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Modification of anticodon nucleotides allows tRNAs to
decode multiple codons, expanding the genetic code. Addition-
ally, modifications located in the anticodon loop, but outside the
anticodon itself, stabilize tRNA– codon interactions, increasing
decoding fidelity. Anticodon loop nucleotide 37 is 3� to the anti-
codon and, in tRNACGG

Pro , is methylated at the N1 position in its
nucleobase (m1G37). The m1G37 modification in tRNACGG

Pro sta-
bilizes its interaction with the codon and maintains the mRNA
frame. However, it is unclear how m1G37 affects binding at the
decoding center to both cognate and �1 slippery codons. Here,
we show that the tRNACGG

Pro m1G37 modification is important for
the association step during binding to a cognate CCG codon. In
contrast, m1G37 prevented association with a slippery CCC-U
or �1 codon. Similar analyses of frameshift suppressor
tRNASufA6, a tRNACGG

Pro derivative containing an extra nucleo-
tide in its anticodon loop that undergoes �1 frameshifting,
reveal that m1G37 destabilizes interactions with both the cog-
nate CCG and slippery codons. One reason for this destabiliza-
tion is the disruption of a conserved U32�A38 nucleotide pairing
in the anticodon stem through insertion of G37.5. Restoring the
tRNASufA6 U32�A37.5 pairing results in a high-affinity associa-
tion on the slippery CCC-U codon. Further, an X-ray crystal
structure of the 70S ribosome bound to tRNASufA6 U32�A37.5 at
3.6 Å resolution shows a reordering of the anticodon loop con-
sistent with the findings from the high-affinity measurements.
Our results reveal how the tRNA modification at nucleotide 37
stabilizes interactions with the mRNA codon to preserve the
mRNA frame.

Protein synthesis is performed by the ribosome, a conserved
protein–RNA macromolecular machine where mRNA, tRNAs,

and translation factors read the genetic information as pre-
sented on mRNA into proteins. There are four defined stages of
protein synthesis: initiation, elongation, termination, and recy-
cling (reviewed in Ref. 1). During elongation, three nucleotides
of the mRNA codon are read (or decoded) by three anticodon
nucleotides of a tRNA in the ribosomal aminoacyl site (A site)2

on the small 30S subunit. The three-nucleotide code on the
mRNA defines a single amino acid delivered by the correspond-
ing tRNA. The regulation of the mRNA frame is critically
important to maintain the correct sequential addition of amino
acids to the nascent chain (2). Despite the importance of accu-
rate protein expression for cell viability, the molecular basis for
how the ribosome maintains this three-nucleotide mRNA
frame is not well-understood.

Because tRNAs decode mRNAs, these RNA molecules prob-
ably play a role in mRNA frame maintenance. tRNAs are
�76 –90 nucleotides in length and adopt an L-shaped tertiary
structure allowing them to fit into ribosome-binding sites that
span both subunits (Fig. 1). tRNAs undergo extensive post-
transcriptional modifications important for the correct tertiary
fold of the tRNA, including the conformation of the anticodon
stem-loop (ASL) (3). RNA modifications that are located in the
anticodon and neighboring nucleotides in the ASL contribute
to the accuracy and speed of translation (4, 5) by stabilizing the
interactions between the anticodon and codon (3, 6 – 8). After
decoding, these tRNA modifications are also important during
translocation of the mRNA-tRNA pairs (9) and have also been
implicated in mRNA frame maintenance (6).

The selection of the correct tRNA for each mRNA codon
relies on the formation of Watson–Crick base pairs between
the first two nucleotides of the codon and nucleotides 36 and 35
of the anticodon (Fig. 1A). The interaction between the third
nucleotide of the codon and anticodon nucleotide 34 is not
required to be Watson–Crick. Instead, a G�U wobble pair or a
modified anticodon nucleotide 34 – codon nucleotide pair can
form. The modification of nucleotide 34 enables non-Watson–
Crick interactions with the third nucleotide position of the
mRNA that is accepted as cognate by the ribosome. The
increased flexibility in codons that each tRNA can decode
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allows for the degeneracy of the genetic code where the 61
codons are decoded by fewer tRNAs (10). Therefore, tRNA
modifications at nucleotide 34 have an important and essential
role in the process of decoding.

Nucleotide 34 contains many diverse modifications that are
typically required for accurate translation (11). Two examples
include the uridine-5-oxyacetic acid (cmo5U34) in tRNACGU

Ala

and the 5-methylaminomethyl-2-thiouridine (mnm5s2) U34
modification in tRNAUUU

Lys . The cmo5U34 modification in
tRNACGU

Ala stabilizes its interaction with C6 at the wobble posi-
tion (12). The mnm5s2 U34 modification in tRNAUUU

Lys allows
for pairing with AAA or AAG codons (13, 14). However, a
6-threonylcarbamoyladenosine (t6A) or a 2-methylthio deriva-
tive (ms2t6A) at nucleotide 37 is required for recognition of the
AAG codon (4, 7). Although all of these codon–anticodon pair-
ings should be recognized by the ribosome, the instability of the
anticodon loop of tRNAUUU

Lys and, thus, its interactions with the
AAA codon require both modifications at nucleotides 34 and
37. Nucleotide 37 of the tRNA is located 3� to the anticodon,
adjacent to the first position of the Watson–Crick base pair
between the codon and anticodon nucleotide 36 (Fig. 1A). The
codon–anticodon pairing between tRNAUUU

Lys and its codon is
weak in the absence of the modifications because of the three
A-U base pairs and poor stacking of the UUU anticodon (15).
Both the t6A and ms2t6A modifications contain planar hetero-
cycle moieties that promote cross-strand stacking interactions
between A38 of the tRNA and the first base in the mRNA codon
to stabilize the codon–anticodon pairing (16). Because decod-
ing relies on both the high-affinity binding of cognate tRNAs to
the decoding center and conformational changes of the 30S
known as domain closure (17–19), these modifications influ-
ence both aspects of decoding.

Nucleotide 37 is modified in �70% of all tRNAs and is typi-
cally a purine (20). Among the modified nucleosides, the t6A
and methylated guanosine (m1G) are the most common (11). In
the absence of the modification at nucleotide 37, the anticodon
loops of human tRNALys and yeast tRNAAsp lack structural
rigidity compared with their modified forms (21, 22). Likewise,
the modification at nucleotide 37 in Escherichia coli tRNALys

and tRNAPhe stabilizes the canonical uridine turn (U turn) in
the ASL, which is required for high-affinity binding to the A site
(23–25).

Approximately 75% of bacterial tRNAs containing the
m1G37 modification decode CNN codons (where N indicates
any nucleotide), including Leu, Pro, His, Gln, and Arg codons
(11). The m1G37 modification is present in �95% of all known
sequences of proline tRNAs (26). In bacteria, the essential
methyltransferase TrmD (Trm5 in eukaryotes and archaea)
catalyzes the N1-methylation of G37 in tRNAs. Furthermore,
the m1G37 modification stabilizes the anticodon of the tRNA to
prevent �1 ribosomal frameshift errors, whereas mutations in
trmD also cause growth defects (6, 26 –28). tRNACGG

Pro , the
major isoacceptor for proline, decodes the CCG codon and, in
the absence of the m1G37 modification, causes �1 frameshift-
ing on CCC-N codons. It was previously thought that tRNACGG

Pro

lacking the m1G37 modification would allow for a four-nucle-
otide interaction between the anticodon and the mRNA codon
with G37 interacting with the mRNA codon (29). However,

biochemical and structural studies of ASLCGG
Pro lacking the mod-

ification revealed that this four-nucleotide interaction does not
occur in the A site during decoding (30, 31). Additionally, the
mRNA is positioned in the unshifted or zero frame, indicating
that the frameshift event occurs post-decoding, consistent with
recent structures (32). Interestingly, the absence of the methyl-
ation at G37 causes a distortion of the tRNA on the opposite
side of the anticodon loop at nucleotide U32 (31), leading to the
disruption of interactions with A38. Collectively, these results
suggest a previously unappreciated role of the stabilization of
the 32�38 pairing in tRNACGG

Pro predicted to maintain the correct
mRNA frame (31).

Frameshift suppressor tRNAs derived from tRNAPro contain
an insertion between anticodon loop nucleotides 37 and 38
(referred to as 37.5) and decode CCC-N codons as proline (26,
33–36) (Fig. 1). These mutant tRNAs are genetic suppressors
that perform noncanonical reading of the genetic code to
restore the reading frame (37, 38). In this case, frameshift sup-
pressor tRNASufA6, isolated from Salmonella enterica serovar
Typhimurium, contains an eight-nucleotide anticodon loop by
the addition of G37.5 that causes �1 frameshifting. The struc-
ture of 70S-tRNASufA6 bound to CCC-A/U/C codons at the
decoding center that undergo �1 frameshifting revealed simi-
larities to the structure of 70S–tRNACGG

Pro lacking the m1G37
bound to a near-cognate codon that also promotes �1 frame-
shifting (31). Both tRNAs decode the mRNA in the unshifted or
zero frame, indicating that the shift into the new frame
occurred post-decoding. Moreover, the inserted 37.5 nucleo-
tide and the lack of m1G37 both cause destabilization of nucle-
otides on the opposite side of the anticodon loop that ablates a
conserved, non-Watson–Crick U32�A38 pairing. The 32�38
pairing was restored in both the tRNAPro and tRNASufA6 in the
context of recognizing a cognate, three-nucleotide codon. The
disruption of the 32�38 pairing is particularly notable due to its
universal significance in tuning the ribosomal binding across
tRNAs (39). These results provide insight into how tRNA mod-
ifications and the 32�38 pairing in the anticodon loop together
lead to mRNA frame maintenance.

Here, we tested how the m1G37 modification in tRNACGG
Pro

and tRNASufA6 impacts binding at the decoding center to cog-
nate and slippery �1 codons. Further, we engineer tRNASufA6

Figure 1. Frameshift suppressor tRNASufA6 is a derivative of tRNACGG
Pro . A,

tertiary structure of tRNAPro with its anticodon depicted in cyan, anticodon
loop nucleotide 37 in orange, and the mRNA in gray with the first P-site nucle-
otide denoted as �1; P-site codon nucleotides listed as �1, �2, and �3; and
A-site codon nucleotides listed as �4, �5, and �6. B, secondary structure of
the anticodon stem loop of tRNAPro bound to a cognate CCG codon contain-
ing three Watson–Crick base pairs. C, secondary structure of the anticodon
stem loop of tRNASufA6 bound to a four-nucleotide slippery CCC-U codon and
containing a C6-C34 wobble interaction. tRNASufA6 contains an extra guanos-
ine between positions 37 and 38 (G37.5, blue).
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to contain a conserved U32�A38 pairing to attempt to restore
high-affinity binding to the decoding center. Last, a 3.6 Å X-ray
crystal structure of tRNASufA6 containing this engineered 32�38
pairing bound to the 70S ribosomal A site reveals a reordering
of the 32�38 pair required for decoding.

Results

The m1G37 modification in tRNACGG
Pro stabilizes binding to the A

site

To assess the importance of the m1G37 modification in
tRNACGG

Pro in decoding, we used established filter binding assays
to determine binding kinetics to the A site (39). E. coli 70S ribo-
somes were programmed with mRNA containing a peptidyl-

site (P-site) AUG start codon, an A-site proline CCG codon,
and P-site E. coli tRNAfMet. We used a chemically synthesized
ASL containing 18 nucleotides of tRNACGG

Pro and a m1G37 mod-
ification to ensure that the RNA was completely modified
(Table S1). ASLCGG

Pro with the m1G37 modification binds to a
cognate CCG codon in the A site with an equilibrium dissocia-
tion constant (Kd) of 284 nM (Fig. 2A and Table S2). This affinity
is within the range of reported values for ASLs binding to the A
site (33–500 nM) (9, 40). Removal of the m1G37 modification
(�m1G37) significantly reduced binding, by �6.5-fold (1.8 �M;
Fig. 2A and Table S2).

Although the data could be fit with reasonable confidence-
(Fig. S1 and Table S2), the low maximum binding was concern-

Figure 2. The m1G37 modification in tRNACGG
Pro is important for binding to a cognate CCG codon. A, equilibrium binding of ASLCGG

Pro with (�m1G37) or
without (�m1G37) the modification to a programmed 70S containing an A-site CCG codon. B, schematic of the association and dissociation of tRNA from the
ribosomal A site. C and D, kon (C) and koff (D) rates of ASLCGG

Pro with (�m1G37) or without (�m1G37) the modification to the 70S containing a cognate CCG codon
in the A site. Data are the mean � S.E. (error bars) of at least five independent experiments.

Table 1
kon, koff, and calculated Kd values (best fit � SE) for ASLCGG

Pro , ASLSufA6, and ASLSufA6 A37.5
Data from at least five replicates were fit in GraphPad Prism. Calculated Kd � koff/kon
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ing, if not unprecedented (39 –41). Furthermore, impractical
70S concentrations required to reach maximum binding for
weaker interactions prevented us from attempting to continue
with this approach. Therefore, we instead performed competi-
tion binding assays, which allow for the calculation of the equi-
librium dissociation constant (Kd) based on measured associa-
tion (kon) and dissociation (koff) rates (Fig. 2B) (42, 43). Unlike
measuring the experimental Kd to observe equilibrium binding,
the kon and koff measurements provide information regarding
the influence of the m1G37 modification at each step of the
binding event separately (i.e. the association with and dissocia-
tion from the ribosomal A site). Using this approach, we found
a modest difference in koff between ASLCGG

Pro and ASLCGG
Pro

�m1G37, implying that the modification does not stabilize
tRNA binding to ribosomes. Instead, the m1G37 modification is
important for initial binding, as shown by the 2.6-fold slower
association rate of ASLCGG

Pro �m1G37 (kon � 0.012 �M	1 min	1)
as compared with ASLCGG

Pro (kon � 0.031 �M	1 min	1) to the
CCG A-site codon (Fig. 2 (C and D) and Table 1). These data are
consistent with 70S structures demonstrating conformational
distortion of the anticodon loop in the absence of the m1G37 mod-
ification (31). Furthermore, we found that the calculated dissocia-
tion constant (Kd) of ASLCGG

Pro m1G37 with the cognate CCG
codon is 420 nM (Table 1), whereas ASLCGG

Pro �m1G37 binds to the
A-site CCG codon with a calculated Kd of 1.4 �M, consistent with
directly measured Kd values (Fig. 2A and Table S2).

Recognition of a �1 slippery CCC-U codon is enhanced by the
lack of the m1G37 modification in tRNACGG

Pro

tRNACGG
Pro lacking the m1G37 modification undergoes high

levels of �1 frameshifting on CCC-N codons (26, 28). Previous
70S structures of tRNACGG

Pro �m1G37 bound to A-site CCC-N
codons revealed that the tRNA decodes in the unshifted or zero
frame (31). The three tRNA anticodon nucleotides C34-G35-
G36 form three interactions with the C4-C5-C6 mRNA codon,
respectively (where the first nucleotide of the P-site mRNA
codon is denoted as �1 and the A-site nucleotides are �4, �5,
and �6) (Fig. 1A). The interaction between the anticodon and
the codon is near cognate as defined by a single mismatch
between C34 and C6 (Fig. 3A). To test the impact of the m1G37
modification on the ability of tRNACGG

Pro to form a stable com-
plex with the slippery CCC-U codon, we again measured bind-
ing kinetics. In the context of ASLCGG

Pro binding to a slippery

codon, the m1G37 modification influences binding but in the
opposite manner to binding to the cognate CCG codon (Fig. 2).
ASLCGG

Pro lacking the m1G37 modification associates �4-fold
faster to the slippery codon (kon � 0.017 versus 0.0039 �M	1

min	1); however, lack of the modification only has a moderate
impact on koff (0.009 versus 0.014 min	1) (Fig. 3 (B and C) and
Table 1). Calculated Kd measurements of 3.62 and 0.41 �M for
ASLCGG

Pro and ASLCGG
Pro �m1G37, respectively, indicate a 9-fold

difference in binding affinity. In summary, the stabilizing effect
observed in the cognate CCG context is reversed on a slippery
CCC-U codon; the presence of the m1G37 modification actu-
ally impairs the association of ASLCGG

Pro to the A site pro-
grammed with a slippery CCC-U codon.

Nucleotide insertion in the ASL of tRNASufA6 counteracts the
stabilization exerted by m1G37

Frameshift suppressor tRNASufA6 undergoes �1 frameshift-
ing similar to tRNACGG

Pro lacking the m1G37 modification (26,
31). Both tRNASufA6 and tRNACGG

Pro contain the m1G37 modifi-
cation, and, in the case of tRNASufA6, this modification is
located adjacent to the inserted nucleotide (30) (Fig. 4A). We
next tested the importance of the m1G37 modification in the
context of an eight-nucleotide anticodon loop in ASLSufA6,
using the same kinetic binding assays as previously described.
In contrast to the stabilizing effect observed with the m1G37
modification in ASLCGG

Pro on a cognate CCG codon, ASLSufA6

associates with the CCG codon 10-fold faster in the absence of
the modification (0.053 versus 0.0053 �M	1 min	1) (Fig. 4B and
Table 1). In contrast, the dissociation of ASLSufA6 was essen-
tially unaffected by the absence or presence of the modification
(koff � 0.013 and 0.014 min	1; Fig. 4C). The 10-fold difference
in the calculated Kd between ASLSufA6 containing the m1G37
modification (2.5 �M) and lacking the m1G37 modification
(0.26 �M) is thus reflective of the large changes in the tRNA
association with the A site. One interpretation of these obser-
vations could be that, although the m1G37 modification
imparts a stabilizing effect in anticodon loops of the canonical
seven nucleotides (10, 44), increasing the anticodon loop to
eight nucleotides, as seen in ASLSufA6, ablates any stabilization
from the modification. Additionally, the overall trends of the
ASLSufA6 association rates are similar to the rates seen with
ASLCGG

Pro on the slippery CCC-U codon.

Figure 3. The m1G37 modification prevents tRNACGG
Pro binding to the slippery CCC-U codon. A, secondary structure of ASLCGG

Pro (same color scheme as in Fig.
1) shown bound to its slippery CCC-U codon. B and C, kon (B) and koff (C) rates of ASLCGG

Pro with (�m1G37) or without (�m1G37) the modification to a slippery
CCC-U codon in the ribosomal A site. Data are the mean � S.E. (error bars) of at least five independent experiments.
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Next, we tested the binding of ASLSufA6 to the slippery
CCC-U codon. We found that the influence of the modification
status of ASLSufA6 follows similar trends regardless of whether
ASLSufA6 is recognizing a cognate CCG or a slippery CCC-U
codon (Table 1). The association rate of ASLSufA6 for a slippery
CCC-U codon is 0.0041 �M	1 min	1 as opposed to 0.0053
�M	1 min	1 for binding to the CCG codon in the presence of
m1G37 in the ASL. In the absence of the m1G37 modification,
ASLSufA6 has a 10-fold greater association rate for both the
CCG and slippery CCC-U codons (0.053 and 0.062 �M	1

min	1, respectively). The dissociation of ASLSufA6 from a cog-
nate CCG or a slippery CCC-U codon are all very similar
regardless of the G37 modification status (0.013– 0.019 min	1).
Together, these data indicate that the inserted G37.5 nucleotide
in ASLSufA6 removes the dependence on the m1G37 modifica-
tion required for tight association to the ribosome for the par-
ent tRNACGG

Pro . Further, the G37.5 nucleotide also prevents the
ribosome from distinguishing between cognate and near-cog-
nate slippery codons, as evidenced by the similar calculated Kd
values in the absence of the m1G37 modification (0.26 and 0.31
�M, respectively).

Engineering of the U32�A37.5 pairing in ASLSufA6 allows for
tight association with the A site

Our affinity assays show that frameshift suppressor ASLSufA6

is unable to bind with high affinity to a cognate CCG codon
despite containing the same GGC anticodon as tRNACGG

Pro

(Fig. 1). Therefore, the m1G37 modification in ASLSufA6 has a
very different role in stabilizing the interactions between the
anticodon and codon in contrast to ASLCGG

Pro . Although tRNA-
SufA6 undergoes �1 frameshifting, it does so with low efficien-
cies because of its poor association with the slippery CCC-U
codon (Fig. 3B) (30). These data lead us to question whether it is
the inserted anticodon loop nucleotide alone that causes
reduced binding affinity as seen with other frameshift suppres-
sor ASL-binding studies (40). In the case of both ASLCGG

Pro and
ASLSufA6 that bind poorly to the A site, 70S structures of these
same tRNA-mRNA pairs bound have been solved (Fig. 5, A–C)
(31). In the case of ASLCGG

Pro �m1G37 bound to a cognate CCG
codon, electron density is missing for nucleotide U32, which is
located on the opposite side of the anticodon loop from A38
(Fig. 5B). The destabilization of the ASL is likely due to the
apparent flexibility of the 5� stem, which, in turn, disrupts the

conserved U32�A38 interaction located at the base of the RNA
stem. The 32�38 disruption is noteworthy because the identity
of these nucleotides is universally important in fine-tuning
tRNA affinity and therefore translation fidelity (39, 45). The
same structural phenomenon is also observed in 70S structures
containing ASLSufA6; ASLSufA6 binding to a slippery CCC-U
codon results in local distortion of the 5� stem disrupting the
U32�A38 pairing (Fig. 5C). In both cases, the tRNA-mRNA pair
undergoes �1 frameshifting. Therefore, we postulated that the
frameshift event was directly influenced by the destabilization
of the 32�38 pairing after tRNA selection but before movement
to the P site.

The G37.5 insertion in tRNASufA6 changes the potential base
pairing interaction of U32�A38 to U32�G37.5 (Fig. 5C). In this
context, the U32�G37.5 pairing should render the ribosome
unable to distinguish a cognate from noncognate interaction as
the 32–38 nucleotide identity is directly correlated to the anti-
codon sequence (39, 45). Indeed, ASLSufA6 binds to cognate
CCG and near-cognate (i.e. slippery) CCC-U codon with simi-
lar affinities (calculated Kd of 0.31 and 0.26 �M, respectively,
in the absence of the m1G37 modification; Table 1). We next
tested whether changing G37.5 to A37.5 could restore high-
affinity A-site binding due to the possible formation of a new
U32�A37.5 pair. We found that potentially restoring the
U32�A37.5 base pair does not result in high-affinity binding
to a cognate CCG codon in the absence or presence of the
m1G37 modification (calculated Kd of 7.4 and 15 �M, respec-
tively; Fig. 5 (D and E) and Table 1). Notably, in contrast to
ASLCGG

Pro , ASLSufA6A37.5 displays similar association rates
both in the presence (0.0057 �M	1 min	1) and absence
(0.0046 �M	1 min	1) of m1G37, but koff is reduced �3-fold
(0.09 and 0.034 min	1, respectively) (Fig. 5, D and E).

In binding to the slippery CCC-U codon, ASLSufA6 A37.5 has
a �2-fold higher affinity (calculated Kd � 1.8 �M) than
ASLSufA6 containing G37.5 (calculated Kd � 3.7 �M) in the
presence of the m1G37 modification (Table 1). Removal of
m1G37 results in ASLSufA6 A37.5 binding with high affinity,
similar to ASLSufA6 G37.5 (calculated Kd � 0.31 �M for
ASLSufA6 G37.5 and 0.45 �M for ASLSufA6 A37.5). The Kd for
ASLSufA6 A37.5 �m1G37 binding to a slippery CCC-U codon is
comparable with modified ASLCGG

Pro binding to a cognate CCG
codon (calculated Kd � 0.42 �M). For the ASLSufA6 A37.5

Figure 4. The m1G37 modification in ASLSufA6 impairs binding to a cognate CCG or slippery CCC-U codon. A, secondary structure of ASLSufA6 (same color
scheme as in Fig. 1) with either a cognate or slippery codon–anticodon interaction. B and C, kon (B) and koff (C) rates of ASLSufA6 with (�m1G37) or without
(�m1G37) the modification bound to either the cognate CCG (black) or slippery CCC-U (blue) codon in the ribosomal A site. Data are mean � S.E. (error bars) of
at least five independent experiments.
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�m1G37 binding to a slippery CCC-U codon, both the kon and
koff rates are higher than those of other ASLs (kon � 0.146 �M	1

min	1, koff � 0.06 min	1), implying that the recognition mech-
anism is altered. The increase in affinity implies that in the case
of ASLSufA6 with the restored U32–A37.5, the lack of m1G37
enables high-affinity binding and recognition of the ASL when
the slippery CCC-U codon is presented in the A site. Most
importantly, we demonstrate that by changing the identity of
the base insertion and controlling the modification at position
37 in the anticodon stem loop, we can tune the affinity of the
ASL to the ribosomal A site. This has significant implications
for understanding how the ribosome interacts with rationally
engineered tRNAs.

Engineering the 32�38 pairing in ASLSufA6 to U32�A37.5
reorders the 5� stem of the anticodon loop

To determine whether the engineered ASLSufA6 A37.5
�m1G37 does indeed reorder the ASL as suggested from the
binding kinetics, we solved a 3.6 Å resolution X-ray crystal
structure of ASLSufA6 A37.5 �m1G37 bound to the Thermus
thermophilus 70S ribosome (Fig. 5F and Table 2). The ASL and
mRNA density are well-ordered and unambiguously demon-

strate a change in the anticodon loop (Fig. 5F) as compared with
other ASLSufA6 structures bound to the ribosome (Fig. 5, A–C)
(31). The ASLSufA6 A37.5 �m1G37 has good density for U32 in
contrast to the previous structures that showed distortion of
the 5� stem of the ASL (Fig. 5, B and C). The phosphate back-
bone of nucleotide A37.5 shifts by 2.8 Å as compared with WT
ASLCGG

Pro bound to its cognate CCG codon and by 6.2 Å when
compared with ASLSufA6 with the G37.5 (Fig. 5F, S3A). This
movement places A37.5 across from U32, allowing the possible
formation of a single hydrogen bond similar to the 32�38 orien-
tation observed in other tRNAs (Fig. 5A, S2) (31, 46, 47). Over-
all, the A37.5 insertion in ASLSufA6 seems to orient the ASL to a
conformation more similar to that of ASLCGG

Pro than that of WT
ASLSufA6 (Fig. S3, B and C). 16S rRNA nucleotides A1492 and
A1493 flip from their internal position in helix 44, and G530 is
positioned close to A1492, demonstrating recognition by the
ribosome (Fig. S4).

Discussion

Modification of tRNAs adds an important layer of regulation
during translation. These modifications are so functionally
important that more genes are devoted to tRNA modification

Figure 5. Reordering of the 32–38 pairing allows for high affinity binding of ASLSufA6 to a slippery CCC-U codon. A, 2Fo 	 Fc electron density maps from
a structure containing the 70S ribosome with ASLCGG

Pro decoding a cognate CCG codon in the A site (PDB code 4LSK; color scheme is the same as in Fig. 1); B, 70S
ribosome with ASLCGG

Pro �m1G37 decoding a cognate CCG codon (PDB code 4P70); C, 70S ribosome with ASLSufA6 decoding a slippery CCC-U codon (PDB code
4L47). These structures demonstrate that the m1G37 modification stabilizes the U32�A38 interaction in ASLCGG

Pro on a cognate CCG codon (A) whereas the lack
of the m1G37 modification results in disorder of the 3� region of ASLCGG

Pro (B). A similar disordering is seen when ASLSufA6 containing an inserted nucleotide in its
anticodon loop (G37.5) decodes a slippery CCC-U codon (C). D and E, kon (D) and koff (E) rates of ASLSufA6 with a mutated A37.5 with (�m1G37) or without
(�m1G37) the modification bound to either the cognate CCG (black) or slippery CCC-U (green) codon. Data are the mean � S.E. (error bars) of at least five
independent experiments. F, 2Fo 	 Fc electron density maps from a structure containing the 70S ribosome with ASLSufA6 A37.5 bound to an A-site slippery
CCC-U codon. Mutation of G37.5 to A37.5 reorders the 3� stem of the ASL, specifically nucleotides 31 and 32. 2Fo 	 Fc electron density maps are contoured at
1.5�.
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pathways than to the expression of tRNAs themselves (48).
Modifications in the ASLs of tRNAs are critical, given that only
7 of the 61 sense codons are decoded by tRNAs that lack mod-
ifications at nucleotide 34 or 37 in E. coli (49, 50). In this work,
we determine that the m1G37 modification in ASLCGG

Pro is
required for high-affinity binding to a cognate CCG codon in
the decoding center (Fig. 2). The absence of the modification
results in low-affinity binding, and specifically, the association
(kon) is reduced almost 3-fold, whereas koff is unaffected (Fig. 2).
These results indicate that the m1G37 modification in tRNACGG

Pro

provides stability in association with the decoding center
rather than causing A-site drop-off. Consistent with these
data are our previous structural studies that showed desta-
bilization of the anticodon loop when ASLCGG

Pro lacks the
m1G37 modification and interacts with a cognate CCG
codon (31) (Fig. 5B).

Both tRNACGG
Pro and tRNAGGG

Pro isoacceptors lacking the
m1G37 modification undergo �1 frameshifting on CCC-N
codons (26, 29, 51). Although ASLCGG

Pro containing the m1G37
modification significantly impairs binding to a slippery CCC-U
codon (3.62 �M; Fig. 3A), its removal causes a �4-fold enhance-
ment in ASLCGG

Pro association with the slippery codon (Fig. 3B).
This association results in tighter binding (calculated Kd of 0.41
�M) that is comparable with binding of WT ASLCGG

Pro to a cognate
CCG codon (0.42 �M). These data suggest that the additional sta-
bility that the m1G37 modification imparts in binding to a cognate
CCG codon is lost in the context of a non-Watson–Crick C34-C4
pair at the third or wobble position. Collectively, these results show
that the m1G37 modification in ASLCGG

Pro stabilizes high-affinity
interactions in the cognate case but prevents recognition of slip-
pery codons that would result in �1 frameshifting.

tRNAs containing expanded anticodon stem loops can cause
“slipping” on mRNA codons, resulting in frameshifts (37). An
extra nucleotide insertion in the anticodon loop of tRNACGG

Pro

was identified in a frameshift suppressor tRNA (named
tRNASufA6) that reverts a �1 frameshift. Primer extension anal-

yses revealed that tRNASufA6 was also modified at nucleotide
37, similar to all three tRNAPro isoacceptors (30, 52), but the
extent of modification was not determined. It is unclear what
role, if any, the m1G37 modification has in tRNASufA6-medi-
ated �1 frameshifting. We find that the presence of the m1G37
modification renders ASLSufA6 unable to bind to both cognate
CCG and slippery CCC-U codons (Fig. 4B). In contrast,
ASLSufA6 lacking m1G37 binds with high affinity to either a
cognate CCG or a slippery CCC-U codon. These data support
the notion that the m1G37 modification and the inserted G37.5
nucleotide likely stabilize the anticodon loop in similar ways. In
support of the functional similarities of m1G37 and G37.5,
structures of tRNACGG

Pro �m1G37 or tRNASufA6 decoding
codons that allow for �1 frameshifting reveal structural simi-
larities. The 3� stem of the ASL, in particular nucleotides 30 –32
on the opposite side of the G37.5/G37, is conformationally
dynamic in both structures, strongly suggesting that �1 frame-
shifts induced by these two tRNAs occur by a similar mecha-
nism (Fig. 5, B and C) (31).

In tRNACGG
Pro , nucleotide U32 normally forms a single hydro-

gen bond with A38 and thus is not a Watson–Crick base pair
(Fig. 5A and Fig. S2). The nucleotide identity of the 32�38 pair-
ing in all tRNAs is inversely correlated to the strength of the
codon–anticodon interaction (39, 41, 45). For example, the
anticodon of E. coli tRNAGGC

Ala is considered strong because of
the three GC pairs between the codon and the anticodon.
Therefore, in this strong case, the 32�38 pairing needs to be
correspondingly weak to counterbalance the strength of the
codon–anticodon. Changing the 32�38 pairing in tRNAGGC

Ala

from a weak, conserved U32�A38 pair to a strong pair, such as
C32�A38, prevents the ribosome from being able to distinguish-
ing correct from incorrect tRNA-mRNA pairs (41, 53). In the
context of tRNASufA6, the inserted G37.5 displaces A38, pre-
venting a U32�A38 pairing (31). Binding of ASLSufA6 to a cog-
nate CCG or a �1 slippery CCC-U codon is extremely weak as
indicated by both the kon and koff rates (Fig. 4). We attempted to
restore the WT U32�A38 found in tRNACGG

Pro by changing G37.5
in tRNASufA6 to an adenosine. ASLSufA6 A37.5 binds poorly to a
CCG codon regardless of the m1G37 modification status (Fig.
5D). Interestingly, the A37.5 mutant bound tightly to the slip-
pery CCC-U codon, but only in the absence of the m1G37 mod-
ification, similar to ASLSufA6. An X-ray crystal structure of the
ribosome with an A-site ASLSufA6 A37.5 (lacking the m1G37
modification) bound to a slippery CCC-U codon reveals a reor-
dering of the 3� stem such that U32 regains rigidity as assessed
by its electron density (Fig. 5F). We predict that this engineered
tRNASufA6 does not undergo �1 frameshifting because of
ordering of the ASL, but further studies are required to test this.

The studies here demonstrate that the m1G37 modification
of tRNAPro influences recognition of both cognate and near-
cognate, slippery codons. tRNACGG

Pro lacking the m1G37 modifi-
cation undergoes �1 frameshifting, but our previous struc-
tures, along with other structures of extended ASLs that
frameshift, show that the shift into the new frame does not
occur in the decoding center (31, 54, 55). At what stage of elon-
gation does tRNACGG

Pro lacking the m1G37 modification cause
a �1 frameshift? Kinetic analyses of tRNAGGG

Pro movement
through the ribosome reveal that the shift can occur at two

Table 2
Data collection and refinement statistics
Values for the highest-resolution shell are shown in parentheses.

ASLSufA6 A37.5�m1G37

Data collection
Space group P212121
Wavelength (Å) 1.00000
Cell dimensions

a, b, c (Å) 208.91, 445.91, 617.31
�, �, � (degrees) 90, 90, 90

Resolution (Å) 49.17–3.64 (3.77–3.64)
Rpim (%) 11.5 (62.8)
I/�I 4.77 (1.14)
Completeness (%) 93.31 (87.06)
Redundancy 5.0 (4.2)
CC1/2 0.986 (0.395)

Refinement
Reflections 596,260 (55,238)
Rwork/Rfree (%) 21.5/26.2
No. of atoms 291,830
B-factors (Å2)

Overall 150.84
Macromolecule 151.28
Ligand/ion 94.30

Root mean square deviations
Bond lengths (Å) 0.006
Bond angles (degrees) 0.89
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distinct stages: a fast mechanism during translocation of the
tRNA-mRNA pairs to the P site and a slower mechanism when
tRNAGGG

Pro is stalled in the P site while waiting for A-site tRNA
delivery (28). A recent structure of ASLSufA6 bound to a �1
codon in the P site demonstrates the ASL alone is sufficient for
the �1 mRNA frameshift consistent with the slow mechanism
presented above (32). Another possibility is what is also
observed in the structure of ASLCGG

Pro lacking the m1G37 modi-
fication in the A site (31): the 3� anticodon stem is destabilized,
which, in turn, may influence how elongation factor G (EF-G)
recognizes the tRNA in the A site to initiate translocation. This
second possibility is consistent with the fast mechanism as
observed in the kinetic analyses.

Although the data presented focus on the impact of the
m1G37 modification on decoding of single proline codons,
polyproline sequences in protein-coding genes are prone to �1
frameshifts (56 –60). The unique nature of proline where it is
both a poor donor and acceptor during the peptidyltransferase
reaction results in a slow rate of peptide bond formation.
Therefore, consecutive prolines cause ribosome stalling (60,
61). Additionally, the nucleotide repeats in the proline codons
present the same codon–anticodon interactions regardless of
whether the tRNA binds in the zero or �1 frame (62). These
events can collectively lead to the shifty nature of tRNACGG

Pro but
are counterbalanced by the action of elongation factor P (EF-P)
that helps to stabilize peptidyl-tRNAPro located in the P site of
the ribosome (28, 60, 61, 63). EF-P binds in the exit site of the
ribosome on both the small and large ribosomal subunits and
abuts against P-site peptidyl-tRNAPro (63). A modified Lys res-
idue of EF-P protrudes into the 50S P site and stabilizes pepti-
dyl-tRNAPro to help resume protein synthesis stalled at a
stretch of polyprolines (60, 64, 65). Cryo-EM structures of ribo-
somes bound to peptidyl-tRNAPro reveal the flexibility of the
peptidyl-tRNAPro in the absence of EF-P. EF-P binding orders
peptidyl-tRNAPro to facilitate efficient peptide bond formation of
the cyclic proline moiety (63). In addition to this function, EF-P
also can suppress �1 frameshifts, suggesting a previously unap-
preciated role in helping to maintain the mRNA frame (28). Con-
served EF-P residues that interact with anticodon stem nucleo-
tides 41 and 42 are essential for function (63). In the absence of the
m1G37 modification, the interaction between EF-P and tRNAPro

may be destabilized due to the flexibility of the 3� stem (31). The
interplay between the m1G37 modification in tRNAPro and EF-P
suggests that this elongation factor has synergistic roles in transla-
tional fidelity dependent on tRNA metabolism.

Experimental procedures

Ribosome purification

E. coli 70S ribosomes were purified as described previously
(66). E. coli MRE600 cells were grown to an A600 of �0.7 in
Luria broth (LB) medium at 37 °C and then cooled on ice for 20
min. All centrifugation steps were performed at 4 °C. Cells were
pelleted by centrifugation and washed with buffer 1 (10 mM

HEPES-KOH, pH 7.6, 10 mM MgCl2, 1 M NH4Cl, 6 mM �-mer-
captoethanol (�-Me)) twice and then resuspended in buffer 2
(10 mM HEPES-KOH, pH 7.6, 10 mM MgCl2, 100 mM NH4Cl, 6
mM �-Me). Cells were lysed using an EmulsiFlex-C5 high-pres-

sure homogenizer (Avestin), and cell debris was removed by cen-
trifuging at 13,000 
 g for 15 min. The lysate was further centri-
fuged at 27,000 
 g for 30 min to obtain the S30 fraction.
Ribosomes were pelleted by centrifuging at 42,000 
 g for 17 h.
The pellets were resuspended in buffer 2, and ribosomes were fur-
ther purified over a 10–40% sucrose gradient in buffer 2 at
70,000 
 g for 12 h. 70S ribosomes were separated from polysomes
and subunits using a Brandel gradient fractionator. The 70S frac-
tions were pooled, pelleted, resuspended in buffer 2, and stored at
	80 °C.

70S complex formation

ASLs and mRNAs were chemically synthesized (Integrated
DNA Technologies), and purified E. coli tRNAfMet was pur-
chased from Chemical Block (Table S1). mRNAs contained
either an CCG or CCC-U in the A site. The E. coli 70S ribosome
complex was formed by incubation with a 2-fold molar excess
of mRNA for 5 min followed by a 2-fold molar excess of
tRNAfMet for 30 min at 37 °C. A-site ASLs were 5�-labeled with
[�-32P]ATP (PerkinElmer Life Sciences) using T4 PNK enzyme
(New England Biolabs).

Kinetic binding assays

A modified 96-well Bio-Rad dot-blot apparatus with two
membranes was used to study binding kinetics of tRNAs to
ribosomes (67). An upper nitrocellulose membrane and a lower
nylon membrane (Amersham Biosciences Hybond-N�, GE
Healthcare) were pre-equilibrated in cold buffer 3 (5 mM

HEPES-KOH, pH 7.5, 50 mM KCl, 10 mM NH4Cl, 10 mM

Mg(CH3COO)2, 6 mM �-Me). All binding experiments were
performed in buffer 3. Nonspecific binding was controlled for
by having a [32P]ASL-only sample with each experiment. Reac-
tions were filtered by vacuum and immediately washed using
100 �l of cold buffer 3. After incubations, membranes were dried
and exposed to a PhosphorImager screen (GE Healthcare) and
imaged on a Typhoon FLA 7000. Quantification was performed
using ImageQuantTL software and analyzed using GraphPad
Prism. The fraction of A-site ASL bound was calculated as the ratio
between nitrocellulose counts and the total counts on both mem-
branes after correcting for nonspecific binding.

Measuring Kd values

Serial dilutions of the ribosome complex (70S, mRNA, P-site
tRNAfMet) were performed to generate a range of 70S concen-
trations from 0.98 nM to 1 �M. [32P]ASL was added and incu-
bated for 3 h at 25 °C. Reaction volumes of 10 �l were applied to
the filters, washed, and then quantified as described above. The
ASL fraction bound was fit using a one-site–specific binding
equation in GraphPad Prism as described previously (fraction
bound � (Bmax 
 [70S])/(Kd � [70S]) (39, 68).

Measuring kon values

Association with the 70S A site was measured as described
previously (42, 43). Briefly, 15 �l of 4.5 nM 32P-labeled ASL was
added to 15 �l of increasing concentrations of 70S complex
programmed with mRNA and tRNAfMet. Three-�l aliquots
were removed at different times (0.5, 1, 2, 3, 4, 5, 6, and 7 min),
immediately filtered, and washed with 100 �l of cold buffer 3.
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Initial association rates were obtained using different concen-
trations of the 70S complex (final concentrations of 12.5, 25, 50,
100, and 200 nM). kon was derived as the slope of the linear
regression performed on the initial rates versus [70S] plot.

Measuring koff values

Dissociation of the ASL from the 70S A site was initiated by a
1:100 dilution of the equilibrium binding reaction (1 �M 70S, 3
�M mRNA, 5 �M tRNAfMet, 0.05 �M [32P]ASL) in buffer 3 con-
taining 0.3 �M unlabeled ASL. At 5-min intervals, 10-�l ali-
quots of the reaction were removed, filtered, and washed. The ASL
fraction bound was normalized to t � 0. The natural log of the
normalized fraction bound was fitted with a linear regression ver-
sus time, and koff was derived as the negative of the slope.

Crystallization, X-ray data collection, and structural
determination

Purification of T. thermophilus 70S ribosomes, formation of
complexes with mRNA and tRNAs, and initial screening con-
ditions followed previously established protocols (46, 68). Two
�l of the ribosome complex (4.4 �M 70S, 8.8 �M mRNA, 11 �M

tRNAfMet, 22 �M ASLSufA6, 11 �M CC-puromycin (Dharma-
con), and 2.8 �M deoxy-BigCHAP (Hampton Research)) were
mixed with 2.4 �l of reservoir condition (0.1 M Tris-HOAc, pH
7.0, 0.2 M KSCN, 4.5–5.5% (w/v) PEG 20K, 4.5–5.5% (w/v) PEG
550 MME, 10 mM Mg(OAc)2). Crystals were grown by sitting
drop at 20 °C in 2 weeks. Crystals were cryoprotected using
increasing amounts of PEG 550 MME to a final concentration
of 35%, with the final solution containing 22 �M ASLSufA6 and
11 �M CC-puromycin. The crystals were screened at the SER-
CAT 22-ID and NE-CAT 24ID-C/E beamlines, and data sets were
collected at the SER-CAT 22-ID beamline, all at the Advanced
Photon Source, Argonne National Laboratory (Table 2). Data sets
were integrated and scaled using XDS (69), and the structure was
solved by molecular replacement using 70S coordinates from PDB
entry 4Y4O. Crystallographic refinements were performed with
PHENIX (70) followed by manual model building in Coot (71).
Figures were generated in PyMOL (72).
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