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MOTS-c is a 16-amino acid peptide encoded from 12S rRNA region of the mitochondrial 

DNA [1]. Multiple publications support the notion that MOTS-c plays an important role in 

regulating metabolism and insulin action and it has been suggested that MOTS-c exerts 

exercise mimetic effects in rodents [2]. In this issue of the Journal of Molecular Medicine, 

Lu et al. [3] revealed an important new role of MOTS-c as a hormone capable of preventing 

negative metabolic effects associated with menopause in an ovariectomized mouse model. 

These investigators found that MOTS-c treatment reduced both the weight gain as well as 

the insulin resistance associated with experimental menopause. Furthermore, they found that 

MOTS-c also suppressed the increase in inflammatory markers such as IL-1ß and IL-6 in 

adipose tissue. This anti-inflammatory effect may be key in the health-promoting effects of 

MOTS-c.

It is well known that postmenopausal women exhibit physiological alterations including 

weight gain, changes in adipose tissue distribution, and deterioration of insulin secretion, 

and sensitivity [4, 5]. These changes predispose them to develop type 2 diabetes [4]. 

Furthermore, decreased levels of estrogen are associated with non-alcoholic steatohepatitis, 

osteoporosis, and cardiovascular diseases [6-8]. These menopausal-associated metabolic 

abnormalities and health problems can be alleviated by exercise, whose benefits are obtained 

via diverse mechanisms including decreased inflammatory mediators, increased activity of 

antioxidants, and improved endothelial function [9, 10]. A recent meta-analysis on the 

effects of programmed exercise on insulin sensitivity-related outcomes in postmenopausal 

women revealed that exercising for three to four months significantly lowers insulin levels, 

and improves HOMA-IR, BMI, waist circumference, and body fat mass [11]. Exercise, 

which induces muscle remodeling, is beneficial not only for menopause but also for multiple 

other chronic diseases. Previous studies have shown that regular aerobic exercise such as 

walking, running, or high physical fitness has protective effects against obesity, type 2 

diabetes, and cardiovascular disease [12-14]. Given the sedentary lifestyle in western 

societies, developing exercise mimetics offers a promising therapeutic strategy for chronic 

diseases [15].

The development of such exercise mimetic drugs requires a better understanding of the 

molecular mechanisms involved in exercise-induced muscle remodeling. Muscle is not only 
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a locomotive organ but also an endocrine organ. Muscle releases multiple myokines during 

exercise, and these myokines likely mediate many of the systemic effects of exercise [16].

Mitochondria not only provide muscle with the necessary fuel, but also release and integrate 

exercise-induced signaling. AMPK, SIRT1, and PGC1α are central to exercise-induced 

signaling and are activated in skeletal muscles during exercise, leading to fatty acid 

oxidation and mitochondrial biogenesis [17]. These processes are followed by muscle 

remodeling that leads to exercise endurance and metabolic improvements. Indeed, small 

molecules and naturally occurring compounds that activate AMPK and SIRT1 exert exercise 

mimetic effects including insulin sensitization protect against diet-induced metabolic 

dysfunction in mice [18].

MOTS-c has been proposed to be a mitochondrial-derived exercise-mimetic myokine [1]. 

MOTS-c is expressed in skeletal muscles and other tissues and is detected in plasma. MOTS-

c increases endogenous AICAR levels and activates AMPK [1]. In addition, MOTS-c 

increases NAD+ levels, and SIRT1 is partially involved in MOTS-c actions [1]. MOTS-c 

also increases insulin sensitivity in skeletal muscle from aged, and high-fat fed, mice [1]. 

Furthermore, MOTS-c dramatically decreases weight gain during high-fat-diet-induced 

obesity in mice, and prevents fat accumulation in liver, making it a potential target in NASH 

(Figure-1) [1, 19]. The paper by Lu and colleagues, suggests that brown adipose tissue 

(BAT) may also be a direct target of MOTS-c, affecting mitochondrial number and function 

in this tissue [3]. Lu et al. also show that MOTS-c administration also prevents ovariectomy-

induced obesity and insulin resistance in mice via the AMPK pathway. Previous studies 

revealed that MOTS-c prevents ovariectomy-induced osteoporosis in mice and that it 

promotes differentiation of bone mesenchymal stem cell to osteoblasts in a rat model [20, 

21].

Taken together, MOTS-c is a mitochondrial derived exercise mimetic affecting a variety of 

chronic diseases of aging, but remarkably, as Lu et al. as well as Lee et al. showed, has no 

effect on rodents that aren’t metabolically challenged (Table-1). In addition, MOTS-c assays 

could emerge as biomarkers of metabolic dysfunction. Plasma MOTS-c levels are lower in 

obese male children and adolescents, and are negatively correlated with markers of insulin 

resistance [22, 23]. MOTS-c levels are also positively correlated with coronary endothelial 

function in humans, and MOTS-c improves endothelial function in rats [24]. However, the 

metabolic beneficial effects were observed only in male mice but not in pre-menopausal 

female mice [22]. Further studies understanding this sexual dimorphism of MOTS-c will 

extend our understanding of its biology.

MOTS-c directly connects the mitochondria to exercise-induced signaling. Mitochondria are 

semiautonomous organelles with the capacity to transcribe and translate 13 large proteins 

and multiple mitochondrial-derived peptides (MDPs) including MOTS-c [25]. MDPs are a 

group of peptides with potent biological activities and effects on mitochondrial functions 

and systemic metabolism [25, 26]. MDPs modulate mitochondrial respiration, mitochondrial 

biogenesis, and mitochondrial ROS production [27-30]. Humanin, the first MDP discovered, 

has been extensively characterized as a cytoprotective molecule that can attenuate 

Alzheimer’s disease-related pathology, endothelial dysfunction, and macular degeneration 
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[30-32]. The discovery of humanin represented a paradigm shift in the field of genetics, 

which has led to discoveries of multiple bioactive peptides encoded by small open reading 

frames in nuclear and mitochondrial DNA including the family of small humanin like 

peptides 1-6 (SHLPs), MOTS-c and more such peptides are likely to be discovered and 

characterized [33, 35].
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Figure 1. 
MOTS-c ameliorates various multiple resistant states.
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Table 1.

MOTS-c alleviates various pathological conditions

Pathological conditions MOTS-c action References

Aging-associated insulin resistance Increases glucose uptake in skeletal muscles in aged mice. [1]

High-fat diet (HFD)-insulin resistance Increases insulin sensitivity in HFD-fed mice.
Increases GLUT-4 expression in skeletal muscle in HFD-fed mice.

[1]

Obesity-associated insulin resistance Plasma MOTS-c levels are lower in obese male children and adolescents and 
negatively correlated with markers of insulin resistance and obesity.

[22, 23]

Nonalcoholic steatohepatitis Decreases hepatic fat accumulation in HFD-fed mice.
MOTS-c analogues prevent NASH in a STAM model

[1,19]

Endothelial dysfunction Improves endothelial function in rats. Plasma MOTS-c levels are lower in human 
subjects with impaired coronary endothelial function.

[24]

Menopause-associated conditions Prevents ovariectomy-induced obesity and insulin resistance.
Alleviates ovariectomy-induced osteoporosis.

[3, 20]

Osteoporosis/Osteopenia
Alleviates bone loss in ovariectomy-induced osteoporosis via AMPK.
Promotes rat bone mesenchymal stem cells differentiation to osteoblasts via TGF-β 
pathway.

[20, 21]

Sepsis Improves survival in mice during MRSA infection. Enhances bactericidal capacity of 
macrophages in MRSA-infected mice.

[34]
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