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Mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) are
essential components of the mitochondrial translation machin-
ery. The correlation of mitochondrial disorders with mutations
in these enzymes has raised the interest of the scientific commu-
nity over the past several years. Most surprising has been
the wide-ranging presentation of clinical manifestations in
patients with mt-aaRS mutations, despite the enzymes’ com-
mon biochemical role. Even among cases where a common
physiological system is affected, phenotypes, severity, and
age of onset varies depending on which mt-aaRS is mutated.
Here, we review work done thus far and propose a categori-
zation of diseases based on tissue specificity that highlights
emerging patterns. We further discuss multiple in vitro and
in cellulo efforts to characterize the behavior of WT and
mutant mt-aaRSs that have shaped hypotheses about the
molecular causes of these pathologies. Much remains to do in
order to complete our understanding of these proteins. We
expect that futher work is likely to result in the discovery of
new roles for the mt-aaRSs in addition to their fundamental
function in mitochondrial translation, informing the devel-
opment of treatment strategies and diagnoses.

Translation in mammalian mitochondria is unusual in many
ways compared with the process in the cytosol and even com-
pared with mitochondrial translation in simpler eukaryotes.
The organelles, thought to be descendants of alphaproteobac-
teria, retain a DNA genome distinct from the eukaryotic cells
(1), but extant mitochondrial genomes, especially in animals,
are considerably smaller than those of bacteria. Mammalian
mitochondrial genomes contain just 13 protein-encoding
genes, all of which are components of the oxidative phosphor-
ylation pathway (2). Production of even this small number of

proteins requires a distinct mitochondrial translation appara-
tus (Fig. 1). Mammalian mitochondrial genomes encode all of
the RNA components of this machinery: 22 mitochondrial
tRNAs and two mitochondrial ribosomal RNAs. In contrast, all
of the protein components, including tRNA maturation and
modification enzymes, initiation and elongation factors, ribo-
somal proteins, and aminoacyl-tRNA synthetases, are encoded
by the nuclear genome, translated in the cytosol, and then
imported into the mitochondria (3, 4).

Some of the peculiarities of mitochondrial translation derive
from the high mutation rate in the oxidizing mitochondrial
environment and the correspondingly high mutation rate of
mitochondrial DNA. For example, mammalian mitochondrial
ribosomal RNAs are considerably truncated relative to their
cytosolic homologs. Apparently to compensate for this change,
the mitochondrial ribosomes contain increased numbers of
proteins, resulting in a 2:1 protein/RNA ratio, inverted from the
ratio typically found in bacteria (5–7). Mammalian mitochon-
drial tRNAs are also truncated and lack many conserved fea-
tures typical of tRNAs in the rest of evolution (Fig. 2). In some
cases, one of the arms of the classic cloverleaf secondary struc-
ture is lost, most frequently in mitochondrial tRNASer (8, 9). All
mammalian mitochondrial RNAs are A:U-rich, probably as
a consequence of the relative ease of oxidation of guanine
nucleotides.

Given the mitochondria’s central role in ATP synthesis via
oxidative phosphorylation, it is not surprising that errors in
mitochondrial translation have been linked with human disease
(10 –12). Mutations within mitochondrially encoded molecules
of the translational machinery have been identified in patients
since the late 1980s, leading to the presently recognized con-
cept of “mitochondrial translation disorders,” which include a
large spectrum of clinical presentations, particularly muscular
and neurological disorders (13–16). Initial work focused on
mutations within the mtDNA, in either the rRNAs, the 22 mito-
chondrial tRNAs, or the 13 mRNAs. Although some correla-
tions between particular mutations and distinct disease states
were made (17, 18), tissue specificity and differences in symp-
toms and time of onset are most readily explained by hetero-
plasmy, nonhomogeneous mitochondrial populations in cells
and tissues. The penetrance of a particular mutation within the
multiple copies of mtDNA in any cell can vary from tissue to
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tissue in a random manner, resulting in idiosyncratic pheno-
types (14).

More recently, it has been recognized that mutations in
nuclearly-encoded mitochondrial proteins involved in transla-
tion are also correlated with mitochondrial diseases. In this
review, we focus on the aminoacyl-tRNA synthetases (aaRS),3
which play the crucial role of specifically aminoacylating mito-
chondrial tRNAs with their cognate amino acid. In humans,
mitochondria-specific aaRSs exist for 17 of the 20 proteogenic
amino acids (19). Genes for these proteins are generally desig-
nated as ARS2; for example, the mitochondrial alanyl-tRNA
synthetase is designated AARS2. Exceptions are the glycyl-
tRNA synthetase gene (GARS), which uses an alternate start
sequence to encode both the cytosolic and mitochondrial
enzymes (20, 21), and the lysyl-tRNA synthetase gene (KARS),
which uses alternate splicing to generate distinct mRNAs
(22). In both cases, the cytosolic and mitochondrial enzymes
differ mainly in the presence or absence of an N-terminal mito-
chondrial-targeting sequence. Mitochondrial Gln-tRNAGln is

formed by transamidation of Glu-tRNAGln by a tRNA-depen-
dent amidotransferase (23).

Pathogenic mutations in each of the 19 nuclear genes coding
for a mitochondrial aaRS have been reported (24 –29). Defects
in the exclusively mitochondrial enzymes all have either homo-
zygous or compound heterozygous presentations, giving rise to
autosomal recessive disorders. Mutations in the dual-localized
GARS and KARS genes have been reported with both recessive
and dominant inheritance, giving rise to different clinical pre-
sentations. Autosomal dominant mutations in GARS and KARS
affect the peripheral nervous system and are correlated with
Charcot-Marie-Tooth disease type 2 (CMT2) (30). Recessive
mutations in these genes, however, have been reported to pro-
duce phenotypes similar to those reported by mutations in
exclusively mt-aaRSs (31, 32). Information about all reported path-
ogenic mutations in human mt-aaRSs has been compiled in a
knowledge base we recently developed (33). The entry page of the
website illustrates the apparently random distribution of the dis-
ease-related mutations within the different human mt-aaRSs.

Despite the fact that genes for mitochondrial aaRSs are
nuclearly encoded and ubiquitously expressed, mutations give
rise to a variety of distinct phenotypes (24 –29). With a few
exceptions detailed below, all mutations in a particular synthe-

3 The abbreviations used are: aaRS, aminoacyl-tRNA synthetase; mt-aaRS,
mitochondrial aminoacyl-tRNA synthetase; CNS, central nervous system;
PDB, Protein Data Bank; LBSL, leukoencephalopathy with brainstem and
spinal cord involvement and lactate elevation.

Figure 1. Schematic representation of a mitochondrion. Mitochondria host numerous metabolic pathways. They are double-membrane organelles, host-
ing a distinct genome (mtDNA) and translation machinery, dedicated to the synthesis of 13 proteins, all subunits of the respiratory chain complexes (with
representatives in all complexes except complex II). All additional proteins required for mtDNA maintenance and expression are encoded in the nucleus,
synthesized in the cytosol, and subsequently imported into the mitochondria. This is, for instance, the case for proteins for the mito-ribosome and for
mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs). Represented structures are the large (PBD code 4V19) and small (PBD code 5AJ3) subunits of the Sus
scrofa mito-ribosome and the human mt-PheRS in complex with tRNA (PBD code 3TUP), mt-TyRS (PDB code 2PID), and mt-AspRS (PDB code 4AH6).
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tase result in similar disease states. These effects are manifested
mostly in the central nervous system but also in a variety of
other tissues. The available data present a number of surprising

contrasts that complicate simple hypotheses based on the link-
age between defects in mitochondrial translation and a reduc-
tion in cellular ATP production. Tissue-specific developmental

Figure 2. Canonical tRNAs versus human mitochondrial tRNAs. A, secondary and tertiary structures of canonical tRNAs. The different structural domains are
named and colored. The network of tertiary interactions at the origin of the three-dimensional folding is represented by black dashed lines. The nucleotides
indicated in black are those conserved in all tRNAs. Y, pyrimidine; R, purine; A, adenosine; C, cytosine; G, guanosine; T, thymine; U, uridine; and �, pseudouridine.
Left, cloverleaf consensus secondary structure of canonical tRNAs; middle, two-dimensional representation of tertiary refolding of tRNA; right, crystallographic
structure of S. cerevisiae tRNAPhe (PBD code 1EHZ). B, schematic representations of cloverleaf secondary structures (upper part) and 3D structures (lower part) of
human mt-tRNAs. Schematic representations of the general structure of 20 tRNAs (left), of tRNASer(AGY) missing the D-arm (middle), and of tRNASer(UCN)

displaying a shorter connector between the acceptor stem and the D-arm (right). Dashed lines correspond to nonstrictly conserved triple interactions. Gray
zones highlight domains where variations in the number and type of interactions differ from tRNA to tRNA. This figure is adapted from Ref. 9.
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differences in energy requirements, connections with pathways
for mitochondrial homeostasis associated with differences in
intraorganellar localization, and alternative functions of the
mitochondrial aaRS proteins are among the hypotheses cur-
rently under investigation.

Diversity of clinical manifestations

Disorders correlated with mutations in mitochondrial
aminoacyl-tRNA synthetases span a broad range, including dis-
eases characterized by defined symptoms and/or neuroradio-
logical features (e.g. LBSL), isolated clinical signs (e.g. nonsyn-
dromic hearing loss) to described syndromes (e.g. Perrault
syndrome). Since the first description of a correlation between
mutations in mt-aaRS– encoding gene and a human disease
(34), the number of reported cases has increased steadily (33).
In this section, we categorize mt-aaRSs according to the
affected tissues and organ systems, including some details
described in the medical reports that introduced these muta-
tions into the literature. This physiological classification is
intended to highlight similarities and differences in the patho-
logical phenotypes that are not easily explained at a molecular
level.

Four main groups emerge (Table 1 and Fig. 3): mt-aaRSs with
mutations leading to clinical manifestations (i) exclusively in
the central nervous system (CNS); (ii) in the CNS and another
system; (iii) in the CNS or another system, and (iv) a system
other than the CNS.

The first group, containing mt-aaRSs with mutations leading
to clinical manifestations in exclusively the CNS, is further sub-
divided into those causing mainly epileptic encephalopathies
and those causing leukoencephalopathies. Epileptic encepha-
lopathies are observed in patients with mutations in CARS2,
FARS2, NARS2, PARS2, RARS2, and TARS2. Epilepsy, which
can present either as myoclonus, spastic, or focal seizures, is the
common clinical manifestation. Leukoencephalopathies are
observed in patients with mutations in DARS2, EARS2, MARS2,
and WARS2. Changes in the white matter are the main hall-
mark in the diagnosis of the disease. These mutations manifest
in patients mostly as ataxia, predominantly in the lower limbs.
The appearance of these neurological clinical symptoms may be
due to demyelination.

The second group, where defects are observed in both the
CNS and another organ system, includes some patients with
AARS2 mutations (those leading to leukodystrophy) and all
reported patients with mutations in HARS2, LARS2, IARS2, and
VARS2. Although this group is clinically distinct, it has been
suggested that secondary symptoms are the result of a primary
defect in the CNS (28). For example, the ovarian failures in
Perrault syndrome (correlated with mutations in HARS2 and
LARS2) and the ovarian failure in female patients with AARS2
mutations correlated with leukodystrophy are likely induced by
a primary dysfunction in the pituitary gland, the hormonal cen-
ter responsible for the correct ovarian function. In the case of
patients with mutations in IARS2, defects in growth hormone
production (by the pituitary gland at the level of the CNS) may
cause injuries in the musculoskeletal system, explaining the
skeletal dysplasia syndrome (35). In VARS2-related patients,
cardiomyopathy is proposed to result from an encephalopathy

that primarily produces hypotony (36). We suggest that this
hypotonia causes stronger heart contractions, which is the
underlying cause of the hypertrophic cardiomyopathy.

The third group, where mutations lead to effects in either the
CNS or another system, includes only SARS2 mutations. Some
of the SARS2-related patients have the HUPRA syndrome
(hyperuricemia, pulmonary hypertension, renal failure, and
alkalosis), with injuries in the kidneys that in most cases lead to
renal failure (37). Other SARS2-related patients manifest with
neurological clinical symptoms (not shown in the Fig. 3 because
the reported mutations are splicing defects for all those
patients), which lead to progressive spastic paresis (increased
muscle tone) (38). Interestingly, the two sub-groups of patients
do not present overlapping clinical symptoms and have distinct
sets of mutations.

The last group includes YARS2-related patients and some of
the AARS2-related patients, with presentations of myopathy
and cardiomyopathy, respectively. None of these patients have
clinical manifestations in the CNS. Again, cardiomyopathy-re-
lated mutations of mt-AlaRS are distinct from the leukodystro-
phy-related mutations.

As mentioned above, heterogeneity exists within these four
groups. For example, among the mutations that affect the CNS,
there is a strong correlation between early onset of disease
and the severity of the clinical symptoms, illustrated by the
contrast between DARS2-associated leukoencephalopathies,
which present as LBSL disease, and RARS2-associated epileptic
encephalopathy, which presents as Pontocerebellar hypoplasia
type 6 (PCH6). LBSL patients usually develop movement prob-
lems during childhood or adolescence, but in some cases, the
clinical manifestations do not appear until adulthood. Symp-
toms presented by individuals with LBSL are mainly spasticity
(muscular stiffness) and ataxia (difficulty with coordinating
movements). These conditions tend to affect the legs more than
the arms. In the most severely affected patients, the use of
wheelchair assistance is required (39). In contrast, PCH6
patients manifest the symptoms soon after birth with, in most
cases, intractable seizures and recurrent apnea (40). Other neu-
rological signs include generalized hypotonia, microcephaly
(unusually small head size, caused by impaired growth of some
parts of the brain), lethargy, poor suckling, and poor feeding.
The most heavily affected patients live only into infancy or
childhood, and they never achieve developmental milestones
(41). Patients with RARS2 mutations usually manifest symp-
toms soon after birth, with severe seizures that tend to evolve
into epileptic status. In contrast, the later the symptoms
become present in LBSL patients, the milder the symptoms (e.g.
weakness in the lower limbs).

This relationship between early onset and severity of symp-
toms is observed in other cases as well. In patients with YARS2
mutations that present mitochondrial myopathy, lactic acido-
sis, and sideroblastic anemia (MLASA) mortality was usually a
consequence in patients with early onset. However, some
exceptions have been noted; for instance, one YARS2-related
patient with early onset showed spontaneous improved muscle
strength and stamina at the age of 17 years and no longer
required blood transfusions (which had previously been given
every 6 weeks) (42).

JBC REVIEWS: Human mt-aaRSs and diseases

5312 J. Biol. Chem. (2019) 294(14) 5309 –5320



TABLE 1
Classification of the pathologies produced by mutations on human mitochondrial aminoacyl-tRNA synthetases
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Although our categorization is meant to point out distinct
classes of mt-aaRS–related disease, it remains unclear whether
the enzymes belonging to each of the groups described above
have similar cellular properties that explain similarities in clin-
ical phenotypes. Indeed, our categorization may need to mod-
ified as further ARS2-related patients are identified.

In vitro characterization of mitochondrial aaRSs

The unique features of the mammalian mitochondrial ami-
noacyl-tRNA synthetases, not least their ability to recognize
their unusual tRNA substrates, have made them the subject of
structural and functional studies since the late 1990s (43).
Technical challenges in handling these proteins, including
identification and removal of the N-terminal mitochondrial
targeting tags (44, 45), needed to be overcome (46), but crystal
structures have now been solved of human mt-AspRS (47), mt-
PheRS (48, 49), mt-TrpRS (PDB code 5EKD), and mt-TyrRS
(50), as well as the closely related Bos taurus mt-SerRS (51, 52).
Other enzymes have also been heterologously overexpressed,

purified, and characterized (including mt-AlaRS (53); mt-
HisRS (54); mt-LeuRS (55); and mt-ThrRS (56)). Several com-
mon trends have been noted. These include a relatively high
level of promiscuity with respect to tRNA recognition, corre-
lated with a general reduction in the number and effect of tRNA
identity elements (19, 56 – 60). A similar promiscuity with
respect to amino acid substrates is also observed (61). In some
human mitochondrial synthetases, the editing domains, which
correct misacylated or misactivated amino acids, are either
impaired (in the case of e.g. mt-LeuRS (62)) or missing (in the
case of e.g. PheRS (63)). In others, however, robust editing activ-
ity is retained (e.g. the mt-AlaRS (53) and the mt-ThrRS (56)). In
some cases, significant structural differences between the cyto-
plasmic and mitochondrial homologs are observed. The most
dramatic example is PheRS, which is an �2�2 tetramer in the
cytosol and across most of evolution, but a monomer in mito-
chondria (43). Another peculiar example is mt-SerRS. Mam-
mals possess two mt-tRNASer isoacceptors, one of which lacks
the D stem-loop. Mammalian mt-SerRS has acquired addi-

Figure 3. Classification of the mt-aaRSs according to the clinical manifestations identified in mt-aaRS–related patients. The mt-aaRSs are shown as
graphical representations of their modular organizations. Putative mitochondrial targeting sequences, catalytic domains, and anticodon-binding domains are
represented by purple, red, and dark blue bars, respectively. Other system-specific domains are also colored. Data are taken from misynpat.org (33). Disease-
associated mutations are represented by colored lollipops, corresponding to homozygous (orange) and compound heterozygous (green) recessive disease-
associated missense and nonsense (black) mutations.

JBC REVIEWS: Human mt-aaRSs and diseases

5314 J. Biol. Chem. (2019) 294(14) 5309 –5320



tional N- and C-terminal extensions (relative to its bacterial
homolog) so as to be able to recognize and aminoacylate both
mt-tRNASer isoacceptors (51). Other, more subtle but still sig-
nificant, insertions and structural rearrangements associated
with tRNA binding have been observed in crystal structures of
human mt-AspRS (47) and mt-TyrRS (50).

Systematic in vitro characterization of pathogenic mutants is
a more recent development, which has tested the hypothesis
that these mutations would result in a reduction in tRNA ami-
noacylation. Available aminoacylation data reveal diverse or
only weak effects of the disease-associated mutations on the
level of aminoacylation. One of our laboratories has carried
several investigations to decipher the relationship between
mutations on the enzymatic activity of the mt-AspRS. A series
of mutations showed various impacts on the aminoacylation
rates, ranging from no effect at all to a decrease of �80-fold (34,
64). Similarly, variable results have been obtained for mutants of
mt-PheRS, with some pathogenic mutations resulting in drastic
(�4000-fold) reductions in aminoacylation rates, whereas others
had virtually no effect (65–67). In other enzymes, targeted charac-
terization of single mutants has shown weak impacts. For example,
the G191D mutant of mt-TyrRS displayed a 38-fold loss in cata-
lytic efficiency compared with the WT enzyme (42), and two
mutations of the mt-LeuRS, T522N and A430V, resulted in a 9-
and 18-fold loss of catalytic efficiency, respectively (68).

Recombinant expression of the mutant enzymes has also
allowed for the comparison of additional characteristics
extending beyond aminoacylation rates. Biophysical character-
ization of six mt-AspRS mutants showed diverse effects on
dimer formation, protein stability, and aggregation, with only
mild correlations between these effects and reductions in in
vitro aminoacylation rates (64, 69). Similarly, extensive work
has been done with a series of pathogenic mt-PheRS mutants
(67). Crystal structures of four of these were solved and were
very similar to the WT protein, with main-chain root mean
square deviation values less than 0.5 Å. The authors used
molecular dynamics simulations to explain the failure of four
other mutants to crystallize under similar conditions, because
these are predicted to adopt an alternative tertiary structure
that would both prevent crystal lattice contacts and disrupt
protein–substrate interactions. These latter mutants are also
particularly inactive in aminoacylation reactions.

Both of the mt-AspRS and mt-PheRS studies made prelimi-
nary comparisons between the extent of effects on in vitro enzy-
matic and biophysical properties and the type, severity, and age
of onset of patients’ disease symptoms. Although some corre-
lations were noted, each study documents cases in which rela-
tively mild in vitro effects are observed for a mutation found in
a patient with severe symptoms (40, 67). These comparisons
are, of course, complicated by potential differences in heterolo-
gously expressed protein behavior in vitro and in human cells.
Post-translational modifications and interactions with other
proteins may lead to cellular effects that would be invisible in
vitro.

A puzzling aspect of pathogenic mutations identified thus far
is the under-representation of mutations at highly conserved
positions. Because aminoacyl-tRNA synthetases are present in
every living organism, the identification of positions with

key functional or structural roles is straightforward, because
those amino acids are strictly conserved across the entire phy-
logeny. Surprisingly, mitochondrial disease-associated muta-
tions rarely occur at these positions. Only 10 of the missense
and nonsense mutations reported to date occur at positions
that are 100% conserved across bacteria, archaea, and eukarya,
including organelles (28, 33). More than half (129 mutations)
affect nonconserved residues, whereas the remainder (69 muta-
tions) affect positions with lower degrees of conservation.
Interestingly, only two enzymes, mt-AlaRS and mt-PheRS, are
impacted by mutations in highly conserved positions. In the
case of mt-AlaRS, mutations at these positions are associated
with the less severe leukodystrophy phenotype rather than with
the more severe cardiomyopathy phenotype (although, again, it
should be noted that these mutations are always part of a com-
pound heterozygous presentation). Although initial work (65)
suggested a correlation between conservation of positions
mutated in mt-PheRS and physiological impact, more recent
work (67) has ruled out this view. Mutants with drastic impacts
on aminoacylation (observed losses of �3000- to �4000-fold)
affect positions that are less conserved or not conserved, and
those with the least significant impact (from 1.2- to 2.3-fold) are
in highly or strictly conserved positions. More narrow phyloge-
netic comparisons may prove more informative. For example,
LBSL-related mutations in mt-AspRS are found in positions
that are not strictly conserved across all organisms, but are
strictly conserved within the subphylum of mammals (69).
This suggests a selective pressure at these positions, possibly
restricted to mammals, and may be indicative of roles unrelated
to tRNA aminoacylation.

In vivo characterization of mitochondrial synthetases

Given the incomplete, and in some cases completely absent,
correlation between the mutations’ effects on in vitro activity
and pathogenic presentation, efforts to gain a deeper under-
standing of the in cellulo and in vivo biology of the mitochon-
drial aaRSs are of particular importance.

One area of current exploration is the sub-mitochondrial
localization of the enzymes. As components of the oxidative
phosphorylation pathway, all of the 13 proteins encoded by the
human mitochondrial genome are membrane-bound, so the
membrane-bound localization of many elements of the mito-
chondrial translational apparatus is not surprising (70). The
mitochondrial ribosome is tethered to the matrix side of
the mitochondrial inner membrane (71) through MRPL45, the
mitochondrial homolog of ribosomal protein L45 (5, 6). Mito-
chondrial EF-Tu is also independently associated with the inner
mitochondrial membrane (72). Recent work has shown that at
least two mitochondrial synthetases are also associated with
mitochondrial membranes (73). mt-ArgRS is exclusively asso-
ciated with the membrane and is only dissociated from the
membrane upon treatment with urea, indicating a hydrophobic
mode of interaction. mt-AspRS is found both in membrane-
bound and soluble forms. The membrane-bound fraction is dis-
sociated with high salt, indicating an electrostatic interaction.
Meanwhile, no mitochondrially localized LysRS was found to
be membrane-associated. The differences in sub-mitochon-
drial localization of these three enzymes raise questions about
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potential secondary functions for the proteins. The dual local-
ization of mt-AspRS is especially interesting, as it may result
from differential processing of the cytoplasmically translated
protein by the mitochondrial import machinery (45). Thus far,
no pathogenic mutations have been shown to completely
switch sub-mitochondrial localization (73), but effects on inter-
actions with potential molecular partners remain to be eluci-
dated, as does the sub-mitochondrial localization of the
remaining 16 enzymes.

Another observation resulting from in cellulo work is the
relationship between mitochondrial aaRS mutants and steady-
state tRNA levels. In several instances, clinicians have been able
to characterize mitochondrial function in patient-derived cells,
usually fibroblasts. In many of these cases, cognate mitochon-
drial tRNA levels are specifically reduced relative to other tRNA
species. Examples include experiments performed on fibro-
blasts from mt-SerRS–related patients, presenting with either
progressive spastic paresis (38) or with HUPRA syndrome (37)
or mt-ArgRS–related patients presenting with PCH6 syndrome
(40). These results suggest either that the mitochondrial aaRSs
serve as tRNA chaperones or that aminoacylation protects
tRNA species from degradation. Because tRNA modification
enzymes should affect stability, correlating stability effects with
the action of those enzymes may unearth new understanding.

Cultures of patient fibroblast cells have also facilitated anal-
ysis of the mutants’ effects on mitochondrial protein synthesis,
total levels of aaRSs present in the mitochondria, and mito-
chondrial concentrations of free amino acids. Unfortunately,
these data cannot fully address the tissue specificity with which
mitochondrial ARS mutations manifest disease. Experiments
with differentiated patient-derived stem cells, transfection of
appropriate cell culture lines, or the use of animal models may
be necessary to fully address these questions.

Toward the origins of tissue specificity

Although the in vitro and in vivo work described above offers
some hints, at this point, aside from the fact that all mt-aaRSs
are correlated with pathological disorders, there is no common
combination of molecular mechanisms that explains the vari-
ous phenotypic expressions observed in patients. The categori-
zation of the disorders proposed in this review suggests that
different molecular mechanisms may be at play in different tis-
sues. To date, hypotheses explaining tissue specificity fall into
two broad categories. In one set of explanations, the connection
between mitochondrial protein synthesis and oxidative phos-
phorylation is paramount. Tissue specificity is thought to be
due to differences in energy requirements in different organs,
which may change depending on developmental stage. These
hypotheses are most reasonable in cases where there is a clear
correlation between a mutant’s effect on aaRS function and the
resulting disease state. A second set of hypotheses suggests that
mt-aaRSs have different functions or roles, in addition to tRNA
aminoacylation, that have yet to be uncovered. These hypoth-
eses are most attractive in cases where there is little or no cor-
relation between the pathogenicity of a mutation and its effect
on aminoacylation.

As mentioned above, a complication in correlating pathoge-
nicity and enzymatic function arises because of the heterozy-

gous presentation of many patients, making it difficult to cor-
relate disease severity with one or the other of two potentially
deleterious mutations. Euro et al. (74) have provided an
approach to this problem in their analysis of AARS2 mutations.
Ten pathogenic point mutations are predicted, based on struc-
tural modeling, to have various effects on protein stability,
tRNA binding, aminoacylation, and editing. The predicted
effects are classified with respect to severity, from “loss of func-
tion” to “moderate.” Heterozygous patients with two “severe”
or “loss of function” mutations suffered from more severe and
earlier onset disease (infantile cardiomyopathy), whereas those
with at least one allele predicted to have “moderate” effects
suffered from symptoms with later onset (leukoencephalopathy
with ovarian failure). Although the structural predictions
remain to be experimentally validated, this approach to corre-
lating molecular and organismal phenotypes is promising.

Several other hypotheses have been invoked to explain these
tissue-specific differences in mt-aaRS function (24). One spe-
cific case involves a mutation in intron 2 of DARS2 found in
many LBSL patients, which affects the splicing of the third exon
(34). Using a slicing reporter construct, van Berge et al. (75)
found cell-type–specific differences in the sensitivity to these
mutations: the mutations have a larger effect on the exclusion
of exon 3 in the neuronal cell lines than in non-neuronal cell
lines, suggesting that the particular disease state results from
tissue-specific differences in the splicing apparatus. A similarly
narrow but functionally very different hypothesis was initially
proposed by Götz et al. (76) when studying clinical manifesta-
tions of the cardiomyopathy produced by mutations in AARS2.
They suggested that variable amino acid concentrations in dif-
ferent tissues, especially those of glycine and serine, might
influence the misincorporation rate of serine and glycine in RC
complexes in the case of proofreading-deficient mtAlaRS (76).
Neuronal cells are an especially important case. Because neu-
ronal cells present a great diversity of morphologies and an
extremely high-energy demand, they face exceptional chal-
lenges in maintaining energy homeostasis. Neurons require
specialized mechanisms to efficiently distribute mitochondria
to distal areas where energy is in high demand, such as synaptic
terminals, active growth cones, and axonal branches. Varia-
tions in mitochondrial translation in these exceptional cells
have yet to be fully understood.

Validating these hypotheses, especially work on understand-
ing variations in developmental stages, poses challenges. For
example, some mutations in mt-aaRSs may participate at some
points in the development of embryonic tissues. Fully under-
standing these effects might require the development of animal
models in which mutant genes are conditionally expressed in a
tissue-specific manner. Cessation of embryonic processes at
different stages in these models, followed by examination of
affected organs, would elucidate the involvement of mutations
in embryonic development. PCH6 is one condition that we can
imagine being investigated in this manner. PCH6 is produced
by mutations in RARS2 (40) and has a very early onset, in most
cases within the few first hours after birth (77). The hallmark of
this pathology is a hypoplasia of the pons (78), which is rela-
tively easy to identity using neuroimaging analysis. Experi-
ments of this type would help establish whether there is a spe-
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cific moment during embryogenesis when participation of the
mt-ArgRS is most essential.

Explanations of tissue specificity based on energy require-
ments, and by extension mitochondrial protein synthesis, are
intuitive. However, the generally poor correlation between the
mutants’ effects on in vitro behavior and severity or type of
disease and the relative lack of pathogenic mutations at highly
conserved positions strongly suggest that some other func-
tions of the enzymes, unrelated to protein synthesis, are
being impacted. Recent discoveries that human cytosolic
aaRSs and fragments thereof are involved in multiple signal-
ing pathways and linked to numerous diseases (79 –83),
ranging from cancer to Charcot-Marie-Tooth disease,
strengthen this view. These enzymes have been found to act
as procytokines (84, 85) and partners in pathways, including
tumorigenesis, immune response, and inflammation (81, 82,
86). Given this functional expansion among their cytosolic
homologs, it is likely that similar noncanonical functions
have also evolved in the mt-aaRSs. The distinct sub-mito-
chondrial localizations of some enzymes, described above,
may provide a route to identifying new functions and protein
partners. Assuming that mitochondrial translation is inte-
grated with cell metabolism and actively participates as an
environmental sensor, it is likely that connections between
mt-aaRS and cellular homeostasis exist. More detailed
hypotheses have been discussed elsewhere (28 –29).

Further exploration of these hypotheses will not only answer
questions about the tissue specificity of mitochondrial diseases,
but also broaden our understanding of the complex biological
processes mediated by the mitochondrial aaRSs. We expect
that additional roles and new connections to these “housekeep-
ing” enzymes will continue to be uncovered, improving our
ability to predict, diagnose, and treat the diseases caused by
their mutation.
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Sauter, C., and Rudinger-Thirion, J. (2007) Crystal structure of human
mitochondrial tyrosyl-tRNA synthetase reveals common and idiosyn-
cratic features. Structure 15, 1505–1516 CrossRef Medline

51. Chimnaronk, S., Gravers Jeppesen, M., Suzuki, T., Nyborg, J., and Wa-
tanabe, K. (2005) Dual-mode recognition of noncanonical tRNAs(Ser) by
seryl-tRNA synthetase in mammalian mitochondria. EMBO J. 24,
3369 –3379 CrossRef Medline

52. Chimnaronk, S., Jeppesen, M. G., Shimada, N., Suzuki, T., Nyborg, J., and
Watanabe, K. (2004) Crystallization and preliminary X-ray diffraction
study of mammalian mitochondrial seryl-tRNA synthetase. Acta Crys-
tallgr. D Biol. Crystallgr. 60, 1319 –1322 CrossRef

53. Hilander, T., Zhou, X. L., Konovalova, S., Zhang, F. P., Euro, L., Chilov,
D., Poutanen, M., Chihade, J., Wang, E. D., and Tyynismaa, H. (2018)
Editing activity for eliminating mischarged tRNAs is essential in mam-
malian mitochondria. Nucleic Acids Res. 46, 849 – 860 CrossRef Medline

54. Pierce, S. B., Chisholm, K. M., Lynch, E. D., Lee, M. K., Walsh, T., Opitz,
J. M., Li, W., Klevit, R. E., and King, M. C. (2011) Mutations in mitochon-
drial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sen-
sorineural hearing loss of Perrault syndrome. Proc. Natl. Acad. Sci. U.S.A.
108, 6543– 6548 CrossRef Medline

55. Bullard, J. M., Cai, Y.-C., and Spremulli, L. L. (2000) Expression and
characterization of the human mitochondrial leucyl-tRNA synthetase.
Biochim. Biophys. Acta 1490, 245–258 CrossRef Medline

56. Wang, Y., Zhou, X. L., Ruan, Z. R., Liu, R. J., Eriani, G., and Wang, E. D.
(2016) A human disease-causing point mutation in mitochondrial threo-
nyl-tRNA synthetase induces both structural and functional defects.
J. Biol. Chem. 291, 6507– 6520 CrossRef Medline

57. Sohm, B., Sissler, M., Park, H., King, M. P., and Florentz, C. (2004) Rec-
ognition of human mitochondrial tRNALeu(UUR) by its cognate leucyl-
tRNA synthetase. J. Mol. Biol. 339, 17–29 CrossRef Medline

58. Sissler, M., Helm, M., Frugier, M., Giege, R., and Florentz, C. (2004)
Aminoacylation properties of pathology-related variants of human mi-
tochondrial tRNALys variants. RNA 10, 841– 853 CrossRef Medline

59. Bonnefond, L., Frugier, M., Giegé, R., and Rudinger-Thirion, J. (2005)
Human mitochondrial TyrRS disobeys the tyrosine idenity rules. RNA
11, 558 –562 CrossRef Medline

60. Fender, A., Sauter, C., Messmer, M., Pütz, J., Giegé, R., Florentz, C., and
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