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Perfectly accurate translation of mRNA into protein is not a
prerequisite for life. Resulting from errors in protein synthesis,
mistranslation occurs in all cells, including human cells. The
human genome encodes >600 tRNA genes, providing both the
raw material for genetic variation and a buffer to ensure that
resulting translation errors occur at tolerable levels. On the
basis of data from the 1000 Genomes Project, we highlight the
unanticipated prevalence of mistranslating tRNA variants in
the human population and review studies on synthetic and nat-
ural tRNA mutations that cause mistranslation or de-regulate
protein synthesis. Although mitochondrial tRNA variants are
well known to drive human diseases, including developmental
disorders, few studies have revealed a role for human cytoplas-
mic tRNA mutants in disease. In the context of the unexpectedly
large number of tRNA variants in the human population, the
emerging literature suggests that human diseases may be
affected by natural tRNA variants that cause mistranslation or
de-regulate tRNA expression and nucleotide modification. This
review highlights examples relevant to genetic disorders, can-
cer, and neurodegeneration in which cytoplasmic tRNA variants
directly cause or exacerbate disease and disease-linked pheno-
types in cells, animal models, and humans. In the near future,
tRNAs may be recognized as useful genetic markers to predict
the onset or severity of human disease.

Protein synthesis is an evolutionarily conserved process that
is required by all life. In the interpretation of the genetic code,
transfer RNAs (tRNAs) play a central role as they physically link
amino acids to codons. Crick’s adaptor hypothesis predicted
the existence of tRNAs in 1955: “each amino acid would com-
bine chemically, at a special enzyme, with a small molecule

which, having a specific hydrogen-bonding surface, would com-
bine specifically with the nucleic acid template.” (1). Just 3 years
later, the first tRNAs were discovered as soluble RNAs involved
in protein synthesis (2). Working with yeast, Holley et al. (3)
isolated tRNAs and determined the first tRNA sequence. The
first codons were mapped to amino acids using repeating
polyribonucleotides as templates for protein synthesis (4, 5).
The laboratories of Nirenberg et al. (6) and Khorana et al. (7)
then raced to solve the complete codon catalogue using a tech-
nique that monitored the binding of radiolabeled aminoacyl-
tRNAs to ribosomes separately prepared with each of the pos-
sible 64 trinucleotide codons. These efforts established the
standard genetic code table for which Holley, Khorana, and
Nirenberg were awarded the Nobel prize in Physiology or Med-
icine in 1968.

Fascinatingly, by the time the prize was awarded, exceptions
to the genetic code had already been identified. In 1966, Yanof-
sky and co-workers (8) demonstrated tRNA mutants enabled
missense suppression or amino acid mis-incorporation using a
defective tryptophan synthase A gene in Escherichia coli. Early
in 1968, Atkins (9) identified the first exception to triplet
decoding with the discovery of frame-shifting in Salmonella
typhimurium. Indeed, although the genetic code is nearly uni-
versal in the living world, several exceptions to the standard
code occur in diverse organisms (10). Genome sequences and
genetic and biochemical data reveal that in organisms from
microbes to humans, codons can be ambiguously decoded (8,
11–13), reassigned (14, 15), or site-specifically recoded (16 –18)
to incorporate unexpected amino acids or amino acids beyond
the standard set of 20.

Given the importance of cytosolic tRNAs to facilitate accu-
rate synthesis of the proteome, surprisingly few examples have
linked a cytosolic tRNA mutation to human disease thus far.
Yet, recent examples directly connecting cytosolic tRNA muta-
tions to disease in humans (19) and separately to neurodegen-
eration (20, 21) and cancer (22) in mice suggest that cytosolic
tRNA variants play a greater role in disease than previously
imagined. It is possible that significant changes to tRNA func-
tion are not usually tolerated in the genome or that defective
tRNA alleles may be genetically buffered by multiple copies of
each iso-decoder. Nevertheless, two empirical observations
suggest tRNAs have a larger role in disease than previously rec-
ognized: (i) the unexpectedly large number of tRNA variants in
the human population (Tables 1–3 and Table S1), and (ii) the
fact that even a single nucleotide change in a single tRNA gene
can cause mistranslation or stall translation leading to molecu-
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lar and cellular defects (13, 21, 23). The majority of research
connecting human tRNA functions to disease is focused on
mutations in aminoacyl-tRNA synthetases (AARSs)4 (24), on

proteins that modify nucleotides in cytosolic tRNAs (25, 26), or
on the smaller pool of mitochondrial tRNAs (27–29). Two
major reasons for this are a relative lack of available sequence
data for cytosolic tRNAs, and a long-held assumption that
excessive tRNA copy number should “buffer” potential pheno-
types resulting from a single mutant.

In this review, we outline the complexity of cytosolic tRNA
function and regulation in eukaryotic cells. We then summarize
recent studies demonstrating examples of single nucleotide

4 The abbreviations used are: AARS, aminoacyl-tRNA synthetase; SNP, single
nucleotide polymorphism; TAM, transcription-associated mutagenesis;
CFTR, cystic fibrosis transmembrane conductance regulator; mcm5U,
5-methoxycarbonylmethyluridine; mcm5Um, 5-methoxycarbonylmethyl-
2�-O-methyluridine; HIF, hypoxia-inducible factor; GtRNAdb, Genomic
tRNA database; pol III, polymerase III; HD, Huntington’s disease.

Table 1
Human tRNA anticodon variants
MAF is minor allele frequency. Inserted nucleotides are indicated by, e.g. _35T.

tRNA gene Variant MAF (%)a Variant counta MAF (%)b Variant countb tRNA scorec
Codon
identity

tRNA
identity

Expression
ARMd CHIPe

Ala-AGC-2–2 G35A 0.02 1 84.7 Val Ala � �
Ala-AGC-6–1 G35C 6.55 328 6.47 8130 74.1 Gly Ala � �
Ala-AGC-15–1 C36T 0.04 2 0.03 42 56.7 Thr Ala � �
Ala-AGC-16–1 G35A 2.2 11 2.1 269 53.1 Val Ala � �
Ala-CGC-1–1 G35T 0.0008 1 79.7 Glu Ala � �
Ala-TGC-1–1 G35A – 80.5 Val Ala � �
Leu-CAA-3–1 A35C 0.0008 1 77.3 Trp Leu � �
Ser-AGA-2–2 G35A 0.02 0.003 4 89.6 Phe Ser � �
Ser-AGA-2–3 G35A 1.82 91 1.87 2347 89.6 Phe Ser � �
Ser-AGA-2–4 G35C 0.003 4 89.6 Cys Ser � �
Ser-AGA-2–5 _35T 0.0008 1 89.6 � �
Ser-CGA-2–1 _36T 0.03 34 94 � �
Ser-TGA-2–1 G35A 0.04 2 0.02 22 90.4 Leu Ser � �
Ser-TGA-3–1 _36T 0.0008 1 89.7 � �

a Data are from the 1000 Genomes Project (127, 128).
b Data are from the TOPMED sequencing project (128, 129).
c tRNA score was calculated using tRNA-Scan SE (128).
d ARM indicates ARM-seq data suggesting expression (128, 130).
e CHIP indicates CHIP-seq hits for at least 3 of 4 core transcription proteins (RPC155, POLR3G, BRF1, and BDP1) (46, 129, 131–133).

Table 2
Human tRNA variants that introduce a G3:U70 base pair
MAF is minor allele frequency.

tRNA gene Variant MAF (%)a Variant counta MAF (%)b Variant countb tRNA scorec

Expression
ARMd CHIPe

Arg-ACG-1–3 C70U 0.002 2 68 � �
Cys-GCA-2–3 C70U 0.02 29 82 � �
Cys-GCA-1–1 C70U 0.02 1 0.07 86 84 � �
Cys-GCA-17–1 C70U 0.002 2 71 � �
Cys-GCA-12–1 C70U 0.02 1 0.01 16 72 � �
Gly-CCC-2–1 G70U 0.05 64 75 � �
Gly-GCC-2–4 A3G 0.08 4 0.05 63 81 � �
Gly-GCC-2–5 A3G 0.02 1 0.005 6 81 � �
Gly-GCC-2–1 A3G 0.02 1 0.02 20 81 � �
Gly-GCC-2–3 A3G 81 � �
Gly-GCC-1–5 A3G 1.2 61 1.3 1633 81 � �
Gly-GCC-5–1 A3G 0.02 1 0.1 129 55 � �
Gly-TCC-2–6 C70U 0.03 14 0.09 111 74 � �
Ser-AGA-2–6 A3G 0.01 12 90 � �

a Data are from the 1000 Genomes Project (127, 128).
b Data are from the TOPMED sequencing project (128, 129).
c tRNA score was calculated using tRNA-Scan SE (128).
d ARM indicates ARM-seq data suggesting expression (128, 130).
e CHIP indicates CHIP-seq hits for at least 3 of 4 core transcription proteins (RPC155, POLR3G, BRF1, and BDP1) (46, 129, 131–133).

Table 3
Human tRNAArg C50T variants

tRNA gene SNP ID MAF (%)a Variant counta MAF (%)b Variant countb tRNA scorec

Expression
ARMd CHIPe

Arg-ACG-1–1 rs6939540 2.42 121 2.2 2765 67.6 � �
Arg-ACG-1–2 rs186104107 0.02 1 0.01 14 67.6 � �
Arg-TCG-6–1 rs113170043 16.6 831 20.2 24,374 53.7 � �
Arg-TCT-5–1 rs143334272 0.8 41 0.6 711 61.4 � �

a Data are from the 1000 genomes project.
b Data are from the TOPMED sequencing project (128, 129).
c tRNA score was calculated using tRNA-Scan SE (128).
d ARM indicates ARM-seq data suggesting expression (128, 130).
e CHIP indicates CHIP-seq hits for at least 3 of 4 core transcription proteins (RPC155, POLR3G, BRF1, and BDP1) (46, 129, 131–133).
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tRNA variants that elicit significant levels of amino acid mis-
incorporation, which can be surprisingly well-tolerated in
eukaryotic cells. Using data from the 1000 Genomes Project, we
analyzed the location and frequency of naturally occurring
human tRNA variants. These data reveal an abundance of mis-
translating tRNAs in the human population. Finally, we sum-
marize recent evidence linking tRNA mutations and de-regu-
lated tRNA expression and nucleotide modification to disease
in humans and model systems. Some of the studies point to the
idea that tRNA mutations, which are otherwise tolerated or
benign, contribute to disease in the context of other coinciden-
tal cellular defects.

tRNA function and regulation

The role of tRNA in decoding the genetic code

tRNAs are best known for their role in translation of RNA
messages into proteins. tRNAs are relatively small RNA mole-
cules, typically consisting of 76 –90 nucleotides, and fold into a
conserved three-dimensional structure in the shape of an
upside-down L (Fig. 1A). The anticodon resides at the long end
of the L-shape and binds to cognate codons in the messenger
RNA (mRNA) on the ribosome. On the opposite end of the
tRNA, the amino acid is ligated to the 3�-terminal adenosine
residue in the acceptor stem. Accurate tRNA aminoacylation

and high-fidelity decoding of codons on the ribosome are key
determinants to accurate protein production.

Codon recognition is determined by the tRNA anticodon,
which base pair with tri-nucleotide codons in mRNAs during
protein synthesis (Fig. 1B). The essential interaction between
codon and anticodon is established not only by Watson-Crick
base pairing, but also by nucleotide modifications in tRNAs (30,
31), competition between cognate and near-cognate decoding
(32, 33), and wobble decoding. Generally, the first two positions
of a codon form Watson-Crick pairs with the tRNA, whereas
the third position is more flexible (30). In back-to-back publi-
cations, Crick hypothesized (34) what Söll et al. (35) deter-
mined experimentally that the third position of a codon can
involve G:U or U:G wobble pairing with the 1st position of the
anticodon at tRNA nucleotide 34. Indeed, the initial discoveries
also included examples of extended wobble decoding in yeast
arginine and alanine tRNAs that read codons ending in U, C, or
A (35). Extended wobble decoding is facilitated by post-tran-
scriptional tRNA modification, where adenosine residues at
position 34 are modified to inosine, which pairs with U, C, or A
in the third codon position (30). Additional nucleotide modifi-
cations in the anticodon loop (particularly at positions 34 and
37) also impact translation fidelity and reading-frame mainte-
nance (36, 37). For example, in yeast, a 5-methoxycarbonylm-

Figure 1. tRNA structure. A, tRNAs fold into an L-shaped three-dimensional structure with extensive intramolecular base-pairing. This tRNAPhe structure
(Protein Data Bank code 1OB5) (134) is aminoacylated with phenylalanine (AA). B, in a two-dimensional representation, tRNA resembles a cloverleaf. In both
diagrams, the tRNA is colored by structural elements: acceptor stem (red), dihydrouridine (D)-arm (green), anticodon stem (cyan), anticodon (bases 34 –36 in
purple), variable loop (yellow), T�C (T) arm (navy), and the conserved CCA-3� end (white). A schematic mRNA is shown below the tRNA diagram to indicate the
tRNA nucleotides that base pair with each codon position.
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ethyl-2-thiouridine modification at anticodon base U34
represses �1 frame-shifting. Lack of the modification or hypo-
modification at this site in a variety of tRNAs leads to 1.5–3.0-
fold increases in ribosomal frame-shifting (38). Similarly,
absence of the modified base N6-threonylcarbamoyladenosine
at the anticodon adjacent position 37 also increases frame-
shifting in yeast by 2-fold (39).

The standard genetic code is composed of 61 sense codons
that encode 20 amino acids and 3 stop codons (UGA, UAG, and
UAA) that usually signal termination of protein synthesis.
Because certain tRNAs decode up to three or four different
codons, the theoretical minimum number of tRNAs for an
organism to encode 20 amino acids is 32 (34). Söll et al. (35)
observed that the “minimum number of sRNA [tRNA] mole-
cules required for recognition of all of the meaningful codons is
relatively small, and this conclusion in turn raises the question of
redundancy in the sRNA pool of a cell.” The question as to why
organisms encode apparently redundant tRNA genes, which
was raised the year after the code was solved, is still unanswered
today. As a result of the genome sequencing revolution, we
know now that nature contains examples of organisms with
tRNA gene complements that are well below and vastly greater
than this apparent minimal requirement. There are examples of
organelles (e.g. human mitochondria with 22 tRNA genes) and
even parasitic microbes (e.g. Mycoplasma mobile with 28 tRNA
genes (40)) with fewer than 32 tRNA genes. Their survival
depends on importing the missing tRNAs from a different cel-
lular compartment (41) or presumably a host cell.

E. coli encodes 88 tRNA genes, whereas yeast has a small
tRNAome for a eukaryote at 275 tRNA genes. Eukaryotes typ-
ically have hundreds of tRNA genes that display a general trend
to increase in number and sequence diversity with the com-
plexity of the organism (42). Unicellular protozoans encode
near the theoretical minimum of tRNA genes, such as the
malaria parasite Plasmodium falciparum, which has only 35
tRNA genes (43). P. falciparum was recently found to import
additional tRNAs from its host (44). Some species of fish have
astoundingly high tRNA gene numbers (Table S2), such as the
elephant shark (Callorhinchus milii), which encodes 13,724
tRNAs (43). As exemplified in a phylogenetic comparison of
yeast and human alanine tRNAs (Fig. 2), the sequence varia-
tions among tRNA iso-acceptors appear to increase with com-
plexity as well. Yeast has 16 tRNAAla iso-acceptors, including 11
identical genes with the AGC anticodon and 5 identical genes
with the TGC anticodon. In contrast, humans encode 45
tRNAAla iso-acceptors with markedly greater sequence diver-
sity than their yeast counterparts, including examples with
CGC anticodons not seen in yeast (Fig. 2).

tRNA regulation in human cells

The number of expressed tRNA genes in human cells is not
well defined. Of the 610 tRNA genes in humans, the genomic
tRNA database predicts 417 genes in their high-confidence set,
indicating the tRNA is likely to function in protein synthesis
(43). Comprehensive profiling of RNAs in human serum sug-
gests 411 expressed tRNA genes (45). According to CHIP-seq
analysis of RNA polymerase III and transcription factor occu-
pancy, �350 tRNA genes are actively transcribed in a single

human cell line (IMR90hTert) (46). Gogakos et al. (47) reported
the expression of 288 –349 tRNAs in HEK 293 cells based on
two different RNA-Seq methods. Together, the data suggest
300 – 400 tRNA genes are expressed in any individual human
cell.

The degree to which each human tRNA contributes to pro-
tein synthesis has not been determined, but evidence that cells
regulate tRNA expression to control protein production is
emerging. First, expression of individual tRNA genes varies
between tissues (48, 49). Furthermore, the steady-state level of
different tRNAs correlates with the expression of matched-
codon biased mRNA transcripts (48). The observation suggests
that cells can fine-tune tRNA expression profiles to match
codon usage in expressed mRNAs. Indeed, the fact that efficient
protein expression requires tRNA levels and decoding capacity

Figure 2. Phylogenetic relationships of human and yeast tRNAAla. The
tree is based on an alignment of all known human and yeast tRNAAla iso-
acceptors. The vastly expanded number and greater diversity of human
tRNAAla genes compared with their yeast counterparts are evident. The tRNAs
are labeled according to gene names in the genomic tRNA database (43),
which include anticodon sequence followed by a numbering system where
the first number indicates similar sequences, and the second number indi-
cates a gene copy identifier. The human reference genome contains a misan-
notated tRNAAla, which was used to root the tree. This gene, tRNAAla-GGC-
19-3, is a tRNAThr with a mutation (T36C) endowing the tRNA with an alanine
anticodon. This is the only example of the alanine GGC anticodon in humans.
Scale bar indicates the number of nucleotide changes per site in the tRNA
sequences. The tree was calculated similarly as before (135). Briefly, a starting
tree computed in MultiSeq 2.0 (136) was optimized to identify the maximum
likelihood tree using PhyML 3.1 (137). Statistical branch support (out of 100)
was calculated based on an approximate likelihood ratio test method (138) as
implemented in PhyML.
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matches the distribution of codons in mRNA is well known.
Multiple E. coli strains and bioinformatic tools for codon adap-
tation were developed based on this principle to enhance the
production of eukaryotic and other recombinant proteins in
bacteria (50).

Once transcribed, tRNAs are processed via the removal and
addition of nucleotides to produce a mature tRNA. Introns,
5�-leader, and 3�-trailer sequences in the original transcript are
removed (51). Next, the CCA-adding enzyme elongates the
pre-tRNA with the conserved CCA 3�-end. CCA-adding
enzymes can append a second CCA to certain tRNAs with mis-
matches or excessive G:U pairs in their acceptor stems (52). The
double CCA addition primes tRNAs for exonucleolytic diges-
tion via the rapid tRNA decay pathway (53). The human CCA-
adding enzyme (TRNT1) is implicated in disease. Complete
loss-of-function in TRNT1 is embryonic lethal, and partial loss-
of-function mutations cause congenital sideroblastic anemia
with immunodeficiency, fevers, and developmental delay (54).

tRNAs are further processed with a variety of post-transcrip-
tional nucleotide modifications, including 2� O-methylation of
the ribose, N-acetylation and N-methylation of the nucleotide
bases, as well as more complex modifications that form bases
such as wybutosine (55).

In eukaryotes, tRNAHis is post-transcriptionally edited to
add an extra guanine (G�1) to the 5�-end of the tRNA, a unique
feature recognized and required by the cognate histidyl-tRNA
synthetase (56). Depleting the tRNAHis guanylyltransferase that
catalyzes G�1 addition leads to accumulation of un-aminoacy-
lated and un-guanylated yet hyper-methylated tRNAHis in the
nucleus (57). Subsequent studies point to tRNAHis m5C
hypermethylation as a response to growth arrest in Saccharo-
myces cerevisiae, although the significance of the increase in
m5C methylation is yet unclear (58). Monomethylation of the
5�-monophosphate of tRNAHis by bicoid-interacting 3 domain
containing RNA methyltransferase (BCDIN3D) is thought to
protect tRNAHis from degradation. BCDIN3D is overexpressed
in breast cancer cells, and monomethylated tRNAHis is more
abundant in breast cancer cells, yet the overall level of tRNAHis

is not impacted (59). It is thought that monomethylation con-
tributes to the formation of tRNAHis-derived fragments in
breast cancer cells, which in turn regulate tumorigenic genes
involved in breast cancers (60).

In fact, tRNAs are the most frequently modified noncoding
RNA known, containing an average of 13 modifications per
molecule (61). The combined number of expressed tRNA genes
and their multiple modification states imply the existence of
a large combinatorial number of tRNA microspecies in the
human cell (62). Because tRNA modifications are important for
translation fidelity and reading frame maintenance (34, 36, 37,
63), these microspecies have the potential to impact cellular
function and disease. Modifications are also essential for regu-
lating tRNA turnover (64) and for proper structure, folding, and
stability of the tRNA (55). Indeed, many tRNA-modifying
enzymes are already linked to disease (26). As described below,
tRNA modification can also dynamically up- or down-regulate
sets of tRNAs (65–67).

The mature and active tRNA is a substrate for amino acid
ligation catalyzed by the AARS enzymes in an ATP-dependent

reaction (68). Each AARS enzyme has specificity both for an
amino acid and a distinct set of cognate tRNA iso-acceptors.
Amino acids are ligated to the 3�-end of tRNAs, requiring the
presence of a CCA 3�-tail. To ensure tRNA recognition fidelity,
AARSs make essential contacts with nucleotides in their cog-
nate tRNAs, called identity elements (69). Aminoacyl-tRNAs
are then substrates for protein synthesis. The likelihood that a
given aminoacyl-tRNA acts in translation depends upon many
factors, including the stability of the tRNA, the number of ami-
noacylated-tRNAs competing for the same codon, and the
expression of mRNAs containing codons read by the tRNA.
tRNAs unfit for translation are degraded by the rapid tRNA
decay pathway (70). Cytoplasmic tRNA levels are also regulated
by export processes to other cellular compartments, including
into mitochondria (71), or retrograde transport into the
nucleus (72). As reviewed elsewhere (62), tRNAs perform addi-
tional functions outside of translation, either as whole tRNAs
(73) or tRNA-derived fragments (74).

Phenotypes of mistranslating cells

Mistranslation occurs in all cells (75) as a result of multiple
different mechanisms. Considering the small size, multitude of
protein partners, and essential cellular role of tRNAs, single
nucleotide changes can have a profound impact on their func-
tion and on the efficiency and fidelity of protein synthesis (12,
13, 23, 69). Proteins encoded by mRNAs containing rare codons
or strongly biased codon compositions are most susceptible to
the effects of tRNA variants. Loss-of-function mutations in
tRNAs can cause ribosome stalling to de-regulate protein
synthesis, whereas gain-of-function mutations in tRNAs can
lead to mis-aminoacylation and mistranslation (12, 21).

Mistranslating tRNAs can arise from surprisingly minor
changes to the nucleotide sequence. Although many tRNAs har-
bor major identity determinants in their anticodon, coupling ami-
noacylation fidelity to codon assignment, alanyl-, leucyl-, and
seryl-tRNA synthetases do not recognize the anticodon nucleo-
tides on their cognate tRNAs. Anticodon mutations in these
tRNAs often elicit amino acid mis-incorporation (69). The accu-
mulation of highly active tRNASer anticodon mutants is toxic to
yeast cells, causing proteome-wide mistranslation (23). In yeast,
the degree of anticodon mutant toxicity varies, depending on com-
petition with WT tRNAs, chemical properties of the amino acids,
and tRNA modifications (76).

Santos et al. (22)analyzed tRNASer variants containing Ala or
Leu anticodons in murine NIH 3T3 cells grown in culture and
subsequently xenografted to live mice. As determined by mass
spectrometry in tumor samples recovered from the mice, the
rate of mistranslation increased by �2-fold in the cells express-
ing tRNASer containing an alanine anticodon, but only margin-
ally in cells expressing tRNASer with a leucine anticodon. Mis-
translation was not toxic to the NIH 3T3 cells when grown in
culture as determined by cellular viability, necrosis, and prolif-
eration assays, indicating that increased cytosolic tRNA-depen-
dent mistranslation was initially well-tolerated. Interest-
ingly, expressing the mistranslating tRNAs promoted the
formation of foci in vitro, suggesting a link to tumorigenesis
(22). Briefly, foci formation occurs when cancer-like cells form
dense clusters resembling early-stage tumors on a Petri dish
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(77). Mistranslating tRNAs promoted the activation of the
oncogenic factors protein kinase B (Akt) and p38 when cells
were treated with tumor necrosis factor-�, to a greater extent
than cells expressing the WT tRNAs. Furthermore, cells mis-
translating alanine codons with serine promoted angiogenesis
in a chick chorioallantoic membrane assay and were highly
tumorigenic when introduced in mice. Compared with the par-
ent cells in culture, expression of the mistranslating tRNAs
increased �8-fold in cells recovered from mouse tumors.
Although mistranslating tRNA variants had undetectable cyto-
toxicity in cells in culture, the mutant tRNAs exacerbated or
accelerated cellular pathways to cancer in a mammalian model
of disease (22).

Identity element mutations are another route to mistranslat-
ing tRNAs. The phenotypic consequences of a single tRNA var-
iant of this type are the subject of a number of recent studies.
AlaRS recognizes two critical identity determinants at the 3rd
base pair in the acceptor stem (G3:U70) (78), and also amino-
acylates tRNAs bearing the GU pair at the 4th acceptor stem
base pair (76). tRNA variants that convert nonalanine tRNAs to
alanine accepting tRNAs by creating these identity elements are
common in mammalian genomes (79). Some human tRNACys

and tRNAThr species with G4:U69 are natural alanine accep-
tors, and cysteine to alanine mistranslation was detected in
HEK 293 cells (79). An Animalia-specific tRNA deacylase was
recently discovered that co-occurs with tRNAThr G4:U69 vari-
ants in animal genomes and de-acylates mis-charged Ala-
tRNAThr (80). This enzyme may protect human cells from ala-
nine mistranslation at threonine codons.

In our work on tRNA-dependent mistranslation, we expressed a
mutant of human tRNAPro containing a G3:U70 base pair in
human cells. The human tRNAPro mutant was an efficient ala-
nine acceptor in vitro that no longer accepted proline. Our pre-
vious work in yeast demonstrated that a homologous tRNAPro

mutant mistranslated multiple proline codons with alanine
(13). We developed a GFP reporter (D129P) that fluoresces in
response to mistranslation at the Pro-129 codon. In HEK 293
cells (12), we did not observe significant mistranslation in rich
media compared with cells expressing WT tRNAPro. When the
cells were starved of serum and glucose over a period of days,
mistranslation accumulated to 2–5% according to the GFP
reporter. Strikingly, and similar to the report of Santos et al.
(22), we did not observe a loss in cellular viability or induction of
the heat-shock response compared with cells expressing the
WT tRNA, indicating that this level of mistranslation was well
tolerated. In yeast, a mistranslating tRNA did show synthetic
slow growth when coupled with deletion mutants lacking the
proteome regulatory transcription factor Rpn4 (13). The above
examples illustrate how phenotypes driven by a mistranslating
tRNA variant can remain hidden; yet, in conditions of stress or
in models of disease, an otherwise neutral tRNA variant can
interact synthetically with a stressor or a second mutation to
cause phenotypic defects.

Errors in protein synthesis are normally thought to be dele-
terious, yet mistranslation is an adaptive response in diverse
organisms from bacteria (81) to yeast (13) to human cells (82).
In some of these cases mistranslation provides a selective
advantage. As reviewed elsewhere (83), a recurrent finding is

that stress conditions reduce aminoacylation fidelity (84). For
example, upon oxidative stress, methionyl-tRNA synthetase
increases its mis-aminoacylation of noncognate tRNAs up to
10-fold in bacteria and mammalian cells (82, 85, 86); the addi-
tional methionine in proteins is thought to protect the pro-
teome from oxidative damage.

tRNA variation in humans

Human tRNA variants that likely mistranslate can be readily
identified in publicly available sequence data (Tables 1 and 2,
S1) (43). Some of these natural variants (79) or similar variants
designed in the laboratory (12, 22) do in fact cause mistransla-
tion in human cells. In addition, tRNA variants, which simply
impair tRNA folding or function, also impact the proteome.
The absence of even a single tRNA gene product can alter the
tRNA pool and limit the rate of protein synthesis by causing
ribosome stalling (21). In both capacities, mutations in tRNA-
encoding genes represent an important class of potential dis-
ease modifiers that could increase the severity of other disease-
causing alleles.

To visualize the nature and extent of human tRNA variation,
we analyzed data from the 1000 Genomes Project and plotted
the number of unique variants at each position in an alignment
of all human tRNA genes (Fig. 3, A and B). The number of
unique variants were mapped on the tRNA secondary structure
(Fig. 3A). We also plotted the frequency of occurrence of each
of these tRNA mutations in the human population (Fig. 3C).
Some tRNAs, such as those for leucine, serine, and selenocys-
teine, have significantly larger variable loops; variation from
these regions was not included.

No position in human tRNA genes is immune to variation,
yet some positions are far more variable than others (Fig. 3, A
and B). The allele frequency of these variants indicates that
common (�5% allele frequency) and rare variants (�5% allele
frequency) are distributed across nearly all sites in the tRNA
(Fig. 3C). Some sites, however, lack common variants. Although
restricted to rare variants, variation is observed at position 73;
this “discriminator” base is a key identity element for many
AARSs. The anticodon shows variation at all three bases, albeit
reduced compared with other regions of the tRNA. The data
from 1000 Genomes Project suggest that across all �600 tRNA
loci there are 25–30 unique nucleotide variants at each anti-
codon base, and these include both common and rare variants
in the population (Fig. 3C).

Positions within the acceptor stem contain large numbers of
unique variants. Many AARSs recognize acceptor stem nucle-
otides to ensure aminoacylation fidelity (69); thus, acceptor
stem variants have the potential to elicit mistranslation or lead
to a defective tRNA. Another compelling observation is that
several important sites of tRNA modification display significant
variation (e.g. position 37 in the anticodon loop) (Fig. 3). Con-
sistent with this observation, mutations in tRNA-modifying
enzymes that act at these positions are implicated in disease
(26).

As mentioned above, most human AARSs recognize identity
determinants in the tRNA anticodon except for AlaRS, LeuRS,
and SerRS (69); thus, nonsynonymous anticodon variants in
Ala, Leu, and Ser tRNAs are likely to mistranslate. Correspond-
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Figure 3. tRNA variants observed in the 1000 Genomes Project. A, variants that occur within tRNA genes (defined by GtRNAdb (128)) were downloaded
from the 1000 Genomes Project phase 3 dataset (142). Insertions and deletions were removed, as were variants with no allele frequency available. Each variant
was mapped to its corresponding tRNA position, according to standardized numbering (139), using an in-house Perl script. High-confidence tRNAs were
defined as tRNAs with a tRNAscan-SE score of �50 (128). For the high confidence tRNA set, unique mutations are mapped to each position in the tRNA. B, same
data in A are plotted for the high-confidence set (cyan dashed line) and for all human tRNA sequences (red line). C, allele frequencies (log2 scale) of all variants
that occur at each tRNA position are represented in box and whisker plots. Boxes outline quartiles of the allele frequency distribution; filled circles depict the
median allele frequency; whiskers show 1.5	 quartile range; and open circles depict raw data, i.e. the allele frequencies for each unique tRNA variant at the
indicated position.
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ingly, the tRNA variants that have already been shown to elicit
mistranslation in human cells have mutations in the tRNA anti-
codon or create the identity determinants for AlaRS (12, 78, 79).
Anticodon mutations in other tRNAs typically reduce or ablate
aminoacylation (69). However, the degree of aminoacylation
loss is not known for all anticodon positions in all tRNAs, and in
some cases, efficient aminoacylation can be retained even when
some identity determinants are mutated (87).

Certainly, mistranslating tRNAs can arise from a variety of
mechanisms. Mutations at identity elements, which ensure
cognate aminoacylation, or mutations at anti-determinants,
which prevent non-cognate aminoacylation, have the potential
to convert any tRNA into a mistranslator. Although such
mutants likely occur in the human population, there is a paucity
of biochemical data regarding human tRNA identity elements
and anti-determinants, thus challenging confident identifica-
tion of such variants as mistranslating tRNAs from sequence
alone. Anticodon mutations in Ser, Ala, and Leu, however, will
undoubtedly lead to amino acid mis-incorporation. For this
reason, our discussion of specific mistranslating tRNA exam-
ples from human genomes focused on these “obvious” mis-
translating tRNAs.

To assess the prevalence of likely tRNA mistranslators in the
human population, we searched the Genomic tRNA database
(GtRNAdb) for high-confidence Ala, Leu, and Ser tRNAs with
anticodon mutations (Table 1) or mutations in the 3rd or 4th
acceptor stem bp that create the G3:U70 (Table 1) or G4:U69
(Table S1) AlaRS identity element. In total, among the human
Ala, Leu, and Ser iso-acceptor groups reported in GtRNAdb
there are 27 unique anticodon variants. Of these, there are 14
unique nonsynonymous (Table 1) and 13 synonymous anti-
codon variants. Most nonsynonymous anticodon variants are
rare, but three variants occur in �1% of the population. One
alanine tRNA variant containing a glycine anticodon occurs in
over 6% of sequenced individuals. The common occurrence of
these mutations in cytosolic tRNAs is striking; analogous variants
in mitochondrial tRNAs are embryonic lethal (27). Although we
found a similar number of unique synonymous anticodon variants,
none were found in �1% of sequenced individuals. While still
encoding the “correct” amino acid, such mutants may more or less
efficiently read synonymous codons for a particular amino acid,
altering translation rates.

Further complicating this scenario, certain apparently
synonymous anticodon variants may become mistranslators
through nucleotide modification. For example, tRNAs nor-
mally containing an A34 are modified to inosine (I34) by the
action of adenine deaminases acting on tRNAs (88). As noted
above, I34 enables expanded wobble decoding to codons end-
ing in U, C, or A; thus, A34 containing tRNAs are normally
restricted to those amino acids with synonymous codons end-
ing in U, C, and A. However, human genomes include examples
of tRNAs bearing A34 that, if modified to I34, would lead to
mistranslation (e.g. tRNA-Ser-GCT-5–1 single nucleotide
polymorphism (SNP) rs550301646; tRNAAsn-ATT-1–1 and
tRNA-Tyr-ATA-1–1 are in the human reference genome). In
the case of tRNAAsn, A34I would incorporate Asn at Lys AAA
codons. This type of phenomenon was recently examined with
anticodon variants of Methanocaldococcus jannaschii tRNATyr

expressed in E. coli (89, 90). In this case, a tRNATyr mutant with
an AUG anticodon decoded histidine CAU and CAC codons
with tyrosine at approximately equal efficiency (2–3%); the
mutant tRNATyr AUG anticodon was indeed partially modified
to IUG (89). Perhaps as a natural defense against mistranslation
and the resulting abundant Gln-tRNAUUG

Gln1 , mis-incorporation
of tyrosine at glutamine CAA codons was not detected in E. coli
(89).

Adding to the complexity of human tRNA variation, tRNA
genes are particularly susceptible to transcription-associated
mutagenesis (TAM) (91), and thus, their sequence can change
more rapidly than other genes. Thornlow et al. (91) demon-
strated that tRNA genes experience 7–10-fold higher rates of
TAM compared with the genome-wide average. TAM occurs
when DNA strands are separated during transcription, and the
nontemplate strand becomes temporarily isolated and more
accessible to mutagens (92). Although tRNA variation is gener-
ally selected against on a population scale, this implies that the
sequence of tRNA genes within individual cells could change
throughout life and that perturbations that increase tRNA
expression could further increase mutation rates.

tRNA variation and disease

Like the involvement of mitochondrial tRNA variants in dis-
ease (28), recent studies have identified specific cytosolic tRNA
mutants as drivers or modifiers of disease in humans and mice.
In addition, tRNA mis-modification and imbalanced tRNA
expression also contribute to disease. Here, we highlight exam-
ples of defective tRNA function in genetic disorders, cancers,
and neurodegeneration.

tRNA mutants linked to disease

Kobayashi et al. (140) identified the first human tRNA asso-
ciated with disease in 1990. The mutation, a variant of a mito-
chondrial tRNALeu gene, leads to the degradation of the tRNA
and causes a rare disorder characterized by stroke and demen-
tia: mitochondrial myopathy, encephalopathy, lactic acidosis,
and stroke-like episodes. Shortly after, a mutation in mitochon-
drial tRNALys was found to cause another rare neurological
disorder, myoclonic epilepsy and ragged-red fiber disease (93).
Several other mitochondrial tRNA variants are implicated in
major human diseases, including heart disease (94), hyperten-
sion (95), metabolic disease (96), and deafness (97).

Two clear examples have emerged where a cytosolic tRNA
variant either contributes to or directly causes disease. One
case (described under “tRNA variants in neurodegeneration”)
involves a mutation in a single tRNAArg gene that causes wide-
spread neurodegeneration in mice when associated with a sec-
ond mutation in a protein-coding gene that sensitizes cells to
ribosome stalling (21). The other case (detailed under “tRNA
modification defects in disease”) is a single nucleotide muta-
tion in the only functional human tRNASec gene (98, 99) that
causes abdominal pain, fatigue, muscle weakness, and low
plasma selenium levels in a homozygous patient (19). In this
case, the tRNASec variant appears to be the primary driver of
disease (19).
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Imbalanced tRNA expression and disease

tRNA copy number variation—The copy number of tRNA
genes varies between individuals. Iben and Maraia (100)
assessed copy number variation among nuclearly encoded
tRNAs from whole-genome sequencing data obtained in the
1000 Genomes Project. Their study focused on two sets of two
parents and a child, from which �15-fold read coverage was
obtained. Although the high similarity of tRNA iso-acceptors
complicates this type of analysis, significant copy number var-
iation in at least 11 tRNA gene loci among the six individuals
was reported. Furthermore, they validated a homozygous dele-
tion encoding tRNAUUU

Lys on chromosome 7 in one individual.
Interestingly, modification defects in this tRNA associate with
type 2 diabetes in mice. The deletion is common in the human
population and has no known indication of an associated phe-
notypic defect (101).

Tissue-specific tRNA expression—Dittmar et al. (48) demon-
strated the tissue dependence of tRNA expression using a tRNA
microarray that probed 42 nuclearly encoded and 21 mitochon-
drially encoded tRNAs from eight different tissues. They
revealed that human tissues express different sets of cytosolic
tRNAs. Comprehensive analysis based on RNA polymerase III
occupancy of tRNA genes in mice support this finding (102).

The relevance of tissue-specific tRNA expression to disease
was demonstrated by the link between tRNA abundance and
cystic fibrosis (103). In this work, Kirchner et al. (103) charac-
terized a synonymous SNP in the cystic fibrosis transmembrane
conductance regulator (CFTR), which substitutes an ACT Thr
codon with ACG. This synonymous mutation results in a cell
type– dependent alteration of CFTR protein levels that are not
explained by a change in mRNA stability or splicing. The
authors discovered that tRNACGU

Thr is a low abundance tRNA in
the cystic fibrosis model and human bronchial epithelial cell
lines. The polymorphism not only reduces CFTR expression in
human bronchial epithelial cells, but also impairs the folding,
localization, and membrane conductance of CFTR. The find-
ings point to a translation rate-dependent mechanism, where
ribosome stalling on the ACG codon, which is read by a low
abundance tRNA, causes the protein product to mis-fold and
malfunction.

Phenotypic defects from synonymous codon mutations are
observed in numerous other disease-relevant protein– coding
genes (104). Examples include multidrug resistance 1 (MDR1)
(105), estrogen receptor � (106, 107), and surfactant protein-D
(108). Thus, expression of specific tRNA iso-decoders is an
important consideration when synonymous mutations result in
a phenotype, particularly if the protein synthesis burden is
shifted to a low abundance or possibly defective tRNA. Con-
ceivably, tRNA synonymous anticodon variants (noted above)
could have a similar effect on translation rates and cellular
phenotypes.

De-regulated tRNA expression—tRNA expression can change
dynamically in disease. Pavon-Eternod et al. (109) demon-
strated that tRNA expression increases from 3- to 10-fold in
breast cancer tumors. Oncogenic factors such as RAS and
C-MYC promote RNA polymerase (pol) III transcription,
whereas tumor suppressors such as retinoblastoma protein

(RB) and P53 inhibit pol III transcription, providing a link
between common cancer mechanisms and pol III-dependent
tRNA expression (110). Although cause or effect has not been
established in these cases, tRNA expression changes in cancer
may occur through global tRNA up-regulation to facilitate
increased protein synthesis requirements in tumor cells (111).

Dysregulation of specific tRNA iso-acceptors is also impli-
cated in cancer. Overexpression of the initiator tRNAMet pro-
motes translation reprogramming and cell proliferation in the
human breast epithelial cell lines 184A1 and MCF10A (109).
This was corroborated in a comprehensive study that quanti-
fied tRNA expression profiles using tRNA microarrays and his-
tone modification mapping across 470 patient-derived tissue
samples representing various states of proliferation (112). Gin-
gold et al. (112) demonstrated that tRNAi

Met expression is high-
est in the most proliferating samples and lowest in the differen-
tiating cells.

In contrast, reduced tRNASec expression was observed in
many proliferating and especially cancerous cell samples (112).
tRNASec is required for the production of selenocysteine-con-
taining proteins. Depending on the context, selenoprotein syn-
thesis can either prevent or promote cancer (113); thus, up- or
down-regulation of tRNASec may have relevance to disease.
tRNA expression changes can also promote cancer through
roles for tRNAs beyond protein synthesis. A recent review high-
lighted examples of tRNAs or tRNA-derived fragments from at
least 16 iso-acceptor groups that are specifically de-regulated in
cancer (110).

The tRNA expression profile in a particular cell will lead to
more or less efficient translation of certain mRNAs depending
on codon usage (114, 115). Differential expression of tRNAs
also promotes cancer through favoring particular “translation
programs.” The study of Gingold et al. (112) profiled codon
usage in transcripts associated with cell cycle versus differenti-
ation. The authors observed a dichotomy where codons with A
or U in the 3rd codon position are generally more common in
proliferation-associated mRNAs, and G- or C-ending codons
are more common in differentiation-associated mRNA tran-
scripts (112). The emerging view is that cells dynamically
switch between “programs” of protein synthesis, in part by
coordinating the transcription of tRNAs with anticodons
matching the codon bias in expressed mRNAs.

Differential expression of specific tRNA iso-decoders—The
expression of specific tRNA iso-decoders promotes metastasis
in breast cancer model cell lines (112). The authors measured
the relative abundance of different tRNA iso-decoders in cell
lines selected for high rates of metastasis (MDA-LM2 and
CN-LM1) and parental cell lines (MDA-231 and CN34). Two
tRNAs (tRNACCG

Arg and tRNAUUC
Glu ) were highly up-regulated in

both metastatic lines. These tRNAs were then overexpressed in
MDA-231 cells to assess changes in the proteome resulting
from their increased expression. The abundance of proteins
encoded by transcripts enriched in the matching codons (GGC
and GAR) increased. As measured by ribosome profiling, two
such mRNAs (encoding EXOSC2 and GRIPAP1) showed
higher rates of active translation in the cells overexpressing
tRNAUUC

Glu . RNAi-mediated knockdown of these mRNAs re-
duced in vitro invasion capacity of the cells, suggesting that
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EXOSC2 and GRIPAP1 are required for tRNAUUC
Glu -promoted

metastasis. Hence, the coordinated expression of tRNA iso-
decoders facilitates translational reprogramming in cancer cells
and is implicated in the promotion of proliferation as well as
metastasis.

tRNA modification defects in disease

As mentioned previously, post-transcriptional modifications
are important for tRNA function and stability. Hypo-modifica-
tion can lead to rapid tRNA decay (116), and many tRNAs
require anticodon modifications to ensure faithful codon rec-
ognition (34, 63). Over 50 different nucleotide modifications
occur in eukaryotic tRNAs (117), and in humans, tRNAs con-
tain an average of 13 modifications per molecule (61). Accord-
ingly, tRNA modification defects are implicated in numerous
diseases, including neurological, cardiac, respiratory, and met-
abolic diseases, as well as cancer and mitochondria-linked dis-
orders (26). Most diseases that result from defects in tRNA
modification are due to mutations in protein-coding genes or in
mitochondrial tRNA genes, rather than cytosolic tRNA genes.

A recent example, however, provides compelling evidence of
a cytosolic tRNA mutant and de-regulated nucleotide modifi-
cation in human disease. A C65G mutation in tRNAUCA

Sec was
identified in a patient exhibiting abdominal pain, fatigue, mus-
cle weakness, and low plasma selenium levels (28). Although
humans encode two tRNASec genes, apparently only one is
functional. A mutation in this gene has the potential to impact
all 25 human selenoproteins, which are essential for normal
development (118). Selenoproteins may be categorized into
two groups: housekeeping and stress-related. Synthesis of
housekeeping selenoproteins depends on a 5-methoxycarbon-
ylmethyluridine (mcm5U) modification at position 34 of
tRNASec, whereas further modification to 5-methoxycarbonyl-
methyl-2�-O-methyluridine (mcm5Um) promotes synthesis of
stress-related selenoproteins (119). The tRNASec C65G variant
only impaired expression of stress-related selenoproteins. This
is attributed to the fact that the variant has markedly reduced
levels of both the mcm5Um modification at position 34 and the
N6-isopentenyl adenosine modification at position 37 (19). The
finding underscores the complexity of nucleotide modification
in tRNA function by showing that a mutation at one site in
tRNA can impact modification at other locations in the tRNA
body. In this case, a single nucleotide variant in the T-arm
altered modifications in the anticodon stem loop (Fig. 1).
Although the mechanism is not yet defined, presumably the
C65G mutant inhibits or reduces the methyltransferase activity
of the multifunction ALKBH8 gene product that catalyzes con-
version of mcm5U to mcm5Um at position 34 (120).

Modifications can also drive or favor specific translation pro-
grams (65, 66). For example, melanomas harboring the V600E
mutation in the proto-oncoprotein B-RAF depend on transla-
tional reprogramming controlled by up-regulation of U34
tRNA-modifying enzymes (67). Similar to the modulation of
tRNA expression in metastatic breast cancer (121), the mecha-
nism relies on coordinated regulation of both tRNAs and asso-
ciated codon-biased transcripts. These modification tunable
transcripts are sensitive to particular tRNA modification states
(65). U34 tRNA modification promotes decoding of the

“-AA” ending codons AAA, GAA, and CAA (122). Remarkably,
up-regulation of U34-modifying enzymes promotes survival of
melanomas dependent on hypoxia inducible factor 1� (HIF-1�)
metabolism. Elevated levels of HIF-1� correlate with tumor
metastasis and poor patient prognosis as well as tumor resis-
tance to therapy (123). Indeed, the HIF-1� mRNA is enriched in
AAA, GAA, and CAA codons (67). When U34-modifying
enzymes ELP3, CTU1, or CTU2 were knocked down, HIF-1�
protein levels decreased even though HIF-1� mRNA levels
were unchanged. Thus, cancer cells are able to regulate tRNA
modification enzymes to ultimately tune protein synthesis rates
and protein levels in favor of oncogenesis.

tRNA variants in neurodegeneration

A common attribute of disorders linked to defective protein
homeostasis is the accumulation of mistranslated or misfolded
proteins in cells (20, 124). In many cell types, this problem can
be counteracted through apoptosis or cell division (124). How-
ever, post-mitotic cells such as those found in the heart and
brain are incapable of diluting misfolded proteins through
division and lack the regenerative capacity to replace apoptotic
cells readily (124). Furthermore, protein quality control
decreases in post-mitotic tissues with age (125). Post-mitotic
tissues may be particularly vulnerable to the consequences of
tRNA variants and increasingly so with age.

Girstmair et al. (141) proposed a role for cytosolic tRNAs in
Huntington’s disease (HD). HD is caused by an expanded Gln
repeat in the huntingtin protein, encoded by a stretch of
40 –100 repeated CAG codons (126). In some cases, shorter
CAG repeats appear to also cause HD, suggesting there are
additional disease modifiers. Continuous translation of the
repeat depletes charged tRNACUG

Gln , which results in more fre-
quent frameshifting in the translation of the huntingtin gene,
possibly exacerbating the disease phenotype (141). Although
tRNACUG

Gln variants are not yet known to exacerbate HD, these
findings illustrate the importance of tRNA function and abun-
dance in pathologies of the brain.

Indeed, naturally occurring tRNA variants have the potential
to deplete the abundance of a brain-specific tRNA that is essen-
tial for health. Ishimura et al. (21) uncovered a synthetic toxic
effect involving a single cytosolic tRNA variant that causes
widespread neurodegeneration in mice (21). Mutations in
Gtpbp2 (encoding a protein that rescues stalled ribosomes) and
Tr20 (encoding tRNAUCU

Arg ) were found to co-occur in mice
identified in a phenotypic screen for neurodegeneration. Mice
carrying both mutations exhibit rapid neurodegeneration and
die at 8 –9 weeks. At 3 weeks, the mutant mice are indistin-
guishable from WT. The C50T mutation (n-Tr20) prevents
tRNAUCU

Arg maturation and, in combination with the loss of
GTPBP2, leads to ribosome stalling. Despite many “redundant”
tRNAArg iso-decoders in the cell, the lack of function of this
single tRNA causes ribosome stalling. The authors measured a
3-fold increase in AGA pauses in the n-Tr20 mutant compared
with a mouse containing the WT tRNA. Fascinatingly, tRNAArg

C50T variants also occur in the human population, including in
a TCT iso-acceptor (Table 3).

This work exemplifies the ways in which tRNA variants
can exacerbate pathways to disease. Two observations from
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this work may have broader applicability to understanding
the roles for tRNA variants in disease. First, the phenotype was
tissue-specific, because expression of the n-Tr20–encoded tRNA
is only observed in the central nervous system. Second, a coinci-
dent mutation in another gene sensitized cells to the loss-of-func-
tion mutation in a single tRNA gene. Together, these mutations
caused disease in the animal model.

Conclusion

Humans display a remarkable array of both common and
rare tRNA mutants, some with the obvious potential to mis-
translate the genetic code (Tables 1 and 2 and Table S1) or
create defective tRNAs (e.g. Table 3). Indeed, such tRNA vari-
ants can elicit significant levels of mistranslation in human cells
and influence protein synthesis and protein homeostasis (Fig.
4). Above, we highlighted recent examples showing how tRNA
variants and defective tRNA genes contribute to disease. In
addition to causing disease, tRNA variants act synergistically
with other disease-causing alleles by placing additional stress

on protein quality control mechanisms or biasing translation pro-
grams that drive disease. Furthermore, tissue-specific tRNA
expression and de-regulated tRNA expression or modification
contribute to disease and phenotypic defects at the cellular level.
Together, these observations suggest that cytosolic tRNA muta-
tions may have greater importance in disease than previously rec-
ognized. We hope that the evidence provided in this review will
stimulate new interest in considering cytoplasmic tRNA variants
as an important factor in human genetic variation and disease.
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