabolites are provided in Table 2. A two-

sample t test revealed that, as hypothesized, occipital GABA levels were significantly lower 

in older participants compared to younger ones (t33 = 2.22, p < 0.05, one-tailed). 

Additionally, occipital NAA and Myo concentrations were lower in the older group than in 

the younger group (NAA: t36 = 3.03, p < 01; Myo: t36 = 2.00, p < 05, one-tailed). Age 

differences for choline and Glx were not significant.

Performance on the behavioral tasks is summarized in Table 3. Consistent with prior 

findings (4,16,29–31,34,36), younger participants tended to perform better than older 

participants on these tasks. The age difference was statistically significant (p < 0.05, one-

tailed) for eight of the tasks (CFPT upright, dot coherence, Trail Making A, Trail Making B, 

CFMT, contour detection, digit symbol, pattern comparison), was marginally significant for 

Simmonite et al. Page 6

Acad Radiol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the CFPT inverted task (p < 0.1, one-tailed), and was not significant for the dot speed and 

letter fluency tasks (both p’s > 0.1).

As predicted, higher GABA+ levels were associated with better task performance (i.e., 

enhanced fluid processing) as assessed by the summary measure of behavioral performance 

(t31= 1.84, p < 0.05, one-tailed; Fig 3, Table 4). Higher Myo, NAA, and Glx levels were also 

associated with better task performance as assessed by this summary measure (Myo: t34 = 

2.70, p < 0.01, one-tailed; NAA: t34 = 1.87, p < 0.05, one-tailed; Glx: t34 = 3.36, p < 001, 

one-tailed).

NAA levels are thought to reflect neuronal integrity, and given the correlation between NAA 

and behavior, we wondered if the association between GABA+ and behavior was due to 

individual differences in NAA. After controlling for NAA, the relationship between GABA+ 

and behavioral performance was reduced, although it was still marginally significant (partial 

correlation r = .25, p = 0.09, one-tailed).

We also explored relationships between GABA+ concentration and performance on 

individual tasks. GABA+ levels were associated with better performance in 10 of 11 tasks 

(Fig 4, Table 2). This relafionship was statistically significant (p < 0.05, one-tailed) in four 

of the tasks (CFPT upright, dot coherence, trail making B, and COWAT), marginally 

significant (p < 0.1, one-tailed) in one task (pattern comparison), and did not reach statistical 

significance (p > 0.1) in the other six tasks.

Relationships between metabolite ratios and performance were examined in the two age 

groups separately, revealing that they were driven by the older group (Table 3). The 

relationship between GABA+ concentration and the behavioral summary measure 

approached significance in the older group (t16 = 1,48, p < 0.08, one-tailed), but not the 

younger group. Additionally, the relationship between behavior and Glx was significant in 

the older participants, but not in the young participants (GlxO = t16 = 3.34, p < 0.001, one-

tailed; GlxY: t16 = 0.27, p = ns).

DISCUSSION

In the present study, we found that GABA+ concentrations in the human occipital cortex 

decline with age, and that lower GABA+ levels predict worse fluid processing ability in 

older adults. These findings are consistent with the hypothesis that age-related declines of 

GABA functioning contribute to age-related declines of fluid processing ability. Thus, they 

may help to explain why some healthy older adults exhibit significant fluid processing 

impairments while others do not (13,15,39).

It is worth noting that the relationship between occipital GABA+ and behavior was not 

restricted to purely visual tasks. In fact, some of the strongest relationships were with Letter 

Fluency and Trail Making B, which are typically associated with executive function rather 

than with vision. One possible interpretation is that age-related declines in occipital GABA+ 

impair aspects of visual processing that support higher cognition. Another is that age-related 

declines in occipital GABA+ reflect declines in GABA+ throughout the brain including 
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prefrontal cortex. Future studies could explore if either (or both) of these potential 

mechanisms can explain the relationship that we have observed.

When we investigated the relationship between GABA+ concentrations and fluid processing 

while controlling for individual differences in NAA levels, the relationship was weaker, 

although still marginally significant. This trend suggests that the relationship between 

GABA+ and behavior may be related to declines in neuronal integrity, but cannot be 

completely explained by them.

More broadly, the present findings are consistent with prior work involving nonhuman 

primates that has related reductions of occipital GABA to age-related declines of visual 

processing. For example, Leventhal et al., (19) found that the receptive fields of neurons in 

the visual cortex were less direction and orientation specific in old macaques, relative to 

young macaques. Interestingly, the administration of GABA, or a GABA agonist, to old 

neurons restored their specificity to youth-like levels, while the administration of a GABA 

antagonist to neurons in young monkeys reduced their specificity to that of neurons in older 

monkeys. This prior work suggests that GABA influences behavior by affecting the 

specificity of neural representations. Specifically, as GABA declines with age, neural 

representations may become less specific or distinct, thereby undermining behavioral 

performance.

A growing body of functional MRI findings in humans is consistent with this hypothesis. 

For example, Park et al. (25) found that the neural responses elicited by faces, places and 

words were less specialized in older adults compared to younger adults. Further, reduced 

neural distinctiveness is associated with reduced fluid processing ability in older adults (26). 

These findings, along with the present results, suggest the possibility that reductions of 

GABA in old age lead to declines in neural distinctiveness, which, in turn, contribute to age-

related cognitive decline. Of course, the present study was purely correlational. We are 

therefore unable to infer a causal relationship between reduced GABA levels and fluid 

processing impairments. One potential way to overcome this limitation would be to 

manipulate GABA levels pharmacologically via the administration of drugs that affect the 

GABA system (e.g., benzodiazepines). We are currently pursuing such a line ofresearch.

In conclusion, our findings indicate that human occipital GABA+ concentrations decline 

with age, and that individual differences in GABA are related to individual differences in 

fluid processing ability. These findings are consistent with the hypothesis that age-related 

declines in GABA may contribute to some of the age-related cognitive impairments that 

characterize healthy aging.
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Abbreviations

CFMT Cambridge Face Memory Test

CFPT inverted Cambridge Face Perception Test - inverted
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CFPT upright Cambridge Face Perception Test -upright

Cho Choline

COWAT Controlled Oral Word Association Test

Cr Creatine

fMRI functional magnetic resonance imaging

GABA gamma-aminobutyric acid

Glx Glutamate and Glutamine

Myo Myo-inositol

NAA N-Acetyl Aspartate
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Figure 1. 
Left: Axial and sagittal Tl-weighted images showing location of 1H-MRS voxel placements 

for the occipital cortex. Right: representative 1H-MRS MRS spectrum in the occipital cortex. 

Chemical shifts are indicated in parts per million (ppm). GABA is at 3.0 ppm.
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Figure 2. 
Effect of age group on occipital GABA+/Cr ratios in occipital GABA concentrations in 

young (18–23 years old) and older (59–87 years old) participants. A lower GABA +/Cr ratio 

is seen in older participants. Horizontal line across the box marks the mean, dark gray area 

corresponds to 95% confidence interval, light gray area is standard deviation.
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Figure 3. 
Relationship between occipital GABA+/Cr ratios (x axis) and scores on the summary 

measure extracted by z scoring and averaging behavioral performance on 11 tasks (y axis). 

Higher GABA+/Cr ratios are associated with better behavioral performance. OA, older 

adults; YA, young adults.
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Figure 4. 
Correlations between occipital GABA+/Cr ratios and performance (y axis) on each of 11 

behavioral tasks (x axis). Correlations on tasks in which better performance is associated 

with lower scores are flipped, so that for all tasks, a positive correlation indicates better 

performance is associated with higher GABA+/Cr ratios. Positive correlations were found 

for ten out of 11 tasks. CFMT, Cambridge face memory test; CFPT, Cambridge face 

perception test; COWAT, controlled oral word association test.
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TABLE 1.

Demographic Characteristics of Young Adult and Older Adult Groups, and Group Differences As Determined 

by Two-Sample t Tests.

Young Adults (n = 17) Older Adults (n = 18) Group Difference

Mean SD Mean SD t37 p

Age 20.74 1.37 76.50 8.73 27.50 <0.001

MMSE 29.42 0.69 29.35 1.14 0.23 0.82

ERVT 19.71 6.17 31.35 10.29 4.26 <0.001

EVRT, extended range vocabulary test; MMSE, Mini-Mental State Exam.
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