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Abstract

Infectious diseases are caused by pathogenic microorganisms and can be transmitted between 

individuals and populations thus threatening the general public health and potentially the 

economy. Efficient diagnostic tools are needed to provide accurate and timely guidance for case 

identification, transmission disruption and appropriate treatment administration. Point of care 

(POC) tests provide actionable results near the patient and thereby serve as a personal “radar”. In 

this review, we review clinical needs for POC testing for several major pathogens, including 

malaria parasites, human immunodeficiency virus (HIV), human papillomavirus (HPV), dengue, 

Ebola and Zika viruses and Mycobacterium tuberculosis (TB). We compare different molecular 

approaches, including pathogen nucleic acid and protein, circulating microRNA and antibodies, 

used in the POC tests. Finally, we review recent advances in novel POC technologies focusing on 

microfluidic and plasmonic-based approaches.

Introduction

Most infectious diseases are caused by pathogenic microorganisms including viruses, 

bacteria, parasites and fungi. Compared with other diseases, infectious diseases can be 

exponentially transmitted among populations in a relatively short period of time thus 

threatening the general public health and potentially the economy. It is estimated that over 

half of the world population are at risk for infectious diseases, making them one of the most 

dangerous threats to humanity[1].

“Without diagnostics, medicine is blind.”[2] Adequate and prompt treatment to illnesses 

cannot be made properly without diagnosis in the first place. Sensitive, specific and rapid 

diagnostic testing not only paves the way toward effective treatment but also plays a critical 

role in preventing the transmission of infectious diseases. While central clinical laboratories 

offer sensitive and specific assays, such as blood culture, high-throughput immunoassays, 

polymerase chain reaction (PCR) and mass spectrometry (MS) tests, they are often time and 

labor intensive, costly, and dependent on sophisticated instruments and well trained 

operators. On the other hand, point-of-care (POC) tests provide rapid ‘on-site’ results at the 
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site of care delivery, and in resource-limited settings, supporting timely and proper treatment 

[3]. According to the World Health Organization (WHO), POC tests that address infectious 

disease control needs, especially for the developing countries, should follow “ASSURED” 

criteria: (1) affordable, (2) sensitive, (3) specific, (4) user-friendly, (5) rapid and robust, (6) 

equipment-free and (7) deliverable to end-users [4].

Here in, we review literature published in the past decade and indexed in Pubmed, on the 

development of POC tests for infectious diseases. Based on the number of published studies 

in this field, we have chosen to focus on several major infectious disease-causing 

microorganisms, including malaria parasites, human immunodeficiency virus (HIV), human 

papillomavirus (HPV), dengue, Ebola and Zika viruses, and Mycobacterium tuberculosis 

(TB) bacteria. We first review the pathological processes, impact on public health, and POC 

needs for the detection of these microorganisms, then focus on several key biomarkers used 

in developed POC tests, including pathogen nucleic acids and proteins, circulating 

microRNAs and antibodies, comparing their roles during the entire process of disease 

management. Finally, we review advancements in microfluidics and plasmonics, two 

technologies that we have seen significant innovations in the past decade in developing POC 

tests for infectious diseases. These technologies, together with others in the “POCT 

Toolbox” (Figure 1), act as personal radar in the fight against infectious diseases, towards 

the goal of patient-centralized diagnosis and treatment, as shown in Figure 1.

Pathogen Detection Needs at the POC

Malaria Parasites

Over 300 million patients every year in tropical areas (such as sub-Saharan Africa) suffer 

from malaria [6, 7]. According to the “Malaria case management: operations manual” 

recommended by the World Health Organization (WHO), effective malaria management 

relies heavily on early diagnosis and prompt artemisinin-combined therapy (ACT) [8]. The 

first proof of malaria parasites in human blood was observed under microscope in the 1880s 

[9]. Since then, microscopy examination of Giemsa-stained blood film has been established 

as the gold standard in malaria diagnosis, which requires highly qualified and well-trained 

operators and reliable equipment [10], both are often in low supply in the areas where 

malaria is most prevalent [11]. To address this issue, the last decade has seen significant 

development of malaria rapid diagnostic tests (RDTs), with the goal to enable fast and 

reliable testing in remote settings where clinical diagnostics resources are not routinely 

available [11–14]. For example, the RDT lateral flow strips developed in a study can detect 

proteins derived from malaria parasites in blood, generating a series of clearly visible lines 

[9]. Rathod et al. used microfluidic channels to successfully mimic the capillary 

environment for more accurate in-field malaria diagnosis [15].

HIV

Over 40 million people are affected by HIV worldwide. About 85% of them are living in 

developing countries, where clinical diagnostics and antiretroviral therapy (ART) monitoring 

platforms are limited [4]. HIV infection causes a variety of immune system dysfunctions 

[16]. CD4+ T-lymphocytes are reported as the host cells for HIV viruses[17]. The gp120 
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envelope glycoprotein of HIV virus binds to the CD4 receptor, initiating infection and cell 

damage. At the early stage of HIV infection, although no obvious signs may appear, the 

number of CD4+T cells in the patient body declines, undermining the immune system and 

eventually making the patient succumb to opportunistic infections (e.g. pneumonia) [18]. No 

established cure is currently available for late-stage AIDS, with several anti-retrovirus drugs 

reported effective in suppressing symptom onset [19]. These drugs are reported to be more 

effective in the earlier stages of HIV infection [20]. Early HIV infection detection may also 

prevent unknowing transmissions, underscoring the importance of early HIV diagnosis. 

Fourth-generation p24 antigen (Ag)/Ab combination (combo) enzyme immunoassays (EIA) 

detecting HIV p24 Ag and antibodies (followed by HIV-1/2 differentiation and rt-PCR 

confirmation), have significantly narrowed the diagnostic window to within 2 weeks from 

the time of transmission [21]. Food and Drug Administration (FDA) approved fourth-

generation HIV-Ag/Ab assays include ARCHITECT HIV Ag/Ab EIA (Abbott 

Laboratories), GS HIV combo Ag/Ab EIA (Bio-Rad Laboratories and Walter Reed Army 

Institute of Research), Vitros HIV combo assay (Ortho Clinical Diagnostic), BioPlex 2200 

HIV Ag-Ab assay (Bio-Rad Laboratories), and ADVIA Centaur HIV combo (Siemens 

Healthcare Diagnostics) [22, 23]. Commercially available HIV Rapid Diagnostic Tests 

(RDTs) such as Multispot HIV-1/HIV-2 Rapid Test (Bio-Rad Laboratories), HIV 1/2/O rapid 

test device (ABON), Determine HIV 1/2 (Alere), OraQuick Rapid HIV-1/2 Antibody Test 

(OraSure Technologies) and DPP HIV 1/2 (Chembio) can detect and sometimes differentiate 

between antibodies to HIV-1/2 in the POC setting [24]. For therapy monitoring, since the 

number of CD4+ T-lymphocytes declines with HIV infection and rebounds with effective 

ART [25], the enumeration of CD4+T-lymphocytes and quantitation of HIV viral load can 

be used to monitor HIV infection [26, 27]. However, these conventional methods used for 

CD4+T-lymphocytes and HIV viral load quantitation, including flow cytometry EIAs and 

quantitative RT-PCR, are limited by long turn-around-time, the need for sophisticated 

instruments and well-trained operators, and associated high costs [28]. There is an urgent 

demand for POC devices that can accurately detect and monitor HIV/AIDS in resource-

limited settings, as emphasized by the World Health Organization (WHO) [29]. These POC 

devices for HIV detection should be accurate, inexpensive, easy to use and disposable to 

enable detection of HIV infection, and quantitation of CD4+ T-lymphocytes and HIV viral 

load in resource-limited settings[30, 31]. To meet the clinical needs, the lower detection 

limit of the devices needs to be at least 200 CD4+ cells per μL and 400 copies of HIV per 

mL of whole blood [9].

HPV

Over 50,000 women die from cervical cancer every year in Africa. In the United States, the 

incidence of cervical cancer was 40.1 in whites and 73.1 in nonwhites per 100,000 females 

prior to the wide use of Papanicolaou (Pap)-based screening, in selected areas in 1947-1948. 

Thanks to Pap-based screening directed precancerous lesions treatment, the incidence 

dropped to 7.7 per 100,000 women in 2012, underscoring the critical role of screening and 

early detection in cervical cancer prevention [32, 33]. Cervical intra-epithelial neoplasia 

(CIN), caused by persistent infection with one or more oncogenic types of HPV [34], is the 

target for cervical cancer screening. HPV DNA testing and/or Pap cytology, followed by 

colposcopy and biopsy are currently the gold standard in cervical cancer screening in 
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developed countries. As reported by Sankaranarayanan R et al., in a large randomized trial in 

India, one round of HPV screening based on DNA testing in women over age 30 

significantly reduced advanced cervical cancer incidence and mortality by 50% [35]. 

However, these tests require expensive laboratory settings and depend on a reliable recall 

system, making it not suitable to be deployed in large scale in resource-limited settings such 

as in developing countries[36]. In fact, 85% of the global cervical cancer burden is from the 

developing countries [37]. An alternative test to Pap-based cervical cancer screening is 

visual inspection with acetic acid (VIA), as recommended by the WHO for areas where 

resources are limited [37], which provides immediate results at a low cost. But visual 

inspection with VIA is not sensitive, more operator dependent, and lacks objective means of 

quality assurance, which may lead to over-or under-treatment [38, 39]. Simple, affordable, 

POC test platforms for HPV virus with both high sensitivity and high specificity are urgently 

needed to improve cervical cancer prevention in developing countries.

Dengue Virus and Ebola Virus

It is estimated that approximately 3 billion people from over 120 countries are at risk for 

Dengue virus (DENV, 4 serotypes: DENV1–DENV4) infection [40]. DENV belongs to the 

genus Flavivirus in the family Flaviviridae [41], with a single-stranded, positive-sense RNA 

genome. DENV spreads via mosquitoes and is concentrated in tropics and subtropics areas 

in Latin America and Asia [42]. It is the leading mosquito-borne viral infection and disease 

in humans, with an estimation of 390 million new infected people every year [40, 43]. In 

south China, multiple dengue fever outbreaks have taken place in the past ten years [44]. 

DENV infections can cause a range of syndromes, from dengue fever, to the potentially life-

threatening severe dengue shock syndrome [43]. According to the 2009 WHO revised case 

definition, three forms of DENV infection caused diseases are 1) dengue, 2) dengue with 

warming signs, and 3) severe dengue [45]. Moreover, there are no FDA-approved protective 

vaccines or specific antiviral therapies to treat dengue. One dengue vaccine, Dengvaxia, is 

available for only patients with past DENV infections but not dengue-naive individuals [46]. 

Accurate and rapid detection of DENV infection is important to ensure timely management 

of severe dengue diseases, while avoiding over-treatment of cases with similar clinical 

presentations but no DENV infections. Current diagnostic strategies in central clinical 

laboratories for DENV infection includes virus isolation, nonstructural protein 1 (NS1) 

antigen immunoassays, reverse transcription-PCR (RT-PCR), and serological detection of 

DENV specific antibodies such as IgM and IgG [46]. Among them, RT-PCR is the method 

with optimal sensitivity and specificity, commonly being used as a gold standard for DENV 

detection [47]. However, these laboratory-based diagnostic strategies require expensive 

instruments and licensed operators, limiting their use in remote resource-limited regions. 

Simple, rapid, accurate, and affordable POCTs for DENV detection with timely on-site 

confirmation of suspected cases is in high demand.

Syndromes of dengue fever resemble those of other viral hemorrhagic fevers, such as those 

caused by Ebola virus (EBOV) [48]. EBOV is an enveloped, nonsegmented, negative single-

strand RNA virus [49], first discovered in 1976 [48]. Five species of EBOV have been 

discovered so far: Bundibugyo, Sudan, Reston, Tai Forest and Zaire, the last of which caused 

over 11,000 fatalities during a recent outbreak from 2014 to 2016 in West Africa [49, 50]. 

Chen et al. Page 4

Clin Chim Acta. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



EBOV detection during outbreak was primarily carried out with reverse transcription 

polymerase chain reaction (RT-PCR) assay [51]. Although RT-PCR can be used to 

successfully diagnose Ebola infections with high sensitivity and specificity, it requires 

laboratory-based instrument and professional training to obtain accurate results, which are 

usually limited in the outbreak areas. Confirmed Ebola diagnosis was made in less than 60% 

of the cases during the 2014-16 outbreak, due to limited availability of diagnostic tests [52]. 

This emphasizes the need for POC diagnostic tools during Ebola outbreak [53]. Broadhurst 

et al. compared the in-field performance of the ReEBOV Antigen Rapid Test kit with a 

benchmark RT-PCR assay for the detection of EBOV. The rapid diagnostic test demonstrated 

a sensitivity of 100% [95% CI 87·7–100]) [54]. Brangel et al. developed a lateral flow based 

POC test to detect Sudan virus with a customized smart phone application to collect both 

test results and geographical information. Compared with standard ELISA, this POC test 

detected glycoprotein monoplex with 100% sensitivity and 98% specificity[55]. Sebba et al. 

developed another quick POC test using surface-enhanced Raman spectroscopy nanoparticle 

tags (SERS nanotags) to differentiate Ebola from other endemic febrile diseases, including 

Lassa and malaria. This POC test can be completed in two hands-on steps and <30 min with 

90.0% sensitivity and 97.9% specificity for Ebola [51].

Due to the highly contagious nature of pathogens such as Ebola, and the usually rapidly 

developed critical conditions of infected patients, POC testing in or close to containment 

facilities is also needed in well-resourced countries [56]. Guidelines are available from the 

Centers for Disease Control and Prevention (CDC) for infection prevention and control 

during sample collection, transportation, testing and disposal [57]. Real-world laboratory 

testing experiences have also been reported from different U.S. institutions [58, 59]. These 

practical aspects are important considerations when choosing POC technologies and 

implementing them in patient care workflows.

Mycobacterium tuberculosis

Approximately 10.4 million new cases of Tuberculosis (TB) was estimated in 2016 

according to WHO, with less than 64% cases diagnosed [2], preventing timely therapeutic 

interventions [60]. Therefore, even though TB has now become a largely treatable disease, it 

remains the worldwide leading infectious cause of death [2], claiming around 1.3 million 

deaths every year[4]. It would be impossible to achieve the goal of the End TB strategy, with 

90% reduction in incidence and 95% reduction in mortality by 2035 [61], without improved 

TB diagnostic tools to deliver timely therapeutic interventions. Currently standard diagnostic 

tools for TB include QuantiFERON-TB, liquid culture and smear microscopy [62], many of 

which require costly instruments, well trained individuals and large volume of samples [63]. 

Accurate and rapid POC diagnostics will be the key to achieve the End TB strategy. Recent 

years have seen impressive progresses in the field of TB POC diagnostics. In December 

2010, WHO endorsed the POC Xpert® MTB/RIF assay, developed by Alland et al., in TB 

endemic countries [64]. Xpert® MTB/RIF assay uses a cartridge-based integrated miniature 

PCR system with minimal technical expertise requirement, obtaining test results from 

unprocessed sputum samples within 90 minutes [65]. WHO-endorsed assay tools such as 

urine lateral flow lipoarabinomannan (LF-LAM) and loop-mediated isothermal 
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amplification (TB-LAMP) have also been developed, obviating the need for complicated 

instruments (such as thermal cycle controlling systems) [2].

Zika Virus

Zika virus (ZIKV), an Aedes mosquito-borne flavivirus was first reported in Brazil in 2015 

and has rapidly spread throughout the tropical and subtropical areas of America since then 

[66–68]. ZIKV has been reported to lead to congenital microcephaly, Guillain- Barré 

syndrome (GBS)[69], and other severe neurological defects in newborns whose mothers 

have been infected by ZIKV during pregnancy [70]. According to an economics model by 

Lee et al. [71], the estimated total costs (including direct medical costs and productivity 

losses) will range from 0.5 to 2 billion US dollars if the ZIKV emergency occurred across 

six US states. ZIKV is mainly propagated via mosquitoes, with other routes coexisting such 

as sexual and perinatal transmission and blood transfusions [72]. Because ZIKV-infection 

caused symptoms such as fever and chills are similar to many other febrile diseases [68], 

accurate and rapid detection of ZIKV is critical for proper and timely therapeutic 

interventions. ZIKV detection also plays critical roles in infection spread tracking, risk 

management throughout pregnancy, treatment and vaccine efficacy monitoring, blood supply 

safety assurance and determining whether sexual partners harbor infections [72]. The Food 

and Drug Administration (FDA) recently authorized emergency use of the IgM Antibody 

Capture Enzyme-Linked Immunosorbent Assay (Zika MAC-ELISA) and Trioplex rRT-PCR 

laboratory test to detect ZIKV [73]. However, these assays require central lab settings 

including bulky instruments and well trained operators. Simple, accurate and rapid POC 

diagnostic tools for ZIKV detection are the key to effective treatment and prevention [74, 

75].

Biomarkers in Infectious Disease POCT

The National Institutes of Health (NIH) Director’s Initiative on Biomarkers and Surrogate 

Endpoints define a biomarker as “a characteristic that is objectively measured and evaluated 

as an indicator of normal biological processes, pathogenic processes, or pharmacologic 

responses to a therapeutic intervention”[76]. Almost all the molecules or cells involved in 

the infection process of infectious diseases can be used as biomarkers, such as proteins, 

nucleic acids and antibodies. For example, during the HIV infection, the levels of HIV RNA 

genome, capsid protein p24 and different kinds of antibodies each has distinct profile 

signatures and can be used to assess the stages of the infection process, as shown in Figure 

2. In the following section, we will review different biomarkers used in POC tests for 

infectious diseases, and their roles in assessing the disease stages and treatments.

Pathogen Nucleic Acids

Since almost all infectious diseases are caused by pathogens carrying nucleic acids (except 

for rare cases such as Prions), pathogen nucleic acids (RNA or DNA) can naturally serve as 

biomarkers for the diagnosis of infectious diseases. As a matter of fact, nucleic acid tests 

(NAT) for the detection of pathogen specific nucleic acid sequences have been widely used 

in centralized laboratories [78, 79]. The amount of pathogen genome nucleic acids also 

directly reflects the load of pathogen during infection. For example, quantitative RNA 
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detection has been used to monitor HIV viral load during early infection and after treatment 

[77], as shown in Figure 2. A drawback using pathogen nucleic acids as biomarkers is the 

inability to differentiate between infection and colonization. Furthermore, traditional PCR-

based NATs involve multiple sample purification/preparation steps and require costly 

instruments such as programable thermocycler, which renders them not suitable for POC use 

[80]. A lot of efforts have been made in developing accurate, simple and cost effective 

diagnostic tools for the detection of infectious disease-specific nucleic acids in the past 

decade. Multiple approaches have been exploited including: replacing PCR with isothermal 

amplification methods such as recombinase polymerase amplification (RPA) and loop-

mediated isothermal amplification (LAMP), simplifying experimental procedures with 

integrated microfluidic devices, and synthetic biology approach. Maffert et al. systematically 

reviewed recent developments in POC nucleic acid detection for infectious diseases [80].

Antibodies

The presence of anti-pathogen antibodies can serve as biomarkers to evaluate the infectious 

state. During the infectious process, the immune system produces massive amount of 

antibodies, the level of which may be much higher than the level of pathogens. The level of 

antibodies may remain high during the entire infection process, while the antigen level may 

drop significantly at the late stage of infection. For example, at the late stage of HIV 

infection, anti-p24 antibody remains detectable while p24 drops down to an undetectable 

level [77], as shown in Figure 2. In this scenario, the antibodies are more useful for the 

diagnosis of infectious diseases. From the technology perspective, it is often easier to build 

immunoassays to detect antibodies than those to detect antigens, which require costly 

generation and preparation of antibodies. As an example, HIV antibody tests can easily 

detect antibodies up to several mg/ml with good specificity, achieving major success in 

performance and market share for HIV diagnosis [81, 82]. However, when the level of 

antibody does not corelate well with the infectious stage, antibody tests are not suitable to be 

used for infectious disease diagnosis. For example, infants who are not HIV virus-infected 

might get maternal antibody prenatally and via breastmilk and be tested antibody positive 

[83, 84]. People who have not yet seroconverted after HIV infection [85] or people with no 

or atypical antibody responses are also not suitable to be diagnosed with antibody tests [86, 

87].

Pathogen Proteins

All pathogens causing infectious diseases carry proteins, such as capsid and envelope 

proteins. These proteins can be used as valuable biomarkers for infectious disease diagnosis. 

For example, the HIV virus capsid protein p24 has long been recognized as a possible 

substitute biomarker to HIV antibodies, which have dominated the market of HIV POC tests 

[77, 88]. The p24 protein is a small protein with high copy numbers, encoded by the gag 

gene with a molecular weight of ~24 kDa, and polymerizes to form a cup-like shell to 

protect the RNA genome of HIV virus [89]. Just like the genome RNA of HIV, p24 presents 

very early during HIV infection and can be detected before seroconversion. The Alere 

Determine™ HIV-1/2 AG/AB Combo rapid test, which detects both HIV-1/2 antibodies and 

HIV-1 p24 antigen, was approved by FDA and achieved CLIA-waived status for fingerstick 

whole blood [90].
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Unlike nucleic acids, which can be amplified using PCR, ultra-low levels of proteins are not 

easily detected, which renders p24 detection later than RNA detection during HIV infection 

[77], as shown in Figure 2.

Circulating microRNAs

MicroRNAs (miRNAs) are non-coding RNA molecules with small sizes (~20 nt), and 

function to post-transcriptionally regulate gene expression [91–93]. Over 60% of 

mammalian mRNAs are under the regulation of corresponding miRNAs [94, 95]. MiRNAs 

also play critical roles in host immune response during infection [96–98], known to be 

routinely released into extracellular environments, especially by Immune cells [99, 100] as 

messengers for cell-to-cell communication [101]. It was first reported in 2008 that 

circulating miRNAs were detected in plasma [102] and serum samples [103, 104]. 

Interestingly, it has been found that extracellular miRNAs are extremely stable in body fluids 

including plasma, serum, urine, saliva, and semen, protected by RNA-binding proteins, high-

density lipoprotein particles and lipid vesicles [105, 106]. Although the exact functions of 

the extracellular miRNA network are still under investigation, the potential of using 

circulating miRNA expression signatures as biomarkers to monitor pathological states has 

attracted increasing attention. For example, Fu et al. have used miRNA microarray platform 

(Exiqon miRCURY™ LNA) to detect 92 differentially expressed miRNAs in serum samples 

from patients with TB infections [107]. They found that the levels of circulating miR-93* 

and miR-29a were upregulated significantly in serum samples from the TB cases compared 

to the healthy controls. It has also been reported that two pairs of plasma miRNAs 

(miR-495-3p in combination with let-7b-5p, miR-151a-5p, or miR-744-5p; and 

miR-376a-3p in combination with miR-16-5p) can be potentially used as biomarkers for 

HIV-associated neurological disorders (HAND) [108].

Technology Advancements in Infectious Disease POCT

The past decade has seen significant technology advancements for the development of 

POCTs for infectious disease diagnosis, such as compact molecular diagnostic systems, 

lateral flow assays, microfluidics, plasmonic technologies and paper-based assays. Among 

them, microfluidics has been considered as one of the most promising solutions, offering 

miniaturization and integration of most of the functional modules used in central laboratory 

diagnostics into a portable chip [109]. Meanwhile plasmonic technologies including surface 

plasmon resonance (SPR), localized surface plasmon resonance (LSPR) and surface-

enhanced Raman scattering (SERS), offer ideal properties as readout modules for POCTs, 

such as high sensitivity, label free and real time monitoring. The integration of plasmonics 

and microfluidic technologies can potentially serve as an ideal platform for the development 

of POCTs for the diagnosis of infectious diseases toward inexpensive, robust, and portable 

solutions [5]. In the following section, we will review recent technology advancements in 

microfluidics and plasmonics in the diagnosis of infectious diseases. The compact molecular 

diagnostic systems, typically benchtop instruments, are not reviewed here. Refer to [110, 

111] for detailed reviews on these systems.
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Microfluidics

Microfluidics is a technology used to manipulate very small volume of fluids (10−9 to 10−18 

L) [112], offering precise, programable, spatial and temporal control of the fluids [113]. 

Through microfluidics technology, samples and reagents can be transported, mixed, and 

reacted in specific micro chambers in a precisely controlled manner [112, 114]. It is 

naturally an ideal platform for POC test development with many desired features such as 

automation, integration, and miniaturization [115, 116]. An ideal microfluidic system with 

“sample-to-answer” characteristic for POCT [109] is illustrated in Figure 3A. In the 

following section we will review several recent advances in using microfluidics technology 

for infectious disease POCT.

During malaria infection, the infected red blood cells (iRBCs) progressively lose 

deformability as the parasites mature in the cells [117]. Based on this fact, Hou et al. 

designed and fabricated a microfluidic device to investigate the potential of using 

deformability as a biomarker to monitor the infection stages of malaria (Figure. 3B) [118, 

119]. They found that the less deformable iRBCs were more likely to be displaced to the 

walls of the microfluidic channels. By splitting the main microchannel into side channels, 

they isolated more than 80% of the iRBCs (in trophozoite/schizont stages) into the side 

channels. However, as other diseases such as sickle cell anemia also involve RBC 

deformability changes, the specificity of this assay still needs to be improved. As shown in 

Figure 3C, Wang et al. developed an automated microfluidic device for the detection of 

single-base variations in multi-drug resistant forms of M. tuberculosis by integrating cell 

lysis, DNA isolation, PCR amplification, and signal readout into a single small cartridge 

[120]. They implemented micropillar array in the microchannels to increase the interaction 

surface for DNA adsorption to enhance the colorimetric signal for readout. The Sia group 

from Columbia University developed a POC microfluidic chip for the simultaneous 

detection of HIV and syphilis using silver enhanced immunoassays [121]. They used air 

bubbles to separate reagents in the microfluidic channels, and sliver reduction to enhance the 

colorimetric signals, enabling ELISA-like sensitivity and specificity within 20 min. Later on 

they have also integrated the microfluidic device into a small cartridge which can be easily 

readout by a mobile device such as an iPod touch (Figure 3D) [122]. Watkins et al. 

developed a microfluidic chip to count CD4+and CD8+ T cells for HIV infection 

monitoring, using differential electrical impedance measurement (Figure 3E) [123]. In their 

design, when the target CD4+ or CD8+ lymphocytes flow through a specific area of the 

microfluidic channel, a spike in impedance with specific amplitude and width is recorded. 

Their CD4+ and CD8+ lymphocyte counting can be completed within 20 min, with results 

matching well with the results via flow cytometry. Lee et. al developed an integrated 

microfluidic device to sensitively diagnose DENV infection by detecting specific IgG and 

IgM antibodies (Figure 3F) [124]. They used magnetic microbeads and micromixers to 

efficiently capture IgG and IgM antibodies. On-chip built magnetic coils are used to collect 

the purified antibodies for subsequent fluorescence readouts.

Paper-based microfluidics is considered as a low cost and user-friendly technology for 

infectious disease detection in POCT [125–128]. In addition, the capability of colorimetric 

readout also makes them useful in many resource-limited circumstances. Whiteside et al. 
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demonstrated a microfluidic paper-based analytical device (μPAD) for the detection of 

antibodies to the HIV-1 envelope antigen gp41 [125]. In this design, the testing is simple and 

relatively fast (within 1h), and a small volume of sample (1-10 μl) is required. Other 

methods using microfluidics and paper-based devices for the detection of infectious diseases 

have been developed [126–128]. Some representative microfluidic technologies for POCT 

are listed In Table 1.

Plasmonic Technologies

Plasmonics studies the interaction between light and the conductive electrons of metallic 

nanomaterials [129]. Common plasmonic metals include gold, silver and aluminum [129, 

130]. Various plasmonic nanomaterials have been designed and fabricated to target POC 

applications owing to their label-free nature, facile optical tunability and high sensitivity to 

surrounding medium [131, 132]. For example, Peng et al. developed a coulometric POC test 

using engineered phage-induced gold nanoparticle aggregation to detect bacterial pathogens 

[133]. Recent progresses in highly sensitive optical transducers have further driven rapid 

development of plasmonic applications. Among the various optical sensing platforms, the 

unique surface plasmon resonance (SPR) properties of plasmonic nanomaterials make it a 

highly promising method for chemical and biological sensing and clinical diagnostics [134–

137]. Based on the sensitivity of the SPR to the changes in the dielectric properties of the 

surrounding medium, and the enhancement of the electromagnetic (EM) field in proximity 

to noble metal nanostructures, two important classes of plasmonic sensors have evolved: 

localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering 

(SERS) sensors.

The LSPR relies on the high sensitivity of plasmonic nanomaterial to refractive index 

changes [129]. It has been used for label-free, fluorescence-free and repeatable HIV viral 

load detection using unprocessed whole blood (Figure 4A) [138]. This sensing platform is 

based on the binding events of biomarkers that lead to the LSPR wavelength shift. This 

technology enables the detection and quantification of multiple HIV subtypes with high 

sensitivity, specificity, and relatively short assay time (1 h for capture and 10 min for 

detection and analysis). Additionally, prism coupling configuration for SPR excitation has 

been employed for label-free clinical protein detection (Figure 4B) [139]. In this 

configuration, the capture of biological samples is monitored via the change in refractive 

index, which results in the change in reflected light.

Paper-based devices offer numerous advantages such as high surface area, small sample 

volume requirement, portable, flexible, and low cost [140]. Plasmonic paper LSPR device 

has been demonstrated for the selective and sensitive detection of protein biomarkers (Figure 

4C), which makes it ideal for POC diagnosis of infectious diseases in a resource-limited 

setting [141].

SERS involves the large amplification of the Raman scattering from analytes adsorbed on or 

nearby to a nanostructured metal surface [142]. Extensive efforts have been dedicated to the 

design and fabrication of SERS device with large signal amplification and uniform 

enhancement. SERS-based lateral flow assay has been developed for detection of 

staphylococcal enterotoxin B with ultrahigh sensitivity compared to ELISA-based detection 
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methods (Figure 4D) [143]. Some representative plasmonic technologies for POCT are listed 

In Table 1.

Conclusions and Outlook

In summary, with its simplicity, short turnaround time, and wide accessibility, POC tests 

pave the way for prompt diagnosis of infectious diseases especially in resources-lim ited 

settings, which in turn enables timely and effective patientcentric treatment and 

management. Although a number of biomarkers have been successfully used as targets in 

POC tests for infectious diseases, biomarkers with better sensitivity and specificity are still 

needed. Systematic characterization of a set of biomarker signatures for a single infectious 

disease may prove to be a useful approach in future biomarker screening. Since many 

infectious diseases may present with similar clinical symptoms, POC tests with multiplex 

functionality are also highly desirable. Significant advances have been achieved in novel 

technology development for POC infectious disease testing in the past decade, including 

microfluidics and plasmonic technologies. Stringent clinical validations are still needed for 

these technologies to be translated from research to clinical practice. Many practical issues 

including infection control, testing in confined environment, information technology 

connectivity and optimization of clinical pathway are also important considerations for 

successful implementation to meet clinical challenges [149].
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Highlights

• POCT plays critical roles in diagnosis, treatment and prevention of infectious 

diseases.

• Simple, accurate, multiplex and widely accessible POC tests are needed for 

many major pathogens.

• POCT technologies have advanced significantly in the past decade, including 

microfluidics and plasmonics.
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Figure 1. 
Point of Care Tests (POCT) (such as com pact molecular diagnostic systems, lateral flow 

assays, microfluidics, plasmonic technologies and paper-based assays etc.) detect a variety 

of infectious diseases-related biomarkers, including virus particles, nucleic acids, proteins 

and antibodies. They serve as the foundation of “patient centralized” diagnosis and treatment 

of infectious diseases. Partly adapted from [5] with permission.
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Figure 2. 
(A) Different biomarkers used for the diagnosis and monitoring of HIV infection. (B) 

Kinetics of different biomarkers during HIV infection. Refer to [77] for further information. 

Partly remade from [77].

Chen et al. Page 22

Clin Chim Acta. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(A) Schematic of an ideal microfluidic system with: “Sample-to-answer” characteristic for 

POCT [109]. (B) Working principle of microfluidic device for the separation of malaria 

infected red blood cells (iRBC) with the concept of margination. Less deformable iRBCs are 

concentrated to the peripheral walls of microfluidic channel [118]. (C) An integrated 

microfluidic chip for sensitive detection of DNA from M. tuberculosis with on-chip PCR 

[120]. Reproduced with permission. (D) Microfluidic dongle for the sensitive detection of 

HIV [122]. Reproduced with permission. (E) Microfluidic device for the sensitive detection 
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of HIV via electrical impedance measurement [123]. Reproduced with permission. (F) 

Magnetic microbeads-assisted microfluidic device for the sensitive detection of anti-dengue 

antibodies [124]. Refer to [4, 122] for further information.
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Figure 4. 
(A) Illustration of nanoplasmonic viral load platform for the detection of intact virus. 

Reproduced with permission from [138]. (B) Schematic representation of SPR-based protein 

sandwich assay. Reproduced with permission from [139]. (C) Schematic representing the 

LSPR-based biosensor with peptide recognition elements. Reproduced with permission from 

[141]. (D) Illustration of the configuration of SERS-based lateral flow assay for detection of 

staphylococcal enterotoxin B. Reproduced with permission from [143].
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Table 1.

Summary of microfluidic and plasmonic POCT technologies for infectious diseases.

POCT Pathogen Analyte Detection Method Limit of Detection Assay time Reference

Microfluidic device (non-paper-based) Malaria Red blood cell Deformation N/A N/A [118]

Malaria Red blood cell Deformation N/A N/A [119]

M. tuberculosis DNA Colorimetric 50 cells/ml N/A [144]

HIV Antibody Colorimetric N/A 20 min [145]

HIV Antibody Optical N/A 15 min [122]

HIV CD4 and CD8 T 
cell

Electricity 12 cells/μl 20 min [123]

Dengue IgG and IgM 
antibodies

Fluorescence 21 pg 30 min [124]

Microfluidic device (Paper-based) HIV HIV-1 gp41 Colorimetric N/A 51 min [125]

Ebola Viral RNA Colorimetric 107 copy/ml 20 min [126]

TB TB-DNA Colorimetric 1.95×10−2 ng/ml 60 min [127]

ZIKA Viral RNA Colorimetric 1 copy/μl 15 min [128]

Plasmonic Technology HIV A, B, C, D, E, G 
and panel 
subtypes

LSPR 98±39 copies/ml 
for HIV subtype D

1h for 
capture and 
10 min for 
detection 
and analysis

[138]

Ebola VSV glycoprotein LSPR 106 PFU/ml More than 
90 min

[146]

TB TB-DNA Colorimetric 10 μg/ml Less than 2h [147]

ZIKA Viral RNA Fluorescence 1.7 copy/ml 3 min [148]

Plaque-forming units: PFU
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