Skip to main content
. 2019 Mar;9(3):399–408. doi: 10.21037/qims.2019.03.08

Table 4. Texture feature definitions.

Feature name Equation
Contrast f=n=0Ng1n2{i=1Ngj=1Ngp(i,j)|ij|=n        }
Correlation f=ij(ij)p(i,j)μxμyσxσy
Difference entropy f=i=0Ng1pxy(i)log[pxy(i)]
Difference variance f=varianceofpxy
Energy f=ij[p(i,j)]2
Entropy f=ijp(i,j)log[p(i,j)]
Homogeneity f=ijp(i,j)1+(ij)2
IMC1 f=HXYHXY1max(HX,HY)
IMC2 f={1exp[2(HXY2HXY)]}1/2
HXY=ijp(i,j)log[p(i,j)]
HXY1=ijp(i,j)log[px(i)py(j)]
HXY2=ijpx(i)py(j)log[px(i)py(j)]
Maximum correlation coefficient f=(SecondlargesteigenvalueofQ)1/2
Q(i,j)=kp(i,k)p(j,k)px(i)py(k)
Sum average f=i=22Ngipx+y(i)
Sum entropy f=i=22Ngi=22Ngpx+y(i)log[px+y(i)]
Sum variance f=varianceofpxy
Skewness f=1nni=i(xix¯)31n1ni=i(xix¯)2

Notation: p(i,j): (i,j)th entry in a normalized gray-tone spatial-dependence matrix; px(i): ith entry in the marginal-probability matrix obtained by summing the rows of p(i,j); Ng: Number of distinct gray levels in the quantized image; py(j): Ngi1p(i,j) ; px+y(k): Ngi=1i+j=kNgj=1p(i,j); px-y(k): Ngi=1|ij=k|Ngj=1p(i,j).