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Aminoacyl-tRNA synthetases (ARSs) are universal enzymes
that catalyze the attachment of amino acids to the 3� ends of
their cognate tRNAs. The resulting aminoacylated tRNAs are
escorted to the ribosome where they enter protein synthesis.
By specifically matching amino acids to defined anticodon
sequences in tRNAs, ARSs are essential to the physical interpre-
tation of the genetic code. In addition to their canonical role in
protein synthesis, ARSs are also involved in RNA splicing, tran-
scriptional regulation, translation, and other aspects of cellular
homeostasis. Likewise, aminoacylated tRNAs serve as amino
acid donors for biosynthetic processes distinct from protein
synthesis, including lipid modification and antibiotic biosyn-
thesis. Thanks to the wealth of details on ARS structures and
functions and the growing appreciation of their additional roles
regulating cellular homeostasis, opportunities for the develop-
ment of clinically useful ARS inhibitors are emerging to manage
microbial and parasite infections. Exploitation of these oppor-
tunities has been stimulated by the discovery of new inhibitor
frameworks, the use of semi-synthetic approaches combining
chemistry and genome engineering, and more powerful tech-
niques for identifying leads from the screening of large chemical
libraries. Here, we review the inhibition of ARSs by small mole-
cules, including the various families of natural products, as well
as inhibitors developed by either rational design or high-
throughput screening as antibiotics and anti-parasitic thera-
peutics.

Protein synthesis in all living cells relies on the faithful decod-
ing of mRNAs to produce polypeptide chains of the correct
sequence. The genetic information encoded in the string of the
trinucleotide codons of the message ultimately determines the
amino acid sequence of the protein, governed by the specific
pairing of aminoacyl-tRNAs and individual mRNA codons
within the context of the translating ribosome. In addition to
the accuracy of this codon–anticodon interaction in the decod-
ing process, the overall fidelity of protein synthesis depends on

formation of the aminoacyl-tRNA (1). This key reaction is cat-
alyzed by a diverse family of enzymes, the aminoacyl-tRNA syn-
thetases (ARSs),2 all of which synthesize aminoacyl-tRNA.
Each ARS is specific for a particular amino acid and joins that
amino acid to the tRNA that is specific for (or “cognate” to) the
particular amino acid (2).

Given the essentiality of protein synthesis to the survival and
fitness of living cells, it is not surprising that the translation
apparatus represents one of the most frequently targeted cellu-
lar processes by natural product antibiotics. Because of their
role as key agents in implementing the genetic code, ARSs are a
ubiquitous and essential part of that apparatus. Their struc-
tures and functions have been characterized extensively in
recent decades, and there is now a rich literature with detailed
description of mechanistic features that are both common to
the class as a whole and unique to specific families (3, 4). In
addition to providing a foundation for synthetic biology engi-
neering efforts, this information has also contributed to the
development of novel and highly-potent inhibitors. Inhibitor
development has also been stimulated by the growing discovery
of noncanonical functions for ARSs, particularly in the areas
of signaling, regulation, and overall maintenance of cellular
homeostasis (5).

Natural antibiotics that target the peptidyl transferase and
decoding centers of the ribosome, like chloramphenicol and
streptomycin, respectively, provide examples of the potential
clinical benefits of inhibiting the translational apparatus (6). By
contrast, natural product inhibitors of tRNA synthetases were
similarly identified decades ago, but with limited exceptions
they have yet to gain general clinical acceptance. These natural
products provide powerful validation for ARSs as therapeutic
targets, but their history also illustrates some of the formidable
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barriers to their development into useful drugs. Recent
advances in genomics, high-throughput screening of complex
libraries, novel inhibitor frameworks, and the identification of
new regulatory functions for ARSs have provided a new moti-
vation to explore the potential clinical benefits of inhibiting
select members of this class. Another important emerging
dimension of research into ARSs concerns their involvement in
diverse human diseases. For example, ARSs were identified
decades ago as critical antigens in the autoimmune diseases of
polymyositis and dermatomyositis (7, 8). Their specific roles in
the pathophysiology of these diseases have yet to be fully
explained. More recently, mutant versions of ARS genes have
been identified in association with peripheral neuropathies,
sensorineural disorders, and severe neurodevelopmental phe-
notypes (9). An improved understanding of small molecule
modulation of ARSs may provide a new route to therapeutic
interventions for these diseases.

This review provides an update on therapeutic inhibition of
aminoacyl-tRNA synthetases, including the major classes of
inhibitors, the most widely studied therapeutic targets, and per-
spectives on the most promising future opportunities. This
topic has been addressed in previous reviews (10 –15) that
emphasized anti-ARS compounds as possible antibiotics and
anti-infectives against both bacterial and eukaryotic pathogens.
Following a brief introduction to the aminoacylation reaction,
we will discuss efforts to target prokaryotic organisms, move on
to eukaryotic pathogens, and then conclude with prospects for
therapeutics against noninfectious diseases, including cancer
and neurological diseases.

Aminoacylation reaction and the class structure of the
aminoacyl-tRNA synthetase superfamily

Prior to discussing specific inhibitors, it is useful to review the
chemistry of the aminoacylation reaction and the fundamental
class structure of the ARSs. The aminoacyl-tRNA synthesis reac-
tion occurs in two distinct steps (16). In the first reaction, amino
acid and ATP are condensed to form a mixed anhydride adenylate
intermediate, with pyrophosphate serving as the second product
(Fig. 1A). The adenylate intermediate is noncovalently bound to
the active site. As we will see below, chemical derivatives of the
adenylates are potent inhibitors of the corresponding ARSs and
are an important starting point for further therapeutic develop-
ments. In the subsequent aminoacyl transfer step, the amino acid
is esterified to the 3� end of the tRNA in a regiospecific reaction.
For some ARSs, there is evidence that the nonbridging oxygen of
the �-phosphate of the AMP moiety participates as a general base
to activate the tRNA (17, 18).

The ARSs divide into two classes of essentially 10 members
each (a second LysRS represents an additional Class I enzyme)
on the basis of the protein fold of the catalytic domain, charac-
teristic signature sequences, and mechanistic features of the
aminoacylation reaction (4, 19). Class I enzymes share a cata-
lytic domain based on the Rossmann/nucleotide-binding fold,
an �/� sheet with alternating �-helices and �-strands oriented
in parallel fashion (Fig. 1B). Class I enzymes also possess HIGH
and KMSKS signature sequences that constitute the ATP-bind-
ing site and provide interactions to maintain the ATP in an
extended conformation. Class I enzymes typically approach the

tRNA acceptor stem from the minor groove side. Finally, three
of the Class I ARSs (ArgRS, GluRS, and GlnRS) require the
presence of the tRNA for adenylate formation.

By contrast, the catalytic domains of Class II enzymes share a
conserved seven-stranded antiparallel sheet and characteristic sig-
nature sequences that constitute the motifs 1–3. Motif 1 is an
extended �-helix linked to a �-strand that contributes to the for-
mation of the dimeric interface. Motif 2 (a conserved �-strand
hairpin) and motif 3 (�-stand and �-helix) are core structural ele-
ments of the Class II catalytic domain antiparallel �-sheet that
provide ATP recognition. In Class II ARS-active sites, ATP is in a
“bent” conformation. Class I and II ARSs also differ with respect to
the terminal hydroxyl of the 3�-terminal adenosine Ade-76 to
which the amino acid is attached. Class I enzymes aminoacylate on
the 2�-OH of the terminal ribose, whereas Class II enzymes typi-
cally aminoacylate on the 3�-OH. Class II ARSs also feature con-
served acidic amino acids that coordinate Mg2� ions that stabilize
the pyrophosphate leaving group.

ARSs possess the ability to finely discriminate among differ-
ent chemically similar amino acid substrates, employing both
passive binding and active editing strategies (1, 20). For those
ARSs that aminoacylate hydrophobic amino acids (e.g. IleRS,
ValRS, LeuRS, ThrRS, and AlaRS), the amino acid pocket alone
provides insufficient discrimination to prevent misacylation of
near-cognate amino acids. The problem is particularly acute for
pairs that differ by a single methyl or hydroxymethyl group (21).
Thus, amino acid groupings consisting of Ile/Val, Leu/Ile/Met/
Val, Val/Thr, Thr/Ser, and Ala/Gly/Ser have imposed selection
for editing function in the ARSs associated with the first amino
acid in the grouping. In the original “double sieve” model pro-
posed to account for ARS discrimination, an initial “coarse”
sieve prevents the binding and activation of larger and chemi-
cally dissimilar amino acids, whereas a second “finer” sieve
allows amino acids smaller than the cognate to pass through to
a second active site (22). These misacylated substrates undergo
hydrolysis by a specific deacylation activity in the editing site.
As predicted by this model, ARSs with well-defined editing
properties possess separate protein domains dedicated to this
editing function. This deacylation mechanism has been re-
ferred to as “post-transfer editing” (23).

Alternatively, the misactivated amino acid can be eliminated
by hydrolytic decomposition of the adenylate prior to transfer
of the amino acid to the tRNA, referred to as “pre-transfer edit-
ing” (24). The relative contribution of these two mechanisms
depends on the relative rates of aminoacyl transfer and deacy-
lation (25, 26). Evidence from both prokaryotic and eukaryotic
systems indicates there is a fitness cost for the absence of edit-
ing functions (27–29). For example, an inbred mouse strain
containing an editing-deficient AlaRS allele (the sticky (Sti)
allele) exhibits Purkinje cell degeneration and associated defi-
cits in cerebellar function (30). Some nonproteogenic amino
acids are able to evade natural editing systems, with potentially
toxic consequences (31, 32). Interestingly, editing functions
may be diminished in certain obligate parasitic species, such as
Mycoplasma (33, 34).

In Escherichia coli and other enteric bacteria, there is at least
one ARS for each of the 20 amino acids. In other bacterial and
most archaeal species, GlnRS and AsnRS orthologs may be
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absent, and indirect pathways employing amidotransferases are
used to produce the corresponding aminoacylated tRNAs (35).
Indirect pathways also account for the absence of CysRS in
some Archaea genera (36). In humans, there are 38 nuclear-
encoded ARS genes, apportioned equally among cytoplasmic
and mitochondrial enzymes, but there are also two dual-com-
partment enzymes (LysRS and GlyRS) that function in both the
cytoplasm and mitochondria (37). In human pathogens such as
the apicoplexans, the number of ARS genes can vary, as some of
the encoded enzymes function in both the cytoplasm and in a
specialized organelle, the apicoplast (38). As a consequence of
these multiple copies, an inhibitor directed against a pathogen

that is specific for mammalian cells will typically face three or
potentially four distinct but similar versions of an enzyme from
a given ARS family. Accordingly, a particularly acute problem
in the synthesis of any ARS inhibitor is achieving selectivity for
the pathogen enzyme over the host cytoplasmic and mitochon-
drial ARS enzymes.

Targeting prokaryotic organisms: natural products and
designed inhibitors

Pathogens challenged by new antibiotics engage multiple
pathways that allow resistance to a drug to develop. These
include acquiring mutations in the target gene of interest,

Figure 1. Aminoacylation reaction and the two classes of aminoacyl-tRNA synthetases. A, two half-reactions of the aminoacylation reaction, showing
structures of the reactants and products. For most tRNA synthetases, the amino acid activation reaction can occur in the absence of tRNA. In the case of
glutamyl-tRNA synthetase (GluRS), glutaminyl-tRNA synthetase (GlnRS), and arginyl-tRNA synthetase (ArgRS), the presence of tRNA is required for amino acid
activation. B, representative structures of each of the 20 standard ARSs, divided into the two principal structural classes. The RCSB Protein Data Bank ID numbers
are indicated below each structure.
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acquisition of enzyme functionalities that can modify the drug
itself, and development of strategies to minimize internal drug
concentration, such as changes in permeability or efflux. All of
these strategies present hurdles to the development of anti-ARS
compounds as therapeutics.

During the period of 1990 –2000, the potential of the amino-
acyl-tRNA synthetases to serve as a new class of antibiotic tar-
gets was explored systematically (39). Potentially useful fea-
tures of ARS that render them as attractive antibiotic targets
include the following: (i) their essential function in all cells; (ii)
a divergence between prokaryotic and eukaryotic versions that
provides structural differences that can be exploited; (iii) strong
conservation of gene sequences among bacterial species that
suggests that prokaryotic-specific drugs might be of broad
spectrum; and (iv) the presence of 20 different ARSs, all of
which represent specific enzymes that can be targeted indi-
vidually or in combination. Finally, the enzymes are soluble,
readily purifiable, express well, and can be assayed in a high-
throughput regime.

Structural analyses and sequence comparisons between
ARSs provide detailed information about active-site differences
that might potentially be exploitable for rational drug design
(11, 13). Whereas ATP-binding determinants are conserved at
the class level, active-site residues that recognize the amino acid
substrate show significant conservation in the ARSs of individ-
ual families (i.e. all AlaRSs, for example) across multiple king-
doms. This suggests a strategy of inhibitor design in which
common elements target the class-conserved ATP-binding
pockets, and variable features target amino acid binding site
residues.

Mupirocin: the natural product ARS inhibitor that validated
ARSs as antibiotic targets

Natural products that inhibit the ARSs were first character-
ized several decades ago, and their chemical frameworks have
served as important lead compounds in the development of
antibiotics and antimalarials. Among the natural products, two
are particularly noteworthy for their importance in the antibi-
otic realm. Pseudomonic acid (Fig. 2A) serves as the basis of the
approved topical antibiotic mupirocin, and ascamycin (Fig. 2B)
(40) represents a starting framework for the rational design of
intermediate based inhibitors (IBIs). By contrast, several other
natural products, including cladosporin (Fig. 2C) (41), borreli-
din (Fig. 2D) (42), and halofuginone (a derivative of febrifugine)
(Fig. 2E) (43), have shown significant promise as inhibitors of
eukaryotic pathogens, including malaria. These are discussed in
great detail in later sections.

An important feature of many of the ARS natural product
inhibitors is that their biosynthesis is accomplished by
polyketide synthesis (PKS) protein complexes encoded by large
gene clusters within the genomes of the Streptomyces or Pseu-
domonas species that most frequently produce ARS natural
product inhibitors (44, 45). A typical indication of the ARS-
specific nature of the inhibitors produced by the PKS modules
of these clusters is that they encode a dedicated ARS gene that is
distinct from the standard ARS ortholog and that confers
immunity to the natural product inhibitor. The modular nature
of inhibitor biosynthesis associated with these PKS clusters

allows for the generation of relatively complex molecules with
extensive modifications and high affinity for their ARS tar-
gets. A drawback is that the large number of asymmetric
carbons and functional group decorations on these mole-
cules provides a high barrier to rapid structure–activity rela-
tionship (SAR) investigations by standard organic chemistry.
As will be discussed below, genome modification and semi-
synthetic approaches have provided novel routes to new
structural variants.

Because of its successful adaptation into an FDA-approved
topical antibiotic (mupirocin), the natural product ARS inhib-
itor pseudomonic acid (PMA) represents one of the most
important of all ARS inhibitors (Fig. 2A). PMA is a polyketide
antibiotic produced by Pseudomonas fluorescens NCIBM 10586
(46) and comprises several different structures (MupA, -B, and
-C) that differ slightly in both the polyketide and fatty acid
portions (47). In all of these structures, the C17 monic acid
moiety is linked to a C9 9-hydroxynonanoic acid fatty acid via
an ester linkage through the hydroxy group. A 75-kb gene clus-
ter in P. fluorescens encodes the PKS machinery that synthe-
sizes PMA, including a mupirocin-resistant IleRS homolog that
protects the producer cell from the effect of the antibiotic (48).
A high cell density is an essential condition for mupirocin syn-
thesis, and the regulon is under quorum-sensing control. PMA
is highly specific for isoleucyl-tRNA synthetase, exhibiting on
the order of 8000-fold selectivity for pathogenic IleRS over the
mammalian enzymes (46).

Several X-ray structures of the IleRS–PMA complex have
been determined (49, 50) and indicate that PMA binds to the
cleft where aminoacyl adenylate formation occurs. The tetra-
hydropyran ring mimics the structure of the adenine ring and
occupies the ATP-binding site, whereas the hydrophobic C12–
C14, C17 terminus of the compound occupies what is normally
the isoleucine pocket. In addition, the C-1� to C-9� 9-hy-
droxynonanoic moiety of PMA interacts with the loop corre-
sponding to the Class I KMSKS signature sequence, maintain-
ing it in a “closed” conformation that blocks the catalytic cycle
(50). Some of these interactions are specific to bacterial IleRS,
which accounts in part for the selectivity of PMA for prokary-
otic targets. Thiomarinol is a variant of PMA that is produced
by the marine bacterium Alteromonas rava sp. nov. SANK
73390 and contains a terminal chromophoric holothin group
(51, 52). This may serve as a new scaffold for the development of
further antibacterial PMA variants.

Although the relatively high affinity of PMA for IleRS and
its selectivity for the prokaryotic enzymes are highly valuable
properties, the labile ester bond in the structure provides for
a relatively low half-life in circulation. Moreover, because of
serum binding, PMA has poor bioavailability. Despite these
limitations, PMA formulated as a 2% suspension in PEG is an
FDA-approved topical antibiotic, mupirocin (commercial
name Bactroban). Mupirocin is effective against skin infec-
tions caused by Staphylococcus aureus, Neisseria gonor-
rhoeae, Neisseria meningitidis, and Haemophilus influenzae.
Repeated use of mupirocin in the clinic typically leads to the
selection of resistant microorganisms via two distinct routes
(53). The first is low-level resistance, which occurs via selec-
tion for drug-resistant versions of the resident chromo-
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somally encoded IleRS. The higher-level resistance is medi-
ated by a plasmid shared by resistant bacteria that encode for
a eukaryotic homolog of IleRS that is refractory to high levels
of mupirocin. Whereas mupirocin represents a significant

“proof of principle” compound for anti-ARS therapeutics, it
suffers from the facile development of resistance when
applied repeatedly, a concern that is common to other
potential ARS-directed antibiotics (54).

Figure 2. Structures of representative natural and synthetic ARS inhibitors. A, pseudomonic acid parent structure; B, ascamycin (for ascamycin, R � �CH3;
for dealanylascamycin, the alanyl moiety is absent altogether); C, cladosporin; D, borrelidin; E, halofuginone; F, generalized aminoacyl-adenylate, which is the
basis of IBIs; G, REP8839; H, AN2690; I, microcin C; J, agrocin TM84; K, albomycin.
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The success of the parent compound has inspired synthetic
efforts to develop versions of mupirocin with a higher affinity
for the parent IleRS. One strategy involves the generation of
hybrids between pseudomonic acid and derivatives of the Ile-
AMP adenylate. Some of these rationally designed variants of
mupirocin (55–57) exhibit extremely high affinity for IleRS (Ki
�0.001 nM) (56). In addition to PMA, other natural product
IleRS inhibitors based on chemical frameworks distinct from
PMA include SB-203207, which was isolated from Streptomyces
spp, (58, 59). These derivatives showed nanomolar inhibition
but low selectivity for bacterial species and low antibacterial
activity.

In addition to PMA and the aforementioned natural prod-
ucts that target eukaryotic pathogens, there are natural product
ARS inhibitors whose potency/toxicity profiles have discour-
aged more extensive investigation. Among the examples of this
class included in Table 1 are indolmycin, which targets TrpRS;
ochratoxin, which targets PheRS; and cis-pentacin, which tar-
gets ProRS. By and large, these molecules are reasonably potent
inhibitors of both pathogenic prokaryotic and host eukaryotic
enzymes, but the specificity for the former is too low to merit
deeper investigation. Despite the relatively simple chemical
structures of some of these compounds, none have been inves-
tigated by SAR chemistry to see whether the toxicity to host
cells can be attenuated.

Identification of antibiotic leads derived from ARS inhibitors
by use of rational design and high-throughput screening

The significant challenges associated with synthesizing vari-
ants of the aforementioned natural products have limited their
exploitation as potential therapeutics. As a result, much of the
prior efforts by pharmaceutical and biotech companies to ther-
apeutically target the ARSs have relied on two basic approach-
es: (i) rational design approaches based on bona fide amino-
acylation reaction intermediates, and (ii) high-throughput
screening (HTS) of unbiased chemical libraries of high com-
plexity. Although both strategies have been used successfully to
identify inhibitors of prokaryotic ARSs with relatively small
inhibition constants (Ki �50 nM), neither has yielded an antibi-
otic approved for use in the clinic. As will be seen in a later
section, an unbiased phenotypic screening approach was ulti-
mately successful in the generation of a clinically useful therapy
for a eukaryotic pathogen.

Many of the rational design strategies begin with the amino-
acyl adenylate (Fig. 2F), an obligatory intermediate in the ami-
noacylation reaction catalyzed by all ARSs, irrespective of class.
There are two inherent problems with a specific aminoacyl-
adenylate for a particular ARS as a potential lead for therapeutic
inhibitors. First, the mixed anhydride acylphosphate bond of
the intermediate is readily susceptible to hydrolysis. Second,
the charged and polar nature of the intermediate will preclude
passage across cell membranes without the intervention of a
specific transporter. By replacing the phosphate with nonhy-
drolysable “biosteres” that retain the tetrahedral geometry of
the phosphate, the potential hydrolysis of the acylphosphate
group is eliminated (39). Key functional groups that interact
with the enzyme can be retained. Chemical linkers can be cho-
sen to recapitulate the negative electron density around the

acylphosphate, as well as preserve the molecular dimensions of
the adenylate.

The amino acid alkyl adenylates and the aminoacyl sulfa-
mates represent two classes of IBIs that have been investigated
systematically. IBIs bind to their active sites of their respective
ARSs with affinities in the high picomolar to low nanomolar
range. These dissociation constants are 2–3 orders smaller than
that of the natural substrates ATP and amino acid (10). Amino
alkyl adenylates leave the phosphate intact but substitute the
carbonyl with a methylene group to minimize hydrolysis (60,
61). The inhibition constants for amino alkyl adenylates range
from a Ki(Met) of 4.7 nM for E. coli MetRS to a 60% inhibition at
300 mM for S. aureus ThrRS (61). Overall, the amino alkyl
adenylates were found to be much better inhibitors of Class I
enzymes than Class II enzymes, likely because the carbonyl oxy-
gen makes a critical interaction in the Class II ARS active site
(61).

The sulfamoyl-based IBIs in which the anhydride linkage is
replaced by a 5�-O-sulfonamide moiety are similarly potent
inhibitors. These are also referred to as aminoacyl sulfamoyl
adenosine derivatives, or as AA-AMS with the AA replaced by
the corresponding amino acid. As seen with amino alkyl adeny-
lates, they exhibit virtually no preference for bacterial over
human enzymes. Of note, the sulfamoyl analogs are chemically
synthesized versions of the natural product ascamycin (Fig. 2B),
but lack the chlorine atom. Aminoacyl adenylate sulfamoyl ana-
logs have been valuable co-crystallization aids with ARSs and
useful proxies for the adenylate in investigations of its effect on
tRNA recognition (62–65). In general, the sulfamoyl-IBIs cor-
responding to the adenylates for ARS charging nonpolar amino
acids (including isoleucyl-, leucyl-, and valyl-tRNA synthetase)
are relatively potent inhibitors of pathogenic prokaryotic
enzymes (i.e. from S. aureus) with IC50 values in the range of
2–30 nM (66). Although less work has been done to characterize
the sulfamoyl adenylates based on more polar amino acids, the
Glu-AMS analog proved to be a more potent inhibitor for the
respective E. coli GluRS then Gln-AMS for its cognate enzyme.
These differences were interpreted to suggest that Glu-AMS is
a better transition state analog for its cognate enzyme than Gln-
AMS for GlnRS (67). Because of their poor uptake by cells,
comparatively little work has been done investigating the in
vivo use of these compounds (68).

As noted above, a major obstacle to clinical use of the sulfam-
oyl adenylate-based IBIs is their relatively poor selectivity for
prokaryotic pathogen ARSs versus the ARSs of the host. To
obtain better selectivity for prokaryotic enzymes, the adenine in
IBIs has been substituted by tetrazoles and other heterocycles,
producing better selectivity for the E. coli enzyme, but not
increasing overall potency. One successful result of this strategy
was the compound CB-432, which exhibited 60 –1100-fold dis-
crimination for the pathogenic IleRS enzyme (10). CB-432
inhibited growth of S. aureus, Streptococcus pyogenes, and
E. coli in culture with MICs in a range of 0.5–10 �g/ml. Because
of poor bioavailability, limited success was achieved in mouse
models, with some 98.5% of the drug remaining bound to albu-
min (69). Although this example highlights the potential utility
of modifying the IBI framework, problems with bacterial
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uptake again proved to be a barrier limiting the utility of these
compounds as actual drugs (70, 71).

More recently, the IBI approach has been augmented by
exploring modifications to the basic chemical framework,

employing in silico modeling against ARS active sites as a
screening tool to tailor functional group changes. Recent exam-
ples include inhibitors of ThrRS and LeuRS, which featured a
benzene sulfonamide core and extra substituents that confer

Table 1
Natural product and synthetic inhibitors of aminoacyl-tRNA synthetases
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specificity for the ARS amino acid– binding pockets (72, 73). In
the case of the compounds targeting LeuRS, the benzene sul-
fonamide scaffold was improved by docking simulations
employing the E. coli LeuRS structure and by the use of isother-
mal titration calorimetry to assess binding affinity. By adding
amino pyridine or amino pyrimidine substituents to the meta
position of the benzene sulfonamide, leads could be obtained
with low nanomolar affinity for E. coli LeuRS and micromolar
affinity to human LeuRS. Of interest, adding lipophilic substitu-
ents improved the binding profile, such that enthalpic contri-
butions to binding predominate. For the final compounds, the
best MICs were obtained with E. coli among representative
Gram-negative organisms; there was virtually no inhibition of
S. aureus.

Other modifications of the IBI scaffold have been tested to
limit hydrolysis of the acylphosphate group in the adenylate,
which might improve stability and bio-availability. The most
interesting of these involves substituting the adenosine moiety
with 3-deazaadenosine, thereby blocking a potential side reac-
tion involving the base N3 group. The side reaction leads to
hydrolysis of the sulfamoyl moiety, and formation of N3,C5�-
cycloadenosine (74). Although the resulting derivatives (abbre-

viated here as aaS3DAs) of Class II ARS adenylates demon-
strated very little inhibitory activity, excellent potency was
achieved with the leucyl version, essentially equivalent to the
parent Leu-AMS. Interestingly, the lack of inhibition of Class II
ARSs by aaS3DAs could be due to the stabilizing interactions
between the N3 of adenine and a conserved carboxylate and
polar backbone functionality in motif 3. Whereas Class I-based
aaS3DA versions initially appeared more promising, the leucine
aaS3DA failed to inhibit growth of any of the members of a
panel of Gram-positive and Gram-negative bacteria, essentially
replicating prior observations with unmodified AA-AMSs (71,
74 –77).

Despite the failure to obtain a “breakthrough” lead com-
pound by this approach, an important conclusion from these
studies is that use of advanced modeling and theory tools such
as quantum mechanical chemical calculations can provide
additional insights into the interactions of these compounds
with ARS active sites, thereby rationalizing the significant dif-
ferences in Class I versus Class II ARS-targeted compounds
(74). Such approaches extend the insights from existing ARS–
inhibitor complexes, whose numbers are growing in the RCSB
Protein Database. Many ARS complexes with aminoacylation

Table 1— continued
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active-site inhibitors have been reported, particularly those of
IleRS, TyrRS, TrpRS, ProRS, LysRS, and ThrRS with their spe-
cific molecules (72, 78, 79). Structures are also available for the
IleRS–PMA complex (49, 50). A common theme for these
inhibitors is that the sites of inhibitor binding overlap with
binding sites for the amino acid, ATP, or both (Fig. 3C). The
only case where the binding site clearly overlaps with a tRNA-
specific subsite is in the case of borrelidin (Fig. 3C). Interest-
ingly, binding of pseudomonic acid and borrelidin to their
respective active sites prevents full cleft closure seen with the
AA-AMS derivatives (56, 80 – 82).

As an alternative to the rational design of ARS inhibitors
using chemical scaffolds derived from IBIs, complex chemical
libraries can be screened to identify hits based on their ability to
inhibit the aminoacylation reaction, as measured using scintil-
lation proximity assay technology. In one approach, a chemical
compound collection of known structures was screened to
identify features reminiscent of an AA-AMP adenylate (83).
Using E. coli MetRS as a target, hits of medium potency (IC50 �
237 nM) were obtained. Alternatively, completely unbiased
approaches have been used. Screening of a modest complexity
chemical library (�50,000 compounds) against 17 synthetases
from S. aureus and Enterococcus faecalis produced hits for 5 of
17 ARSs that were derived from more than two distinct chem-

ical structural classes of inhibitors. Whereas more hits were
obtained for those ARSs that aminoacylate hydrophobic amino
acids, such as PheRS, the IC50 values of these compounds were
still relatively modest, in the low micromolar range (11).

Perhaps the greatest impact of HTS screening in the ARS
domain has been to identify new inhibitor frameworks that
might not have been predictable on the basis of prior structure
knowledge. For example, quinoline carboxylic derivatives form
the basis of several leads that have been pursued in detail,
including one that passed into clinical trials. Among the first
quinoline carboxylic inhibitors was a compound that targets
the Candida albicans ProRS with high affinity (IC50 � 5 nM)
and good selectivity for the pathogen enzyme relative to the
human enzymes (84). Soon thereafter, the important quin-
olone derivative REP8839 was developed by modification of
an earlier fluorovinylthiophene compound identified from
an HTS program targeting MetRS (85). REP8839 (Fig. 2G)
blocks the methionine activation reaction by a mechanism
uncompetitive with ATP and showed promising action
against Gram-positive S. aureus, Streptococcus pneumoniae,
S. pyogenes, and Enterococcus in phase 1 clinical trials. Activ-
ity was substantially lower on human cytoplasmic and mito-
chondrial MetRS (86). An alternative dual strategy that was
tested featured the combined use of mupirocin and REP8839

Figure 3. X-ray structures of selected ARS–inhibitor complexes. In each case, the secondary structure of polypeptide chain is depicted in ribbon represen-
tation (green), and the inhibitors are depicted in stick representation (blue or yellow). Selected active-site residues are shown in each panel, including the
conserved motif 2 arginine. A, complex of P. falciparum LysRS with lysine and cladosporin (cyan) (PDB code 4YDQ). B, complex of HF with Homo sapiens ProRS
(PDB code 4HVC). C, complex of H. sapiens ThrRS and borrelidin (PDB code 4P3N); D, complex of E. coli IleRS with mupirocin (PDB code 1JZS).
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as a topical antibacterial (39). This approach showed prom-
ise as a means to limit the emergence of resistant pathogens
(see below) (87).

As of this writing, major pharmaceutical concerns appear
to have largely suspended the search for new antibiotics tar-
geting the ARSs, creating opportunities for the academic
sector and earlier stage companies to continue this
approach. Such efforts benefit from the accumulation of ARS
structural and mechanistic information and the highly
robust screening and new assay technologies that are avail-
able (88). Among the most promising work in this area is the
effort to target a variety of ARSs from Pseudomonas aerugi-
nosa, including HisRS, GluRS, and PheRS. Inhibitors with
IC50 values in the 2–20 �M range have been identified and
exhibit a bacteriostatic mode of inhibition when used to
challenge a panel of pathogenic bacteria (89 –92). These
results suggest that only a relatively small portion of ARS
inhibitor chemical space has been identified and that more
potent compounds await discovery.

Trojan horse natural product antibiotics: a novel solution to
the cell-barrier problem

As noted above, a major chief limitation of IBIs is their poor
uptake by bacterial cells. An important new class of natural
products that address this problem are the so-called “Trojan
Horse” inhibitors. The name alludes to a two-part structure
consisting of an uptake moiety that is readily cleaved off upon
entry into the cell (the “Trojan Horse”) and a nucleotide toxin
moiety (the “warhead”) that is a stable chemical analog of the
AA-AMP intermediate. Microcin C (Fig. 2I) is a well-character-
ized representative of this antibiotic family produced in the
Enterobacteriaceae that feature a post-translationally added
heptapeptide moiety as the entry component and an aspartyl-
AMP derivative as the warhead (93, 94). The peptide is modi-
fied by a formyl group at the N terminus and links to an aden-
osine derivative via a phosphoramidate bond. In contrast to the
standard aminoacyl adenylate, the phosphate is modified by a
3-aminopropyl group. This latter group binds to a pocket adja-
cent to the aspartyl site. The transport of microcin C is facili-
tated by the permease YejABEF transporter. Once inside the
cell, the peptide is processed by the processive digestion and
peptidase action of PepA, PepB, and PepN and other enzymes,
including deformylase and peptidases. These release a stable
adenylate analog inhibitor that competes with aspartate for
binding to AspRS, with the 3-aminopropyl group binding to a
pocket adjacent to the aspartyl site (95). Only the processed
form is inhibitory. Microcins are bacteriostatic inhibitors of
Gram-negative bacteria, including E. coli, Klebsiella, Salmo-
nella, Shigella, and Proteus (14). Of interest, the resistance of
P. aeruginosa strains against this antibiotic arises from the
activities of MccE and MccF, which catalyze acetylating and
peptide hydrolase functions, respectively (96, 97). Both serve to
provide resistance by modifying the antibiotic.

Agrocin TM84 (Fig. 2J) is a Trojan Horse inhibitor of LeuRS
and targets Agrobacterium radiobacter K84 (98). Agrocin is a
9-(3�-�-D-2,3,)threopentafurano adenine nucleoside phospho-
ramidate conjugate. The targeting group is a D-glucofuranosy-
loxy phosphoryl moiety (99) that helps the antibiotic mimic the

uptake of agrocinopine through the opine transporter by a sus-
ceptible host. (Opines are low-molecular-weight nitrogen-rich
compounds produced by parasitic bacteria of the genus Agro-
bacterium. They accompany infection by the bacteria, which
produces plant crown gall tumors. The opines are produced
biosynthetically by the bacteria and represent a source of nitro-
gen and energy.) The adenylate moiety, a potent LeuRS inhibi-
tor, is referred to as TM84 and features a stable 5-N-acylphos-
phoramidite bond rather than the standard phosphoanhydride.
Interestingly, this molecule does not inhibit the activation reac-
tion and requires the participation of the tRNA for inhibition
(100). The agrocin 84 –producing strain carries a protective
version of LeuRS (AgnB2) (98, 101) that is analogous to the
corresponding ARSs encoded in the Pseudomonas and Strepto-
myces genomes that carry protective alleles providing immu-
nity against pseudomonic acid and borrelidin, respectively.

The last example of a Trojan Horse anti-ARS inhibitor is
albomycin (Fig. 2K), which is produced by a complex pathway
in Streptomyces sp. ATC700974 (102). The structure of albomy-
cin consists of an aminoacyl-thioribosyl pyrimidine toxin that is
linked to a siderophore-like moiety that promotes cellular
uptake. Some variations on the basic structure are known (103).
The siderophore moiety confers transport via a ferrichrome
ABC transport system. After transport, peptidase N cleaves the
peptide bond of albomycin, releasing the toxin. The resulting
moiety, SB-217452, inhibits SerRS with a Ki in the range of 8 nM

(59, 104, 105). This framework has recently proven amenable to
modification by medicinal chemistry, opening the door to the
synthesis of other derivatives (106). As seen with other ARS
inhibitor natural product–producing strains, a special SerRS
allele provides immunity against the toxin.

Because of their apparently unfettered ability to promote
transfer of high-affinity ARS inhibitors (the “warheads”) into
cells, these Trojan Horse antibiotics represent an especially
promising avenue for future ARS therapeutic development.
Although further work will be necessary to define the best
approaches to achieve site-specific modification and to define
their cellular tropism, the high potency already exhibited
underscores the potential validity of these anti-ARS inhibitors.

Targeting eukaryotic pathogens with ARS inhibitors

Eukaryotic parasites exert a heavy disease burden on man-
kind worldwide, particularly in less developed countries.
Among the most important pathogens worldwide are the Api-
coplexans (including Plasmodium, Toxoplasma gondii, and
Cryptosporidium) and the nematodes/platyhelminths, which
collectively infect nearly a billion people. A representative dis-
ease of the latter is lymphatic filariasis, which is caused by the
tropical nematodes Wuchereria bancrofti, Brugia malayi, and
Brugia timori. No vaccines are available for the majority of
these diseases. Antiparasitic drugs are compromised by the
development of widespread drug resistance (107, 108). Signifi-
cantly, ARS inhibitors show promise against the eukaryotic par-
asites that are the causative agents of a number of these dis-
eases, representing a critical new area of research.

All of the pathogens referenced above are intracellular obli-
gate parasites, with tropism for specific cell types that include
erythrocytes, epithelial cells of the intestine, and other tissues.
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The dependence of these pathogens on translation function
highlights the ARSs as plausible anti-parasitic targets. How-
ever, serious challenges include the extent of sequence conser-
vation between the ARSs of a eukaryotic pathogen and a
eukaryotic host, and the fact that some of the pathogens pass
through relatively quiescent life stages that are difficult to
address with inhibitors that attack protein synthesis. Despite
these challenges, the presence of specialized organelles (like the
apicoplast of the apicoplexans) in some of these pathogens that
are absent in mammalian cells does present opportunities for
therapeutic targeting.

The ARSs of eukaryotic pathogens possess multiple potential
target sites, including 1) the synthetic/catalytic domain–
binding pocket; 2) the editing domain, if present; 3) anticodon/
tRNA– binding area; 4) allosteric binding sites; and 5) parasite-
specific domains (109). Potential eukaryotic pathogens suitable
for therapeutic targeting by ARS inhibitors range from rela-
tively simple fungal infections to complex tropical diseases like
malaria that involve multistage life cycles. The first ARS inhib-
itor specifically targeting a eukaryotic enzyme to gain success in
the clinic is the fluorinated benzoxaborole AN2690 (also
known as tavaborole; trade name Kerydin) (Fig. 2H). This
LeuRS inhibitor was first identified in a yeast phenotypic screen
of a library of boron-containing compounds, and its mecha-
nism of action features the formation of a covalent bond
between the boron and the diol of the tRNA’s Ade-76 ribose in
the LeuRS-editing active site (110). AN2690 is the first example
of an anti-ARS drug that targets the editing site of an ARS, and
it remains the best “proof of principle” of the therapeutic poten-
tial of the ARSs as targets for eukaryotic pathogens. When
applied topically, the drug readily penetrates and effectively
suppresses the growth of yeast and molds associated with ony-
chomycosis (toenail infection).

Oxaboroles have also shown promise as agents against
eukaryotic pathogens, e.g. African trypanosomiasis (111).
Efforts to expand the application of oxaboroles to prokaryotic
pathogens have had mixed results. A phase I clinical trial with
epetraborole (GSK2251052/AN3365) against E. coli responsi-
ble for urinary tract infections had to be suspended because of
the rapid emergence of resistant bacteria (112). More recently,
a library of oxaboroles was screened against Mycobacterium
tuberculosis, producing hits with MICs in the range of 1–2
�g/ml and IC50 values against LeuRS in the range of 0.64 –3.5
�M (113). Although the best hits did produce decreases in lung
and spleen cfu in a mouse TB model, the decreases were not as
great as those achieved with the first line drug isonicotinylhy-
drazide. These promising results indicate the possible clinical
application of oxaboroles against TB, perhaps as part of a
potential combination therapy incorporating current frontline
drugs. AN2690 and all its derivatives are highly specific for leu-
cyl-tRNA synthetases, and efforts to extend the compounds to
other tRNA synthetases have not been successful.

Despite the difficulties in trying to apply the benzoxyborole
inhibitor framework to other ARSs, we consider AN2690 to be
a major milestone in ARS inhibitor development, both as the
first successful antifungal agent, and as a proof of principle
example of the potential value of specifically targeting an ARS-
editing site.

Malaria as a target of anti-ARS compounds

A large number of natural products target various ARSs in
Plasmodium falciparum (the causative agent of malaria), offer-
ing promise that this pathogen may well be the next eukaryotic
target that yields a successful anti-ARS therapeutic (114, 115).
Malaria proceeds through multiple stages during its develop-
ment, starting first with an insect form (the sporozoites), which
upon transmission attacks liver cells (116). Following matura-
tion, the sporozoites mature into schizonts that are released
from the cells as merozoites. This form invades red blood cells
that multiply asexually to form ring stage trophozoites. These
can cycle as schizonts or release gametocytes. A total of 37
different potentially targetable ARS genes have been identified
in Plasmodium, including 14 in the cytoplasm, �20 in the api-
coplast, and several others that are localized to multiple com-
partments (38). The dual localization of AlaRS, GlyRS, CysRS,
and ThrRS in the cytoplasm and apicoplast renders them tar-
gets of potential value (117). Accordingly, there are many ARS
targets in Plasmodium, and multiple stages that may be vulner-
able to therapeutic interdiction.

Natural product inhibitors of three different cytoplasmic
ARS enzymes (GluProRS, ThrRS, and LysRS) have been
explored as leads for antimalarial therapeutics. Febrifugine, a
plant alkaloid from Dichroa febrifuga Lous., has long been part
of Chinese pharmacopoeia, and extracts from D. febrifuga pro-
vide antimalarial activity against both chloroquine-sensitive
and chloroquine-resistant strains (118, 119). Because of the
harsh side effects associated with febrifugine, programs to syn-
thesize less toxic variants led to the development of halofugi-
none (7-bromo-6-chloro-3-[-3-(3-hydroxy-2-piperdinyl-)-2-
oxopropyl]-4(3H)-quinazolinone, abbreviated as HF) (Fig. 2E).
In addition to its antimalarial properties, HF is an FDA-ap-
proved feed additive to suppress coccidiosis in poultry produc-
tion (120). HF binds with high specificity to the prolyl-tRNA
synthetase active site and is a potent inhibitor of proline incor-
poration in protein synthesis (43). The interaction of HF with
glutamyl-prolyl-tRNA synthetase (EPRS) requires the presence
of ATP, which stabilizes the local conformation of the active
site to promote drug binding (121). The various moieties of HF
mimic chemical features of the proline substrate and the 3� end
of the tRNA.

HF is active on all three stages of malaria (122), but HF-
resistant strains of P. falciparum can arise via mutations in the
portion of the EPRS gene encoding ProRS (123). Consistent
with the binding of HF to the proline-binding site of ProRS, the
addition of excess proline to culture media reduces the sensi-
tivity of malarial parasites to HF. The use of HF in the clinic is
limited more by the toxicity of the compound to animal cells
than by the efficacy of killing of the malarial parasites them-
selves. By generating a secondary alcohol at the position in HF
that is normally a ketone, a new lead (2�S,2R,3S)-halofuginol)
has been generated with 65-fold better selectivity for P. falcip-
arum, while still retaining excellent potency in the standard
murine Plasmodium berghei ANKA strain liver stage model. HF
also elicits a variety of stress responses in animal cells linked to
amino acid starvation that may ultimately prove to be useful for
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other clinical indications, including autoimmunity, fibrosis-re-
lated diseases, and cancer (described in more detail below).

Another important anti-ARS natural product antimalarial is
borrelidin (BN) (Fig. 2D), a C18 polyketide macrolide antibiotic
produced in Streptomyces rochei. BN was originally discovered
as a broad-spectrum inhibitor of viruses and bacteria (124, 125).
More recently, BN has been shown to be a potent antifungal
(126, 127). BN was also independently identified in a screen of
natural antimalarials (128). Despite these promising activities,
BN exhibits toxicity to animal cells, providing a deterrent to
clinical exploitation.

The most important target of BN is ThrRS, although there
has been debate about whether or not interactions with non-
ThrRS targets in part explain the action of BN on animal cells
(129). BN exhibits slow tight-binding kinetics with ThrRS in
vitro with a Ki in the low nanomolar range (129, 130), and its
binding site constitutes a relatively large portion of the ThrRS
active site that overlaps with the amino acid and tRNA acceptor
end– binding sites (Fig. 3C) (82). The competition between BN
and threonine for the ThrRS active site accounts for the induc-
tion of the amino acid starvation response by BN, which can
lead to cell cycle arrest and apoptosis above a critical BN con-
centration threshold that depends on cell type (130, 131).

BN is a strong inhibitor of Plasmodium growth in culture,
targeting the cytoplasmic Plasmodium ThrRS with high
potency and producing immediate inhibition of parasite
growth (128). Pilot experiments in which mice infected with
malaria were treated with borrelidin also produced promising
results (132). To mitigate the toxicity of BN to animal cells, a
novel strategy (“mutasynthesis”) combining rational engineer-
ing of Streptomyces strains and culturing cells with primer com-
pounds has been used to produce derivatives of borrelidin that
exhibit reduced toxicity with the human enzymes yet still
potently retain other BN properties (133). When compared
against a set of known ARS inhibitors (including mupirocin,
cispentacin, and benzoxaboroles), a number of these BN deriv-
atives exhibited very high potency (0.97 nM) against in vitro
cultures of P. falciparum (134 –136). New versions of BN have
been isolated from marine organisms (137, 138), and new meth-
ylation variants have been developed by genetic modification of
individual PKS modules in S. rochei producer strain (139). In
addition to inhibition of malaria, BN exerts other physiological
effects (described in later section) that are therapeutically
significant.

The third ARS directed natural product is cladosporin (CS),
originally identified in an unbiased screen of natural products
that showed highly potent (�50 nM) inhibition of blood and
liver stages of P. falciparum (140). The structure features a 2,6-
disubstituted tetrahydropyran fused to an isocoumarin deriva-
tive (Fig. 2C). CS inhibits blood and liver stage P. falciparum at
nanomolar concentrations (140). Cladosporin is produced by
fungal genera that include Cladosporium, Aspergillus, and oth-
ers, and it had been previously shown to have a wide range of
antimicrobial, insecticidal, and counter-inflammatory effects
(41). The biosynthesis is accomplished via the action of a reduc-
ing/nonreducing iterative type I polyketide synthase complex
encoded by a large biosynthetic gene cluster (45). As with other
natural products, the cluster encodes a paralog of LysRS whose

active-site substitution pattern is consistent with immunity to
cladosporin. (The two other cladosporin LysRS orthologs do
not contain such substitutions.) Based on the results of in silico
docking experiments, cladosporin binds to the ATP-binding
site of the cytoplasmic P. falciparum LysRS (141). Increasing
concentrations of lysine do not affect the inhibition properties.
Whereas the high selectivity of CS for the pathogen enzyme
over the mammalian enzyme highlights its potential as an anti-
malarial, its therapeutic exploitation has been limited by poor
bioavailability. Efforts are also underway to target the apico-
plast LysRS by use of synthetic compounds that mimic the
LysRS adenylate.

The final ARS inhibitor natural product framework with
potential against malaria is PMA (mupirocin), which inhibits
growth of blood stage P. falciparum at nanomolar concentra-
tions (142). This effect has been attributed to targeting of the
apicoplast function. Unfortunately, mupirocin provides only
minimal protection to P. berghei–infected mice, because of its
low bioavailability. Given that compounds that induce amino
acid starvation response for isoleucine (the apicoplast IleRS is a
particularly sensitive ARS in this regard (143)) are potent anti-
malarials, other inhibitors that could potentially be explored as
antimalarials include thiaisoleucine and icofungipen (Table 1).

Inspired by the promising results with natural product inhib-
itors, other recent efforts have used synthetic organic chemistry
to identify new antimalarials from ARS inhibitors. The single
AlaRS gene in Plasmodium is a dual-function enzyme that is
essential for both cytosolic and apicoplast translation. By use of
homology modeling to derive a Plasmodium AlaRS structure
and docking simulations, a lead compound (4-(2-nitro-1-pro-
penyl)-1,2-benzenediol) was obtained that could inhibit para-
site growth with minimal effect on the mammalian enzyme
(117). In addition, a recent high-throughput screening effort led
to the identification of a series of bicyclic azetidines that target
the cytoplasmic P. falciparum PheRS (144). Proliferation of
malaria in the presence of these compounds is effectively
blocked after only a single dose, and multiple stages of the par-
asite life cycle appear to be inhibited. Given the availability of a
robust screening assay and the ability to perform SAR, these
compounds should provide an excellent platform on which to
develop improved therapeutics.

ARS inhibitors of nematode enzymes

In addition to malaria, another major class of eukaryotic
pathogens with potentially targetable ARSs are the nematodes.
Significant human pathogen infections include ascariasis, tri-
churiasis, hookworm, enterobiasis, strongyloidiasis, filariasis,
trichinosis, and angiostrongyliasis (rat lungworm disease).
Because of its role as a major immunodominant antigen, AsnRS
from B. malayi has been investigated as a promising target in
the search for therapeutics against lymphatic filariasis (145,
146). By HTS and docking simulations, a number of sub-micro-
molar inhibitors have been identified (147). These can poten-
tially be further optimized by incorporating new structural
data. Other inhibitors of the B. malayi AsnRS have been iden-
tified based on a pre-transfer editing assay (148). Some of these
compounds potently inhibit the B. malayi AsnRS enzyme and
kill adult B. malayi. A second important nematode disease is
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African trypanosomiasis, for which the Trypanosoma brucei is
the pathogen responsible. For this pathogen, a number of ARSs
show promise as targets (149). The ileRS gene is essential for
T. brucei growth, and inhibitors that resemble the Ile-AMP
intermediate (e.g. NSC70442, reported in Ref. 109) are able to
cross the blood– brain barrier and cure T. brucei–infected mice
with low toxicity to the host (150). LeuRS from T. brucei repre-
sents another major nematode target, and homology modeling
in silico screening programs produced a few modest affinity hits
(151). The best compound, an N-(4-sulfamoylphenyl)thiourea,
could be predicted to make multiple hydrophobic and hydro-
gen bond interactions with the active site and produce a
respectable IC50 of 1.1 �M. Despite good selectivity for the
pathogen enzyme, these compounds have shown little effect in
culture. Benzoxaboroles structurally related to AN2690 have
been employed as lead compounds to target LeuRS from T. bru-
cei, with IC50 values in the range of 1.6 �M (152). More recently,
some of these same compounds have been tested against Cryp-
tosporidium and Toxoplasma (153).

Targeting noninfectious diseases with tRNA synthetase
inhibitors

The relationship between modulation of protein synthesis
and modulation of the immune system is complex. The expan-
sion of clonal B cell populations is a key part of the adaptive
immune response, and B cells typically exhibit high tRNA syn-
thetase expression. Increased ARS expression may be linked to
a potential role for the ARS in antigen presentation (154). Not
surprisingly, both natural and synthetic tRNA synthetase inhib-
itors in the context of human cells are immunosuppressive.
This property was exploited in the development of aminoacyl-
sulfamide IBI derivatives targeting the proliferative skin disease
psoriasis (69). Screening efforts to identify compounds that
inhibit epidermal growth factor– dependent responses of
mouse epidermal cells identified reveromycin, an inhibitor of
IleRS, as a hit (155). In a more systematic exploration of this
phenomenon, Van de Vijver et al. (156) assessed the immuno-
suppressive properties of AA-AMS compounds based on all 20
ARS adenylates. These agents inhibited the allogeneic mixed
lymphocyte reaction, a clinically approved test used as a proxy
to assess transplant rejection. Mupirocin exhibited no immu-
nosuppressive effect up at least 10 �M and served as the nega-
tive control. Combinations of multiple AA-AMSs and rapa-
mycin were also tested to look for synergism. When the
compounds were arranged on the basis of mixed leukocyte/
lymphocyte reaction IC50, the most potent were Asn-AMS,
Cys-AMS, and Met-AMS (0.3– 0.5 �M), and the least potent
were Ile-AMS, Tyr-AMS, and Val-AMS (5.6 �M).

Insights into how ARS inhibitors suppress immune re-
sponses have emerged from work demonstrating that natural
product inhibitors activate the amino acid starvation pathway.
A key observation is that treatment of pro-inflammatory Th17
cells with HF or borrelidin increases the concentration of
uncharged (nonaminoacylated) tRNA via inhibition of ARS
aminoacylation function. This triggers autophosphorylation of
the amino acid starvation sensor kinase GCN2, which phos-
phorylates the eIF2� initiation factor as part of a generalized
activation of the integrated stress response (43, 131, 157, 158).

Th17 differentiation is then inhibited, effectively blocking the
ability of the host to mount an effective immune response. At
higher levels, these compounds can induce apoptosis, which
accounts for their toxicity to mammalian cells.

Chronic inflammatory reactions can lead to fibrosis, which is
characterized by high levels of production of extracellular
matrixproteins(especiallycollagen)bymyofibroblasts.Thepro-
cess is under tight control by TGF-� and is further regulated by
matrix metalloproteases (MMPs) and their inhibitors. HF
reduces collagen gene expression, and this effect along with
stimulation of tissue inhibitor of MMPs explains the ability of
HF to reduce fibrosis (159). The biological basis of the HF effect
on autoimmune diseases is not fully understood. The specific
mechanism may be a consequence of HF’s ability to promote
the amino acid starvation response. Alternatively, it may
involve the phosphorylation of the SMA- and MAD-related
protein 3 (SMAD3), thereby inhibiting TGF-�– dependent
transcription control. However, no evidence of a direct interac-
tion between HF and SMAD3 has been reported. The discovery
of a new class of ProRS inhibitors that is unrelated to HF and yet
still exhibits anti-fibrotic activity provides one line of evidence
that the anti-fibrotic properties of HF are a direct function of
inhibition of ProRS and not the result of interaction with an as
yet undefined target (160).

ARS inhibitors: a new frontier for anti-cancer therapies

Noncanonical functions reported for mammalian ARSs
include functions as potential cytokines, regulators of angio-
genesis, and as regulators of gene expression (161, 162). These
novel functions may account for connections between ARSs
and cancer that are emerging (163). Although there have been
no reports associating specific mutations in ARSs with
increased predisposition for cancer, there are initial indications
that changes in the expression levels of specific ARSs might
increase or decrease the risk of specific cancers. Although a
priori one might predict that the levels of all ARSs might rise in
fast-growing tumors as a reflection of the need for rapid syn-
thesis of cellular biomass, the emerging literature does not sup-
port this view. Instead, specific ARS genes are differentially
induced or repressed, depending on the specific cancer.

In one of the first such examinations, elevated levels of TrpRS
levels were found to be linked to better survival outcomes in
colon cancer (164). To examine possible links between ARSs
and cancer more systematically, a bioinformatic survey exam-
ined ARSs and ARS-interacting partners for their potential
value as prognostic markers of particular cancers (163). The
expression profiles and copy number variations in various ARS
genes were compared with those of known cancer-associated
genes (CAGs) derived from the National Institutes of Health,
NCI, cancer gene index. Taking advantage of protein–protein
interaction data, the authors then developed a network map
linking the various ARSs and ARS-associated proteins to the
CAG products, and then arranged the map to emphasize poten-
tial Gene Ontology (GO)-associated biological processes. Such
maps might serve as a guide to understand emerging regulatory
properties of ARSs, which might be strictly dependent on ami-
noacylation. In a follow-up study applying this approach to glio-
blastoma multiforme (GBM), expression of several ARSs
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(ValRS, GlnRS, PheRS, AsnRS, and CysRS) were found to be
correlated with improved survival (165). In the second level of
analysis, interaction networks featuring these ARSs were
defined for several different GBM subtypes; of note, differences
in the molecular interactions of CysRS and PheRS were
observed for different subtypes. These studies represent an
excellent guide for future efforts to mine the large trove of can-
cer gene expression data and to seek out new links between
ARSs and specific cancers.

Alternatively, publicly deposited microarray data can be
merged with in-house analyses of ARS expression levels in can-
cer tissue sections and serum samples to test the role of specific
ARSs in cancer. Using this approach, levels of ThrRS (TARS)
have been found to be prognostic for risk of ovarian cancer
(166) and correlate with a Gleason score (a pathological score
for grading tumor aggressiveness) of prostate cancer in the case
of prostate cancer. The potential prognostic value of TARS may
be linked to its ability to stimulate angiogenesis, described
below. More recently, data from mouse model and patient tis-
sues suggest that high MetRS levels may be a marker for
increased risk of death from small cell lung cancer (167).

In contrast to the potential value of biomarker studies, there
is little evidence to suggest that ARS inhibitors are able to spe-
cifically block the proliferation of cancer cells. For example, the
anti-ThrRS natural product borrelidin was tested as an inhibi-
tor of the proliferation of malignant ALL cell lines, Jurkat, and
CEM cells and showed a greater inhibitory effect on these cell
lines relative to fibroblast controls (131, 168). Other cell lines,
such as endothelial cells, are quite sensitive to the effects of
borrelidin (43, 130). The mechanism of killing likely relies on
the integrated stress response described above, because phos-
phorylation cell cycle arrest and ultimately cell death are her-
alded by a significant increase in the phosphorylation of the
amino acid starvation marker eIF2� (130, 131, 168). If the stress
cannot be relieved, apoptosis pathways are triggered. Although
the effect of borrelidin on oral cancer cells was initially deemed
promising (168), the limited therapeutic window of this com-
pound has discouraged an extensive follow-up on these results.

Another modality by which ARS inhibitors might serve as
anticancer therapeutics is by inhibiting one or more of the
numerous secondary roles of ARSs that have emerged in recent
years (161, 162). Currently, there are relatively few reports of
the modulation of these secondary functions by small mole-
cules. One notable example is the interaction of LysRS with the
67-kDa laminin receptor, which participates in cell migration
and adhesion (169). Blocking the action of the laminin receptor
has the potential to inhibit cancer cell migration, which is
essential for metastasis. A small molecule lead compound (BC-
K-YH16899) that inhibits the interaction of LysRS and the
67-kDa laminin receptor was identified by HTS and shown to
suppress metastasis in different mouse models (170).

Other secondary functions displayed by ARSs that might be
critical to cancer development include stimulation of angiogen-
esis and cell migration (171). Several ARSs appear to modulate
angiogenesis, either via stimulation when they are secreted, or
as inhibitors. Examples of the former include TyrRS and ThrRS,
whereas inhibitory ARS include SerRS and TrpRS (172–176).
Earlier work demonstrated that the ThrRS-specific inhibitor

borrelidin (previously discussed in the context of malaria)
inhibits angiogenesis in both tissue and cellular models (133,
177). The phenotypic effect of BN is the direct result of inter-
actions with ThrRS, which promotes angiogenesis when
secreted from human umbilical vein endothelial cells under the
influence of TNF� (82). Whereas borrelidin in its native form is
toxic to eukaryotic cells, modification of the borrelidin pendant
cyclopentane ring can attenuate this toxicity. Thus, BN deriva-
tives like BC-194 possess the ability to modulate angiogenesis
without eliciting apoptosis (130, 133, 176). This may ultimately
prove useful in the clinic. In an early study involving a mouse
model of melanoma, BN was found to reduce the extent of
metastasis without influencing tumor volume. In more recent
work, an orthotopic mouse model of breast cancer was injected
with a liposomal formulation of BN (178). Tumor volume and
the number of metastatic nodules were significantly reduced in
the BN liposome-treated animals versus controls. These pre-
liminary observations suggest that screening other ThrRS
inhibitors that block angiogenesis function for anticancer func-
tion might be fruitful.

Summary and future prospects for ARS inhibitors

When bacterial cells are grown in the presence of single ARS
inhibitors, resistant mutants arise at a relatively high frequency
(�10�7 M), creating a serious potential liability for using these
compounds. In a recent study, Randall et al. (87) sought to
estimate the frequency of resistant mutants when cells are
treated with two distinct ARS inhibitors (i.e. mupirocin �
REP8839). Significantly, the frequency of double mutant isola-
tion was below the limit of detection (�10�12). This indicates
that targeting two potentially mutating loci simultaneously is a
promising strategy. To achieve this, one effective approach
might be to develop a synthetic conjugate that employs a well-
characterized uptake moiety (e.g. siderophore or dipeptide) and
a toxin “warhead” based on a sulfamide adenosine framework
that possesses dual specificity. By exploiting the wealth of cur-
rent knowledge about ARS amino acid– binding sites, it should
be possible to design an amino acid moiety that would simulta-
neously be compatible with the active sites of multiple hydro-
phobic ARSs, such as ValRS, IleRS, and LeuRS. One could also
devise dual-function inhibitors to simultaneously target
AspRS/AsnRS and GluRS/GlnRS. To prevent toxicity, it would
be essential to block pathways of uptake of these molecules by
human cells.

With regard to efforts to target eukaryotic pathogens, a large
collection of promising anti-parasitic ARS lead compounds is
now available that target both cytoplasmic and apicoplastid
enzymes. Leveraging the extensive library of currently available
ARS structures has been a useful tool for in silico docking and
rational design efforts, and the hits obtained can be subjected to
further SAR to obtain compounds that have improved drug
properties and reduced affinity for host cytoplasmic and mito-
chondrial enzymes. Additionally, rapid sequencing methods
have lowered the costs of obtaining complete parasite genomes,
allowing targets to be modeled in a relatively rapid fashion.
Major challenges remaining include the need to improve selec-
tivity of the parasite enzymes over the host, as well as strategies
for combating the relatively rapid evolution of resistance to
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these inhibitors. As noted above, dual-targeting strategies
might be advantageous in limiting the selection of resistant
pathogens. In addition, detailed knowledge of structural differ-
ences between pathogen and host enzymes may provide a basis
to design inhibitors where the development of resistance has an
unacceptable fitness cost for the parasite.

In this review, we have focused almost entirely on the poten-
tial benefits of reducing disease by inhibiting ARS activity. Sig-
nificantly, there are also circumstances where compounds that
increase ARS activity could have significant clinical value.
There is a large and rapidly expanding literature linking muta-
tions in cytoplasmic and mitochondrial ARS genes to neurolog-
ical diseases of the peripheral and central nervous systems
(179). Among the first was a report showing that mutations in
the GARS gene encoding GlyRS are linked to Charcot–Marie–
Tooth disease (CMT) type 2D and distal spinal muscular atro-
phy type V (180). Of 38 human ARS genes, mutations associ-
ated with human diseases– either largely or partially associated
with the nervous system– have been described in a total of 14
cytoplasmic and 17 mitochondrial ARS genes (9). Both auto-
somal dominant and autosomal recessive forms have been
observed, with many of the former conferring CMT2 and many
of the latter conferring complex phenotypes featuring brain
development defects (e.g. leukoencephalopathy, microcephaly)
and multisystem disorders (181). Detailed characterization of
the associated mutant proteins indicates that in many (but not
all) cases, the mutations confer a loss of function, and the down-
stream consequences include attenuation of protein synthesis,
resulting in abnormal neuron morphology (182, 183). Because
of this observed loss of function, it is difficult to envision an
inhibitor that would rescue neurological function by decreasing
aminoacylation and potential secondary ARS activities. Al-
though there are isolated examples of “gain-of-function” ther-
apeutics for diseases such as cystic fibrosis (184), there are no
obvious examples of such compounds for the ARSs. Were com-
pounds to be discovered that could stabilize and perhaps
restore at least partial function to mutant ARS enzymes associ-
ated with inherited neurological diseases, this could dramati-
cally increase quality of life for a group of patients for whom
there are no treatment options. This possibility, along with the
many opportunities for therapies based on inhibition of ARS
activity, should drive research on these compounds for many
years to come.
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J., and Chênevert, R. (2005) Glutamylsulfamoyladenosine and pyroglu-
tamylsulfamoyladenosine are competitive inhibitors of E. coli glutamyl-
tRNA synthetase. J. Enzyme Inhib. Med. Chem. 20, 61– 67 CrossRef
Medline

69. Hill, J. M., Yu, G., Shue, Y. K., Zydowski, T. M., and Rebek, J. (July 18,
1996) U. S. Patent WO1996US11910

70. Ruan, B., Nakano, H., Tanaka, M., Mills, J. A., DeVito, J. A., Min, B., Low,
K. B., Battista, J. R., and Söll, D. (2004) Cysteinyl-tRNA(Cys) formation in
Methanocaldococcus jannaschii: the mechanism is still unknown. J. Bac-
teriol. 186, 8 –14 CrossRef Medline

71. Gadakh, B., Smaers, S., Rozenski, J., Froeyen, M., and Van Aerschot, A.
(2015) 5�-(N-aminoacyl)-sulfonamido-5�-deoxyadenosine: attempts for
a stable alternative for aminoacyl-sulfamoyl adenosines as aaRS inhibi-
tors. Eur. J. Med. Chem. 93, 227–236 CrossRef Medline

72. Teng, M., Hilgers, M. T., Cunningham, M. L., Borchardt, A., Locke, J. B.,
Abraham, S., Haley, G., Kwan, B. P., Hall, C., Hough, G. W., Shaw, K. J.,
and Finn, J. (2013) Identification of bacteria selective threonyl tRNA
synthetase (ThrRS) substrate inhibitors by structure-based design.
J. Med. Chem. 56, 1748 –1760 CrossRef Medline

73. Charlton, M. H., Aleksis, R., Saint-Leger, A., Gupta, A., Loza, E., Ribas
de Pouplana, L., Kaula, I., Gustina, D., Madre, M., Lola, D., Jaudzems,
K., Edmund, G., Randall, C. P., Kime, L., O’Neill, A. J., et al. (2018)
N-Leucinyl benzenesulfonamides as structurally simplified leucyl-
tRNA synthetase Inhibitors. ACS Med. Chem. Lett. 9, 84 – 88 CrossRef
Medline

74. Zhang, B., De Graef, S., Nautiyal, M., Pang, L., Gadakh, B., Froeyen, M.,
Van Mellaert, L., Strelkov, S. V., Weeks, S. D., and Van Aerschot, A.
(2018) Family-wide analysis of aminoacyl-sulfamoyl-3-deazaadenosine
analogues as inhibitors of aminoacyl-tRNA synthetases. Eur. J. Med.
Chem. 148, 384 –396 CrossRef Medline

75. Gadakh, B., Vondenhoff, G., Lescrinier, E., Rozenski, J., Froeyen, M., and
Van Aerschot, A. (2014) Base substituted 5�-O-(N-isoleucyl)sulfamoyl
nucleoside analogues as potential antibacterial agents. Bioorg. Med.
Chem. 22, 2875–2886 CrossRef Medline

76. Vondenhoff, G. H., Gadakh, B., Severinov, K., and Van Aerschot, A.
(2012) Microcin C and albomycin analogues with aryl-tetrazole substitu-
ents as nucleobase isosters are selective inhibitors of bacterial aminoacyl
tRNA synthetases but lack efficient uptake. Chembiochem 13, 1959–1969
CrossRef Medline

77. Vondenhoff, G. H., Pugach, K., Gadakh, B., Carlier, L., Rozenski, J., Fro-
eyen, M., Severinov, K., and Van Aerschot, A. (2013) N-Alkylated ami-
noacyl sulfamoyladenosines as potential inhibitors of aminoacylation re-
actions and microcin C analogues containing D-amino acids. PLoS ONE
8, e79234 CrossRef Medline

78. Jarvest, R. L., Berge, J. M., Houge-Frydrych, C. S., Janson, C., Mensah,
L. M., O’Hanlon, P. J., Pope, A., Saldanha, A., and Qiu, X. (1999) Interac-
tion of tyrosyl aryl dipeptides with S. aureus tyrosyl tRNA synthetase:
inhibition and crystal structure of a complex. Bioorg. Med. Chem. Lett. 9,
2859 –2862 CrossRef Medline

79. Qiu, X., Janson, C. A., Smith, W. W., Green, S. M., McDevitt, P., Johan-
son, K., Carter, P., Hibbs, M., Lewis, C., Chalker, A., Fosberry, A., La-
londe, J., Berge, J., Brown, P., Houge-Frydrych, C. S., and Jarvest, R. L.
(2001) Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthe-
tase in complex with a class of potent and specific inhibitors. Protein Sci.
10, 2008 –2016 CrossRef Medline

80. Pope, A. J., McVey, M., Fantom, K., and Moore, K. J. (1998) Effects of
substrate and inhibitor binding on proteolysis of isoleucyl-tRNA synthe-
tase from Staphylococcus aureus. J. Biol. Chem. 273, 31702–31706
CrossRef Medline

81. Pope, A. J., Moore, K. J., McVey, M., Mensah, L., Benson, N., Osbourne,
N., Broom, N., Brown, M. J., and O’Hanlon, P. (1998) Characterization of
isoleucyl-tRNA synthetase from Staphylococcus aureus. II. Mechanism
of inhibition by reaction intermediate and pseudomonic acid analogues
studied using transient and steady-state kinetics. J. Biol. Chem. 273,
31691–31701 CrossRef Medline

82. Fang, P., Yu, X., Jeong, S. J., Mirando, A., Chen, K., Chen, X., Kim, S.,
Francklyn, C. S., and Guo, M. (2015) Structural basis for full-spectrum
inhibition of translational functions on a tRNA synthetase. Nat. Com-
mun. 6, 6402 CrossRef Medline

83. Kim, S. Y., Lee, Y. S., Kang, T., Kim, S., and Lee, J. (2006) Pharmacophore-
based virtual screening: the discovery of novel methionyl-tRNA synthe-
tase inhibitors. Bioorg. Med. Chem. Lett. 16, 4898 – 4907 CrossRef
Medline

84. Yu, X. Y., Hill, J. M., Yu, G., Yang, Y., Kluge, A. F., Keith, D., Finn, J.,
Gallant, P., Silverman, J., and Lim, A. (2001) A series of quinoline ana-
logues as potent inhibitors of C. albicans prolyl tRNA synthetase. Bioorg.
Med. Chem. Lett. 11, 541–544 CrossRef Medline

85. Jarvest, R. L., Berge, J. M., Berry, V., Boyd, H. F., Brown, M. J., Elder, J. S.,
Forrest, A. K., Fosberry, A. P., Gentry, D. R., Hibbs, M. J., Jaworski, D. D.,
O’Hanlon, P. J., Pope, A. J., Rittenhouse, S., Sheppard, R. J., et al. (2002)
Nanomolar inhibitors of Staphylococcus aureus methionyl tRNA synthe-
tase with potent antibacterial activity against Gram-positive pathogens.
J. Med. Chem. 45, 1959 –1962 CrossRef Medline

86. Critchley, I. A., Young, C. L., Stone, K. C., Ochsner, U. A., Guiles, J.,
Tarasow, T., and Janjic, N. (2005) Antibacterial activity of REP8839, a
new antibiotic for topical use. Antimicrob. Agents Chemother. 49,
4247– 4252 CrossRef Medline

87. Randall, C. P., Rasina, D., Jirgensons, A., and O’Neill, A. J. (2016)
Targeting multiple aminoacyl-tRNA synthetases overcomes the resis-
tance liabilities associated with antibacterial inhibitors acting on a
single such enzyme. Antimicrob. Agents Chemother. 60, 6359 – 6361
CrossRef Medline

88. Kong, J., Fang, P., Madoux, F., Spicer, T. P., Scampavia, L., Kim, S., and
Guo, M. (2018) High-throughput screening for protein synthesis inhib-
itors targeting aminoacyl-tRNA synthetases. SLAS Discov. 23, 174 –182
CrossRef Medline

89. Hu, Y., Keniry, M., Palmer, S. O., and Bullard, J. M. (2016) Discovery and
analysis of natural-product compounds inhibiting protein synthesis in Pseu-
domonas aeruginosa. Antimicrob. Agents Chemother. 60, 4820–4829
CrossRef Medline

90. Hu, Y., Palmer, S. O., Munoz, H., and Bullard, J. M. (2014) High through-
put screen identifies natural product inhibitor of phenylalanyl-tRNA
synthetase from Pseudomonas aeruginosa and Streptococcus pneu-
moniae. Curr. Drug Discov. Technol. 11, 279 –292 Medline

91. Hu, Y., Palmer, S. O., Robles, S. T., Resto, T., Dean, F. B., and Bullard, J. M.
(2018) Identification of chemical compounds that inhibit the function of
histidyl-tRNA synthetase from Pseudomonas aeruginosa. SLAS Discov.
23, 65–75 CrossRef Medline

92. Robles, S., Hu, Y., Resto, T., Dean, F., and Bullard, J. M. (2017) Identifi-
cation and characterization of a chemical compound that inhibits me-
thionyl-tRNA synthetase from Pseudomonas aeruginosa. Curr. Drug Dis-
cov. Technol. 14, 156 –168 CrossRef Medline
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