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Abstract

Objective: To test if ovarian microenvironmental cues affect oogonial stem cell (OSC) function 

in a species-specific manner.

Design: Animal and human study.

Setting: Research laboratory.

Patient(s)/Animal(s): Human ovarian cells obtained from cryopreserved ovarian cortical tissue 

of reproductive-age women, and ovarian cells and tissues from female C57BL/6 mice.

Intervention(s): Mouse ovarian tissue, mouse OSCs (mOSCs) and human OSCs (hOSCs) were 

analyzed for extracellular matrix (ECM) protein expression, and OSCs isolated from adult mouse 

and human ovaries were cultured in the absence or presence of ECM proteins without or with an 

integrin signaling inhibitor.

Main Outcome Measure(s): Gene expression and in vitro derived (IVD) oocyte formation.

Result(s): Culture of mOSCs on a collagen-based ECM significantly elevated the rate of 

differentiation of the cells into IVD oocytes. Mouse OSCs expressed many integrins, including 

Arg-Gly-Asp (RGD)–binding subunits, and ECM-mediated increases in mOSC differentiation 

were blocked by addition of integrin-antagonizing RGD peptides. In comparison, hOSCs 

expressed a different pattern of integrin subunits compared with mOSCs, and hOSCs were 

unresponsive to a collagen-based ECM; however, hOSCs exhibited increased differentiation into 

IVD oocytes when cultured on laminin.
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Conclusion(s): These data, along with in silico analysis of ECM protein profiles in human 

ovaries, indicate that ovarian ECM-based niche components function in a species-specific manner 

to control OSC differentiation.
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For many years, it was widely thought that ovarian failure with age in mammals resulted 

from progressive loss and ultimately exhaustion of a nonrenewable pool of oocyte-

containing follicles endowed in the ovaries at birth (1–4). However, the identification of 

female germline or oogonial stem cells (OSCs) in postnatal mouse ovaries in 2004 (5) raised 

significant questions about the validity of this longstanding paradigm. Although initially met 

with skepticism (6, 7), subsequent studies characterizing oogenesis and OSCs in adult 

ovarian tissue of mice (8–35), rats (36), pigs (37, 38), cows (39), monkeys (40), and humans 

(14, 41– 44) by many laboratories have offered new insights into possible causes and 

potential management of ovarian dysfunction and infertility beyond those posed by many of 

the traditional models used to describe mammalian ovarian development, function, and 

failure (45–50). For example, human OSCs have recently been tested in clinical studies as a 

source of autologous germline mitochondria for boosting egg and embryo quality in women 

with a history of repeated in vitro fertilization (IVF) failure (51–53). In addition, several 

studies have shown that OSCs persist in ovaries past the time of age-related failure in mice 

(8, 27) and humans (43, 53). While no longer supportive of active oogenesis in vivo (27), 

OSCs in aged ovaries apparently remain capable of generating oocytes if cultured under 

defined conditions ex vivo (43, 53) or if reexposed to a young ovarian environment in vivo 

(8). It should be emphasized, however, that whereas OSCs in mice and rats have been 

repeatedly shown to differentiate in vivo into functional eggs that produce viable embryos 

and offspring (9, 10, 14, 22, 25, 27, 28, 36), all studies of human OSCs to date have been 

limited to in vitro analyses (14, 41–44). Nonetheless. the findings discussed above (8, 27, 

43, 53) indicate that a progressive decline in OSC function with age, as recently highlighted 

through a genetic model of inducible suicide gene–based cellular ablation in mice (27), may 

be due more to a loss of as yet unidentified external cues needed for OSC differentiation 

rather than intrinsic differentiation defects within OSCs.

The extracellular matrix (ECM) is a key regulator of embryonic (54–57) and adult (58) stem 

cell fate. In turn, aging-associated dysfunction of many organ systems is thought to arise, at 

least in part, from deterioration of a homeostatic relationship between resident regenerative 

stem cell populations and their supporting microenvironments (59–64). Although it is 

unknown if this stem cell–niche interaction model of tissue aging applies to ovaries, the 

adult female gonads have served as an insightful model for mechanistic studies of ECM 

function owing to the tremendous degree of repeated tissue remodeling associated with 

volumetric expansion of growing follicles, ovulatory rupture of the ovarian surface 

epithelium, and development of corpora lutea after ovulation that occurs in each 

reproductive cycle (65–67). In addition, interaction of activin-A with the ECM has been 

identified as a principal mechanism underlying the initiation of follicular growth in the 

mouse ovary (68). Herein we designed a series of experiments to expand existing knowledge 
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of the importance of ECM in adult ovarian function by assessing the potential role of ECM 

as a microenvironmental niche factor for the regulation of OSC differentiation in adult 

mouse and human ovaries.

MATERIALS AND METHODS

Reagents

All reagents were obtained from Thermo Fisher Scientific, unless otherwise indicated.

Animals

Wild-type C57BL/6 mice (6 weeks of age) were obtained from Charles River Laboratories, 

and aged for each experiment. All experimental procedures reported herein were reviewed 

and approved by the Institutional Animal Care and Use Committee of Northeastern 

University.

Human Ovarian Tissues

Adult ovarian cortical tissue was collected from three reproductive-age women (22, 24, and 

33 years of age) undergoing sex reassignment at Saitama Medical Center and then 

cryopreserved via vitrification until use (14). As described subsequently, OSC lines were 

independently established from each of the three ovarian cortical tissue samples for 

experimental study. All procedures with human ovarian tissue and cells were reviewed and 

approved by the Institutional Review Boards at Northeastern University and Saitama 

Medical University.

Histology and Immunohistochemistry

Ovaries collected from mice at 2, 12, and 20 months of age (three animals per age group for 

independent analysis) were fixed and processed for paraffin embedding and serial section 

analysis (5–15 6-mm sections analyzed per ovary, with both ovaries from each of the three 

mice per age group assessed in parallel). Some sections were stained with the use of Weigert 

iron hematoxylin and a picric acid methyl blue counterstain. Other sections were stained 

with the use of a variation of van Gieson stain, composed of celestin blue (Sigma-Aldrich), 

Weigert iron hematoxylin, and Curtis substitute of saturated picric acid with ponceau S 

(Sigma-Aldrich) and glacial acetic acid, to differentiate collagen (red), nuclei (blue), and 

cytoplasm (yellow). Colorimetric photomicrographs were obtained with the use of a Zeiss 

Axioplan microscope and analyzed for gross tissue morphology, collagen organization, and 

histologic evidence of fibrosis or stromal hyperplasia (69). Additional sections of ovaries 

from the same animals were processed for indirect immunolabeling of type I collagen (with 

the use of an antibody against the collagen Ia1 subunit; Novus Biologicals NB600–408) and 

type IV collagen (with the use of an antibody against the collagen IVα1 subunit; Novus 

Biologicals NB120–6586) using temperature-based antigen retrieval in citrate buffer (10 

mmol/L, pH 6.0). After washing, the sections were incubated in a blocking buffer containing 

1% normal goat serum, 2% bovine serum albumin, and 0.1% Triton-X in phosphate-buffered 

saline solution (PBS), washed, and incubated in 10-µg/mL solutions of each primary 

antibody overnight at 4°C overnight. After washing in PBS, the sections were incubated in a 

1-µg/mL solution of a Dylight 650 secondary antibody (Invitrogen) for 1 hour in the dark at 
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room temperature. Sections were then washed of excess antibody in PBS and counterstained 

with a 1-µg/mL solution of Hoechst 33342 before mounting in Prolong Gold mounting 

medium. After all slides had cured, images were obtained with the use of a Zeiss Axioplan 

microscope, with fluorescence exposure time optimized in each channel with the use of 

ovarian tissue of 12-month-old mice and maintained throughout imaging, including slides 

which received no primary antibody as negative control samples. Although the ovarian ECM 

consists of more than these two types of collagen, we chose to focus on these proteins 

because they are well characterized ECM constituents in both mouse (67, 70) and human 

(71) ovaries and are often used in the field of regenerative biology for the manufacture of 

biomimetic tissues (72).

Hydroxyproline Assay

Levels of hydroxyproline, which is found nearly exclusively in collagen and is widely used 

as a measure of changes in collagen content (73), were assayed in ovaries of mice at 2, 12, 

and 20 months of age (n = 5–6 mice per age group) with the use of a commercially available 

kit (Cell Biolabs) following the manufacturer’s protocol.

Oogonial Stem Cell Isolation, Culture, and In Vitro Differentiation

As detailed previously (14, 17), OSCs were isolated from pooled ovaries of four 2-month-

old mice or from human ovarian cortical tissue by means of fluorescence-activated cell 

sorting via immunolabeling of the dispersed tissue with the use of a polyclonal antibody 

directed against the C-terminus of DDX4 (Abcam). Purified OSCs were maintained in 

culture as previously described (14, 17) and used for all experiments in passages 30–35 for 

mouse OSCs (mOSCs), and passages 15–20 for human OSCs (hOSCs). To monitor 

differentiation, 2.5 X 104 OSCs were plated in triplicate wells in plastic 24-well tissue 

culture plates containing 0.5 mL OSC culture medium for each experimental replicate. At 

24-hour intervals, 20% of the culture medium (0.1 mL) was sampled and evaluated by 

means of light microscopy for the number of in vitro derived (IVD) oocytes (14, 16, 17, 35, 

41, 43). After IVD oocytes in each well had been counted, the spent medium was removed 

and replaced with 0.5 mL fresh culture medium to evaluate IVD oocyte generation over the 

next time interval. This approach was taken based on prior experiments showing that 

purified OSCs maintained as pure germ cell cultures can spontaneously differentiate into 

IVD oocytes (14, 43) through a differentiation process dependent on the key driver of in vivo 

meiotic commitment, Stra8 (27). In addition to serving as a reliable bioassay to more 

definitively explore the oogenic activity of factors already known to influence early germ 

cell development (e.g., bone morphogenetic protein 4) (16), measurement of IVD oocyte 

generation in OSC cultures can also accurately predict the in vivo effects of as yet untested 

experimental manipulations on endogenous oocyte formation (27). To study the impact of 

ECM proteins on OSC differentiation, tissue culture plates were thinly coated (10 µg/cm2) 

with laminin (Novus Biologicals), type I collagen (Cultrex), type IV collagen (Cultrex), or 

an equal mixture of type I and type IV collagens, according to the manufacturer’s 

instructions for each protein, before cell plating. In some experiments, receptor-neutralizing 

doses (500 µmol/L) of Arg-Gly-Asp (RGD) peptides (Abcam) were used to inhibit binding 

of integrins to ECM proteins.

MacDonald et al. Page 4

Fertil Steril. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gene Expression Analysis

Cultures were prepared as described above, and total RNA was extracted with the use of an 

RNeasy Micro kit (Qiagen). Isolated RNA was then normalized in concentration across 

samples to be analyzed and treated with the use of DNase-I to remove potential genomic 

DNA contamination, followed by first-strand cDNA synthesis with the use of a Revertaid 

reverse-transcription kit. Quantitative analysis of stimulated by retinoic acid gene 8 (Stra8) 

expression was performed with the use of a Taqman gene expression assay against Stra8 
(assay ID Mm00486473_m1) and a housekeeping reference gene (glyceraldehyde 3-
phosphate dehydrogenase [GAPDH]; assay ID Mm99999915_g1). Integrin expression 

profiles for mOSCs were determined by means of conventional reverse-transcription (RT) 

polymerase chain reaction (PCR) with the use of Gotaq Green (Promega) and primers 

described in Supplemental Table 1 (available online at www.fertstert.org). Integrin 

expression profiles for hOSCs were determined with the use of Fast Sybr Green (Life 

Technologies) and primers for real-time PCR included in the Human Integrin Signaling 

Primer Library (realtimeprimers.com) and use of the Steponeplus Real-Time PCR System 

(Applied Biosystems). Relative levels of gene expression were classified as ‘‘high (+++ )’’ if 

the target gene was detected before detection of GAPDH, ‘‘moderate (++)’’ if the target 

gene was detected within five cycles of detection of GAPDH, and ‘‘low (+)’’ if the target 

gene was detected more than five cycles after detection of GAPDH. Data presented include 

only those genes detected in all three hOSC lines, with each line established from a different 

subject. The complete data set is available in Supplemental Table 2 (available online at 

www.fertstert.org).

In Silico Proteomic Analysis

Quantitative mass spectrometry proteomics data analyzed in this study were retrieved from 

the Proteomexchange consortium (proteomecentral.proteomexchange.org) using 

PXD006898 as the identifier of the data set (44). This public data repository contains results 

from quantitative mass spectrometric analysis of fetal human ovarian tissue at gestational 

days 47, 108, 122, and 137 and of adult human ovarian cortex (44). All data were filtered to 

exclude any identified proteins not previously annotated as components of the ‘‘matrisome’’ 

(74, 75) and further filtered to include only those proteins identified in all samples, allowing 

for quantitative comparison based on the intensity-based absolute quantification method 

(44).

Data Presentation and Analysis

All experiments were independently replicated at least three times with the use of different 

mice or tissues and cells collected from different mice or human subjects, for each biologic 

replicate. Quantitative results are presented as the mean ± SEM of the combined results 

across all replicate experiments, with statistical significance determined by means of 

analysis of variance with the post hoc Tukey Honestly Significant Difference (HSD) test. 

Qualitative data (histology, immunofluorescence, RT-PCR) are representative of results 

obtained in at least three independent biological replicates for each experiment.
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RESULTS

Aging Mouse Ovarian Tissue Exhibits Evidence of Fibrotic Scarring and Dysregulated ECM 
Expression

Gross morphologic evaluation of mouse ovaries with increasing age (young adult, 2 months; 

midlife adult with pending reproductive compromise, 12 months; aged adult, 20 months) 

highlighted dramatic changes in overall tissue organization (Figs. 1A–1D). Collagenous 

bundles, exemplified most clearly by distinct basement membranes surrounding follicles in 

ovaries of young adult mice (Fig. 1A), became increasingly disorganized with age (Figs. 

1B–1D). Most notably, collagen deposition became more global throughout the ovarian 

stroma, contrasting the discrete and tightly regulated localization of collagen detected in 

young adult ovaries. By 20 months, the tissue exhibited a broad and heterogeneous 

distribution of collagen throughout (Figs. 1C and 1D), including patches of fibrosis or 

stromal hyperplasia (69) as indicated by the strong, sporadic, red-stained regions within the 

vascularized medullary region of the ovaries (Fig. 1D).

To support and extend these qualitative assessments, ovaries were assayed for levels of the 

collagen-selective amino acid, hydroxyproline. Using ovaries of 2-month-old mice (n = 6) as 

a comparative baseline, hydroxyproline levels were elevated, but not significantly, by 12 

months of age (mean ± SEM 3.6 ± 1.3–fold vs. 2 months of age; n = 5; P=.19); however, 

ovaries of mice at 20 months of age contained significantly higher levels of hydroxyproline 

(4.8 ±1.3–fold vs. 2 months of age; n = 5; P< .05), which is consistent with the aging-

associated changes observed based on analysis of tissue morphology (Figs. 1A–1D).

We then performed immunolabeling of the main structural protein of the mouse ovary, type I 

collagen, and a major component of the follicular basement membrane, type IV collagen. 

Increased levels of type I collagen were detected throughout the ovaries with advancing age, 

along with the development of disorganized patches of fibrotic bundles in the stroma (Fig. 

1E). In comparison, in young adult mouse ovaries type IV collagen was localized primarily 

within follicular basement membranes, with some expression evident in the stroma; 

however, by 20 months of age, ovarian expression of type IV collagen was minimal and 

confined primarily to the surface epithelial basement membrane (Fig. 1F).

Integrin-Mediated Signaling from Collagen Increases mOSC Differentiation

We next used the formation of IVD oocytes by cultured OSCs (Fig. 2A) as a model for the 

study of oogenesis to test if ECM proteins could functionally affect the differentiation 

capacity of these cells. Culture of mOSCs on an equal mixture of type I and type IV 

collagens for 72 hours increased IVD oocyte formation by 2.1 T 0.5–fold over those values 

in control cultures of OSCs maintained on uncoated tissue culture plastic (TCP; n = 5 

independent cultures; P< .05 vs. TCP control samples; Fig. 2B). No significant differences 

in IVD oocyte formation occurred in cultures of OSCs maintained on type I collagen alone, 

type IV collagen alone, or laminin (Fig. 2B). Comparative gene expression analysis of 

freshly isolated and routinely passaged (cultured) mOSCs showed similar profiles of 

numerous integrin subunits with known matrix interaction capability (Figs. 2C and 2D), 

including the Itga3, ItgaV, Itgb1, and Itgb3 RGD-binding subunits. Cultured mOSCs also 
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expressed Itga10 and Itga11, which were not detected in freshly isolated cells (Figs. 2C and 

2D). When OSCs were cultured on an equal mixture of type I and type IV collagens in the 

presence of a receptor-neutralizing concentration of RGD peptides, the enhanced level of 

oogenesis promoted by the collagen mixture was abolished (Fig. 2D). Likewise, expression 

of Stra8 was increased 2.0 ± 0.6–fold in OSCs cultured on a mixture of type I and type IV 

collagens (n = 5 independent cultures; P< .05 vs. TCP control samples), and this response 

was similarly abolished by RGD blockade (Fig. 2E).

Species-Specific Differences in ECM Sensitivity: Comparison of mOSCs and hOSCs

In contrast to the outcomes observed with the use of mOSCs, the number of IVD oocytes 

formed in cultures of hOSCs remained unchanged in the presence of not just type I collagen 

or type IV collagen but also an equal mixture of the two collagens; however, hOSCs cultured 

on laminin exhibited a significant increase in IVD oocyte formation at 48 and 72 hours of 

culture (3.2 ± 0.2–fold and 2.2 ± 0.1–fold increases, respectively, vs. TCP control samples; n 

3 independent cultures; P< .01; Figs. 3A–3D). Expression profiling analysis of hOSCs 

isolated from the three subjects indicated the presence of a diverse array of integrin 

signaling–related genes, grouped as integrin subunits, matrix deposition, matrix remodeling, 

and cell adhesion (Fig. 3E). Notably, hOSCs were found to express laminin, which promotes 

hOSC differentiation (Figs. 3A–3D). In addition, integrin subunit expression was far more 

limited in hOSCs (Fig. 3E) compared with mOSCs (Fig. 2B). We also observed that several 

gene products were not uniformly expressed across all three hOSC lines (Fig. 3E), indicative 

of both species-specific as well as individual-specific gene expression profiles.

In Silico Analysis of ‘‘Matrisome’’ Proteins in Human Ovaries

The striking differences detected in our comparative analyses of mOSCs versus hOSCs 

prompted us to further explore ECM profiles in human ovarian tissue through in silico 

analysis of matrix-related (‘‘matrisome’’) proteins, including core matrix components 

(glycoproteins, collagens, and proteoglycans) and matrix-associated components (ECM-

affiliated proteins, ECM regulators, and secreted factors), with the use of a public data 

repository. Of the proteins identified with detectable levels of quantification in all five 

developmentally staged sample groups (Fig. 4A), two proteins exhibited the highest levels of 

expression in adult versus fetal ovaries at any stage: decorin (DCN) and lumican (LUM; 

Figs. 4B and 4C). At gestational day 122, we identified the highest relative expression of 

osteoglycin (OGN) and laminin gamma chain (LAMC1; Figs. 4D and 4E). At the earliest 

developmental stage analyzed, fibulin-1 (FBLN1) and protein C inhibitor (PCI) exhibited the 

highest levels of expression (Figs. 4F and 4G).

DISCUSSION

Although changes in the tissue microenvironment with age have been postulated to affect 

ovarian function and failure (8, 76), the present work has drawn the first functional links 

between known ovarian microenvironmental proteins and OSC differentiation capacity 

across species. Specifically, contact of mOSCs with both type I and type IV collagens 

activates higher levels of meiotic differentiation (Stra8 expression) and oogenesis (IVD 

oocyte formation) through a pathway that involves interaction of the collagens with RGD 
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motif–binding integrin subunits. Because the expression profile of integrin subunits, 

including Itga3, ItgaV, Itgb1, and Itgb3, were similar in freshly isolated and cultured 

mOSCs, it is likely that these in vitro modeling data offer an accurate representation of the 

influence of ECM proteins on mOSC function in vivo. In contrast, we observed that hOSCs 

were unresponsive to collagen interaction but produced significantly more IVD oocytes 

when cultured on laminin. Interestingly, hOSCs were also found to express laminin, 

suggesting that these cells may produce their own ECM for long-term growth and 

differentiation. This finding may also explain the low basal rate of IVD oocyte formation 

detected in control hOSC cultures maintained on TCP.

In addition to identification of key targets for future studies of how changes in ECM may 

contribute to the loss of oogenic potential and ovarian aging (27), our results may help to 

inform the design of future bioengineering-based technologies for successful ex vivo 

reconstruction of human ovarian tissue which could be employed for many purposes, 

including potential new assisted reproductive therapies (46, 48, 50, 77). Most current 

systems being developed for in vitro egg production rely on use of existing primordial or 

primary follicles as input (72, 78, 79). These approaches fall short of serving as a truly 

regenerative biomimetic platform that incorporates proliferative female germ cells (e.g., 

OSCs) capable of expansion, meiotic entry, de novo oogenesis, and subsequent 

folliculogenesis (9, 14, 28, 36, 41, 42); however, achieving this goal would require that the 

germ cells are maintained in an appropriate microenvironment designed to maximize 

differentiation and growth. Detailed assessments of the ECM composition of the human 

ovary, as well as the ability to model adult oogenesis in vitro with the use of cultured OSCs 

under defined experimental conditions, has enabled a more robust identification and analysis 

of potential key components of this microenvironment, such as laminin. Results from the 

present study also indicate that a clear divergence exists in the differentiation potential of 

mouse versus human germ cells exposed to different ECM components, further highlighting 

the value of cultured OSCs as a rapid bioassay for identification of factors that drive female 

germ cell meiotic commitment and oogenesis in a species-specific manner (48).

Coupled with these comparative functional and gene expression studies of OSCs ex vivo, we 

also used in silico analysis of a public proteomics database to further delve into the identity 

of matrisome factors that may be critical to the differentiation of human germ cells. This 

approach was taken to leverage the power of existing public databases in lieu of having 

liberal access to human ovarian cortical tissues collected throughout adult life and 

cryopreserved for detailed comparative analyses. To this end, a recent submission into the 

Proteomexchange consortium (44) studied, among other samples, fetal human ovaries at 

gestational day 47, when >90% of the germ cells present are premeiotic (undifferentiated) 

oogonia, versus gestational day 137, when more than three-fourths of the oogonia have 

differentiated into oocytes (80, 81). Many of the proteins we identified through in silico 

analysis of this database with detectable levels of quantification in all sample groups have 

rarely, if at all, been reported as matrix components in human ovaries outside of malignant 

ovarian tumor microenvironments. The latter include two proteins that exhibited the highest 

levels of expression in adult ovarian cortex versus developing fetal ovaries (at any stage): 

DCN and LUM. These proteins are small leucine-rich proteoglycans known to be associated 

with collagens in other tissues (82); however, both have only very recently been identified in 
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healthy human ovarian tissue (83) beyond a report of DCN in ovarian follicular fluid (84). 

At gestational day 122, a point in human ovarian development when oogonia are actively 

differentiating into oocytes, we identified the highest relative expression of OGN (also 

referred to as mimecan) and LAMC1. These findings add further support to the conclusion 

from our studies of hOSCs in vitro that, in human ovaries, laminin functions within a 

microenvironment that is supportive of oogenesis. Of additional interest, at the earliest 

developmental stage analyzed (gestational day 47), FBLN1 and PCI (also referred to as 

SERPINA5) had the highest levels of expression. Because FBLN1 has been linked to 

laminin binding (85), the increase in this protein just before the initial wave of human 

oogenesis during fetal life may reflect a role for this protein in laminin presentation to 

premeiotic germ cells as a mechanism to support meiotic differentiation. In addition, the 

identification of PCI in very-early-stage fetal human ovaries is consistent with a proposed 

role for this matrisome protein in sex differentiation (86).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
(A–D) Van Gieson staining (blue: nuclei; red: collagen; yellow: cytoplasm), showing 

development of tissue fibrosis and disorganization of collagen with advancing age. (A) 
Ovaries of 2-month-old mice exhibit fibrillar organization of collagenous basement 

membranes surrounding follicles (examples indicated by arrowheads). (B) Late-

reproductive-age ovarian tissue shows decreasing organization of collagen disseminating 

throughout the tissue, while still bounding follicles (arrowhead). (C, D) Postreproductive 

(aged) ovarian tissue shows large areas of tissue fibrosis. (E, F) Antibody labeling of 
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extracellular matrix (ECM) component proteins (E) type I collagen (Iα1 subunit) and (F) 
type IV collagen (IVα1 subunit) shows subtype-specific changes in ECM with age. 

Representative images of ovaries from three animals processed for each age group with 

primary antibody. Scale bars = 200 µm (A–D), 50 µm (E, F).
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FIGURE 2. 
(A) Representative images of in vitro derived (IVD) oocytes formed by mouse oogonial 

stem cells (mOSCs) in culture. Scale bar 50-µm. Asterisk (upper right panel) highlights an 

OSC shown for size comparison to an adjacent IVD oocyte. (B) Number of IVD oocytes 

formed in cultures of mOSCs seeded onto tissue culture plastic (TCP), laminin, type I 

collagen (Col 1), type IV collagen (Col 4) or a mixture of the two collagens (Col 1 + 1 4; 10 

µg/ cm2 of a 1:1 mixture) for 72 hours (mean ± SEM; n = 5; *P<.05 vs. TCP). (C) 
Representative expression analysis of known matrix-binding integrin subunits in freshly 
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isolated (fresh) or passage 35 (cultured) mOSCs (+RT and –RT = addition and exclusion of 

reverse transcriptase for the reverse-transcription polymerase chain reaction analysis to rule 

out the possibility of signal resulting from amplification of genomic DNA). (D) Treatment of 

mOSCs with the integrin-neutralizing peptide Arg-Gly-Asp (RGD; 500 µmol/L) inhibits the 

increase in mOSC differentiation induced by a mixture of type I and type IV collagens 

(mean T SEM; n = 3; *P<.05; **P<.01). (E) Addition of RGD peptide inhibits the ability of 

the collagen mixture to increase expression of the meiotic commitment gene Stra8 in 

cultured mOSCs (n = 5; *P<.05).
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FIGURE 3. 
(A–D) Numbers of IVD oocytes formed by human oogonial stem cells (hOSCs) cultured for 

(A) 24, (B) 48, (C) 72, or (D) 96 hours on TCP or TCP coated with laminin, type I collagen 

(Col 1), type IV collagen (Col 4), or a mixture of the two collagens (Col 1 + 4; 10 µg/cm2 of 

a 1:1 mixture;mean SEM; n = 3; **P<.01 vs. TCP). Abbreviations as in Figure 2. (E) 
Microarray expression analysis of multiple components of the integrin signaling network in 

three independent hOSC lines (each hOSC line, established from ovarian tissue of different 

subjects, is represented in a single column). The intensity of expression was normalized 
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against GAPDH levels as low ( +, gray shaded boxes), moderate (++, red shaded boxes) and 

high (+++,blue shaded boxes).
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FIGURE 4. 
(A) In silico analysis of a public proteomic database of fetal human ovarian tissue from 

gestational days 47, 108, 122, and 137, as well as adult human ovarian cortical tissue, for 

components of the human matrisome. Average linkage hierarchic clustering based on sample 

intensity–based absolute quantification values displayed developmental stage–specific 

changes in the human ovarian matrisome, with red indicating high expression and blue 
indicating low expression relative to each identified protein. Dashed boxes indicate proteins 

of interest for further analysis in panels B–G. (B–G) The small leucine-rich proteoglycans 
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(B) decorin and (C) lumican exhibited the highest relative expression in adult ovarian cortex 

versus fetal ovaries, whereas (D) osteoglycin and (E) laminin gamma chain were most 

abundant at gestational day 122; (F) fibulin-1 and (G) protein C inhibitor had the highest 

relative expression levels at the earliest developmental stage (day 47).
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