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Abstract

The gustatory system encodes information about chemical identity, nutritional value, and concen-
tration of sensory stimuli before transmitting the signal from taste buds to central neurons that 
process and transform the signal. Deciphering the coding logic for taste quality requires exam-
ining responses at each level along the neural axis—from peripheral sensory organs to gustatory 
cortex. From the earliest single-fiber recordings, it was clear that some afferent neurons respond 
uniquely and others to stimuli of multiple qualities. There is frequently a “best stimulus” for a 
given neuron, leading to the suggestion that taste exhibits “labeled line coding.” In the extreme, 
a strict “labeled line” requires neurons and pathways dedicated to single qualities (e.g., sweet, 
bitter, etc.). At the other end of the spectrum, “across-fiber,” “combinatorial,” or “ensemble” coding 
requires minimal specific information to be imparted by a single neuron. Instead, taste quality in-
formation is encoded by simultaneous activity in ensembles of afferent fibers. Further, “temporal 
coding” models have proposed that certain features of taste quality may be embedded in the ca-
dence of impulse activity. Taste receptor proteins are often expressed in nonoverlapping sets of 
cells in taste buds apparently supporting “labeled lines.” Yet, taste buds include both narrowly and 
broadly tuned cells. As gustatory signals proceed to the hindbrain and on to higher centers, coding 
becomes more distributed and temporal patterns of activity become important. Here, we present 
the conundrum of taste coding in the light of current electrophysiological and imaging techniques 
at several levels of the gustatory processing pathway.
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Introduction

All sensory systems must address the problem of conveying informa-
tion about the quality, intensity, and location of sensory stimulation 
from peripheral receptors to the brain. For both olfaction and taste, 
stimuli can be chemically diverse. The olfactory system is known to 
encode this chemical diversity, in part, through the use of hundreds 
of molecular receptors with overlapping receptive ranges. Olfactory 
signals from peripheral neurons are carried on circuits that exhibit 
convergence and distributed patterns at different stages along the 
neural axis to encode odor recognition and discrimination (Laurent 
2002; Nara et  al. 2011; Nunez-Parra et  al. 2014; Srinivasan and 
Stevens 2018). The gustatory system, which serves to detect nutri-
ents, minerals, and toxins, also identifies diverse chemical structures 
across broad concentration ranges. The logic of how the mammalian 
gustatory system encodes information on chemical identity, that is, 
quality coding, is the subject of active investigation using a variety of 
experimental approaches and resulting in competing models of taste 
coding. The present review examines some of the evidence, interpret-
ations, and controversies regarding gustatory quality coding.

Most research on taste quality coding focuses on discriminating 
“sweet” (e.g., sugars), “salty” (Na+ salts), “sour” (acids), and so 
forth. Labeled line coding posits that quality-specific taste receptor 
cells (TRCs) (e.g., “sweet”-specific) synapse only with primary sen-
sory afferent(s) that are dedicated to that same quality. This, then, es-
tablishes a dedicated transmission line from the taste bud cell to the 
brain that is “labeled” for a single quality. According to this coding, 
the different transmission lines (“sweet,” “salty,” “sour,” etc.) are 
separate, distinct, and parallel. The sensory afferent neurons are all 
highly tuned to transmit one given quality. They are all “specialists” 
for a given quality.

In contrast, combinatorial coding allows more flexibility in the 
responses of primary afferent fibers. Thus, a given taste compound 
can elicit impulses in an ensemble of several primary afferent fibers, 
each of which varies in their response profiles. That is, some fibers 
might be “sweet-best,” others might be “salt-best”; they respond ro-
bustly to sugars or Na+ salts, respectively, while retaining weaker 
responses to other tastes (“specialists”). Other fibers in the ensemble 
may respond quite broadly to many different taste compounds with 
no strong preference (“generalists”). However, when activated by a 
specific taste compound, the entire ensemble of afferent fibers gen-
erates a particular combinatorial signal that identifies that stimulus. 
Collectively, the combination of specialists and generalists, not any 
individual sensory afferent axon on its own, transmits the informa-
tion about taste quality. Temporal coding conveys information in the 
pattern of impulses in individual primary sensory afferents. Different 
taste stimuli may elicit different patterns of action potentials in af-
ferent fibers, which might lead to differential excitation/inhibition of 
neurons in the central nervous system (CNS).

For theorists, both models present a dilemma: how do multi-
sensitive cells convey an unambiguous message that identifies taste 
quality? The labeled line and across-neuron pattern theories share 
the notion that spikes are integrated over time and ignore the dy-
namics of firing rate changes that occur during a taste response. 
These dynamic aspects of the response may also carry taste informa-
tion, a form of signaling called “temporal coding.”

The origins of labeled line coding in the sensory nervous system 
might be said to come from René Descartes, who, in his classical 
drawing of the innocent cherub toasting his toes (Descartes 1664, 
p. 27), clearly outlined a labeled line (here, for painful heat) from 
peripheral sensory organ to the brain (Roper 2014). However, the 
first explicit statements of labeled line coding were by Sir Charles Bell 

(1811; see Bell and Shaw 1868) and Johannes Müller, who coined 
the concept law of specific nerve energies (LOSNE), according to 
which “each type of sensory nerve ending, however stimulated (elec-
trically, mechanically, etc.), gives rise to its own specific sensation; 
moreover, each type of sensation depends not upon any special char-
acter of the different nerves but upon the part of the brain in which 
their fibers terminate” (Müller 1836). Since then, it has become clear 
that each modality is indeed “labeled” insofar as touch, temperature, 
taste, olfaction, vision, hearing, and so forth are each transmitted 
along separate neural pathways. The question, now, is whether such 
“labeling” extends to different qualities “within” a sensory modality, 
such as red versus green color, rose versus geranium scent, or sweet 
versus salty taste. That is the crux of the current debate. In certain 
sensory systems, such as vision and olfaction, the answer is clearly 
“no”; colors and odors unarguably display combinatorial quality 
coding.

In this review, we examine the evidence, primarily derived from 
electrophysiological and imaging studies at different levels of the 
taste system, of the responses of receptors and neurons to stimuli 
representing different taste qualities. We discuss what the responses 
at each level suggest about the logic of coding taste quality.

The detectors: coding taste quality in taste 
bud cells

A strict peripheral labeled line coding for taste qualities (sweet, 
salty, sour, etc.) has been strongly promoted by some researchers 
(Yarmolinsky et al. 2009; Chen et al. 2011b; Barretto et al. 2015). 
The strongest evidence for such a hard-wired logic for taste qual-
ity coding comes from the observation that taste bud cells express 
primarily or only one type of taste receptor. Some cells express a 
few to several members of the Tas2R family of receptors which 
are activated by bitter-tasting compounds (Mueller et  al. 2005; 
Behrens et al. 2007). Other TRCs may express heterodimeric Tas1R 
family receptors, which are activated by either sweet- or umami-
tasting compounds (Nelson et al. 2001, 2002; Dando et al. 2012). 
Yet other cells are dedicated for sour taste sensing (Huang et  al. 
2006). However, some fraction of taste cells do express taste recep-
tors for more than one quality (Dando et al. 2012). The relatively 
nonoverlapping pattern of receptor expression led to the proposal 
that, similar to insects, mammals use a hard-wired logic for coding 
taste quality (Yarmolinsky et al. 2009). That is, for example, Tas2R-
expressing TRCs, when stimulated, activate a dedicated subset of 
afferent fibers which would encode the bitter taste quality. Other 
dedicated TRCs and nerve fibers would convey sweet and so on. The 
taste-quality-dedicated TRCs constitute the beginning of a labeled 
line for “bitter” or “sweet” that is maintained along the taste axis to 
the gustatory cortex.

The question is how well do the responses of individual taste 
bud cells mirror the seemingly compartmentalized, nonoverlapping 
pattern of expression of the various taste receptors. The taste qual-
ity sensitivity and selectivity of specific populations of taste bud 
cells have been examined through both electrophysiological and 
Ca2+ imaging methods (Tomchik et  al. 2007; Yoshida et  al. 2009, 
2018)  using several distinct ex vivo preparations. Using the com-
bination of transgenically identified taste bud cell types and apical 
stimulation with a variety of taste stimuli, the response profiles of 
taste bud cell types have been studied electrophysiologically (Yoshida 
et al. 2009) and via Ca2+ imaging (Caicedo et al. 2002; Tomchik et al. 
2007). Very consistently, Type II cells respond best to sweet, bitter, or 
umami taste stimuli. “Bitter-best” taste cells are the most narrowly 
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tuned and respond almost exclusively to bitter compounds (Yoshida 
et al. 2009b). In contrast, some “sweet-best” TRCs are more broadly 
tuned such that, in addition to sucrose, some also respond to salt 
(NaCl) and/or umami stimuli (monosodium glutamate, MSG). Type 
III cells from fungiform taste buds consistently respond to acid (sour) 
stimuli, and each cell typically responds to multiple acids (citric, ace-
tic, or HCl). Thus, tuning, measured in the electrical responsivity of 
cells from fungiform taste buds (Yoshida et al. 2009), is generally 
similar to that measured by the Ca2+ responses of Type II cells from 
mouse circumvallate taste buds (Tomchik et  al. 2007). Further, in 
both studies, responses to acids were limited to Type III cells.

Type III cells in mouse fungiform papillae fell into 2 groups 
with approximately 75% responding only to acids, the rest being 
broadly tuned, with responses to salty, umami, and/or bitter stimuli 
in addition to acids. This observation differed conspicuously the 
Ca2+ imaging study, which reported that all or most Type III cells 
in mouse circumvallate taste buds were both sour-responsive and 
broadly tuned (Tomchik et al. 2007). Whether these differences are 
attributable to differences in methodology or in the taste bud fields 
examined (fungiform vs. circumvallate) remains to be determined.

Another question that has been explored electrophysiologically in 
mouse fungiform taste bud cells is how diverse stimuli that produce 
similar taste perception are represented in the initial receptor cells. 
For example, many sugars (sucrose, fructose, etc.), artificial sweet-
eners (saccharin, sucralose, etc.), and certain proteins (Monellin, 
Thaumatin, Brazzein, etc.) all elicit sweet taste. Similarly, there are 
numerous chemically diverse compounds, all of which elicit bitter 
taste. To test whether TRCs respond identically to diverse stimuli 
of a given quality (e.g., “bitter”) or can discriminate among percep-
tually similar compounds, responses were recorded to a battery of 
bitter-tasting compounds (Yoshida et al. 2018). Type II TRCs from 
fungiform and circumvallate taste buds showed considerable hetero-
geneity in their responses to this battery of bitter chemicals. Some 
bitter stimuli elicited responses in 5–8 times as many taste cells as did 
other bitter compounds. That is, taste compounds that are perceived 
as having similar taste may produce very different patterns of activa-
tion among taste bud cells

Yoshida et  al. (2018) also demonstrated that bitter-sensitive 
cells as a population displayed considerable heterogeneity. When 
tested with 10 bitter compounds, some were selective for only a sin-
gle stimulus, whereas others responded broadly to as many as 9 of 
the 10 stimuli tested. Such heterogeneous responses among bitter-
sensitive taste cells had also been demonstrated using functional 
imaging of rat and mouse circumvallate taste bud cells (Caicedo and 
Roper 2001; Caicedo et al. 2002). The family of bitter taste receptors 
Tas2Rs, includes ≈35 diverse members and each of these Tas2Rs is 
activated by a different complement of bitter compounds (Lossow 
et al. 2016). In both human and mouse, some Tas2rs are narrowly 
tuned and others can be activated by large numbers of bitter tasting 
compounds (Meyerhof et al. 2010; Lossow et al. 2016). Thus, the 
selectivity of bitter-sensitive TRCs would be defined by the expres-
sion of different combinations of Tas2Rs.

All molecular receptors for bitter tastants, Tas2Rs, were reported 
to be co-expressed in some TRCs with the interpretation that dis-
crimination among bitter stimuli could not occur (Adler et al. 2000), 
More comprehensive analyses showed that only limited numbers 
of Tas2Rs are expressed per TRC and in various combinations 
(Matsunami et al. 2000; Behrens et al. 2007). The electrophysiologi-
cal and Ca2+ imaging results above also demonstrate that the initial 
hypothesis (Mueller et al. 2005) for how bitter taste quality is coded 
in the periphery was likely incorrect. Combinatorial expression 

of Tas2Rs in individual TRCs could, in principle, form a basis for 
discriminating among different bitter compounds, but it is unclear 
whether such discrimination exists along the taste neural axis or 
even behaviorally.

Taken together, electrophysiological and Ca2+ imaging data indi-
cate that taste buds contain many taste receptor cells dedicated to 
detect one of 5 basic taste qualities. These may provide the basis 
for discrimination across basic taste qualities. However, taste buds 
also contain TRCs that respond to multiple taste qualities (Caicedo 
et al. 2002; Tomchik et al. 2007; Yoshida et al. 2009). These multiply 
responsive cells may reflect information processing (divergence and 
convergence of signals) that occurs within taste buds via cell–cell 
synaptic interactions (Huang et al. 2007; Dando and Roper 2009; 
Huang et  al. 2009; Chaudhari 2014). Moreover, some taste cells 
express multiple types of taste receptors. For instance, a subset of 
taste cells expresses all three T1R subunits and responds to both 
sweet and umami compounds (Dando et al. 2012; Kusuhara et al. 
2013). Whether broadly tuned TRCs serve a distinct role from nar-
rowly tuned TRCs as well as the contribution of broadly tuned TRCs 
to coding of taste signals remain, however, still unclear.

Taste quality coding begins with the sensitivities of individual 
receptor cells within taste buds. The synaptic connections between 
these cells and gustatory nerve fibers is a major unknown at present. 
Understanding convergence or divergence at these peripheral syn-
apses will be key to understanding the initial coding of taste signals 
in the periphery.

Quality coding in the first neurons of the taste 
pathway

How do primary sensory afferent neurons transmit taste informa-
tion to the CNS (see Figure 1) and how does activity in primary 
afferents represent taste quality (sweet, salty, sour, etc.)?

Electrophysiological recordings and Ca2+ imaging studies from 
primary sensory afferent neurons (single fibers or ganglion neuron 
somata) have been carried  out by several groups. Some form of 
combinatorial coding in taste was originally suggested by Pfaffmann 
(1941) based on early electrophysiological recordings from afferent 
fibers that innervated taste buds in the cat. Single units were found 
that responded to lingual stimulation with more than one taste com-
pound (e.g., quinine or HCl or both). That many fibers were not 
limited to excitation by a single taste quality, which was inconsist-
ent with a labeled line coding scheme. This led Pfaffmann (1941) to 
conclude “[…] sensory quality does not depend simply on the ‘all or 
nothing’ activation of some particular fiber group alone, but on the 
pattern of other fibers active.” Other investigators elaborated and 
extended this model to encompass the widespread co-activation of 
a large number of sensory afferent fibers, with different combina-
tions of the same fibers constituting the code for different taste quali-
ties. This was termed “cross-fiber coding” and was held as the polar 
opposite of labeled line coding (Erickson 2008). According to cross-
fiber coding, activity in any single fiber on its own does not convey 
information about sweet, sour, salty, etc. Only the combined activ-
ity of many fibers generates the code. Some resolution of these two 
opposite concepts—labeled line versus combinatorial coding—was 
obtained by Frank and Pfaffmann (1969). They recorded from single 
sensory afferent fibers from the tongues of hamsters and observed 
that although many fibers did indeed respond to multiple taste stim-
uli, the most effective stimulus of a fiber was predictive of the relative 
effectiveness of the other stimuli. These observations suggested that 
there were fiber “types” organized according to the stimulus that 
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evoked the “best” response. They termed these “sweet-best,” “salt-
best,” etc. fibers. Although this has been interpreted as a form of 
labeled line coding, the fact is that activity in a single fiber could not 
unambiguously distinguish between (strong) excitation by the “best” 
stimulus versus (weak) excitation by other, less effective stimuli.

The observation of “best stimulus” for individual taste affer-
ent fibers has been widely replicated in different laboratories and 
in mammalian species ranging from mice to monkeys (Sato et  al. 
1975; Tonosaki and Beidler 1989; Hellekant and Ninomiya 1994; 
Danilova et  al. 1999). A  further refinement of the distinctions 
between taste afferents was the recognition that some neurons 
respond principally or exclusively to one stimulus type, usually sug-
ars—the so-called “specialist” neurons; other neurons responded to 
a variety of electrolytes that might produce sour, bitter, or salty tastes 
(reviewed by Frank et  al. 2008). Specialist and generalist neurons 
have been detected electrophysiologically as single-fiber recordings 
on afferent nerves and by extracellular recordings in geniculate 
ganglia. A  method applied more recently is functional imaging of 
sensory afferent neuron activity using genetically encoded Ca2+ indi-
cators such as GCaMP. Barretto et al. (2015) and Wu et al. (2015) 
carried out functional imaging on geniculate ganglion neurons in the 
mouse and cataloged responses to a battery of different taste stimuli 
presented at different concentrations. Those studies verified that 
about half the ganglion neurons were “specialists” that responded 
best (and some solely) to a single taste compound, such as sucrose. 
Specialist neurons could be detected for each of the five “basic” taste 
qualities (sweet, sour, salty, bitter, umami). The geniculate ganglion 
also had “generalist” sensory neurons that responded much more 
broadly to taste stimuli, mirroring the electrophysiological record-
ings from the primary afferent axons (above).

The relative proportion of specialist and generalist neurons varied 
strongly depending on the concentrations of stimuli tested (Wu et al. 
2015). Importantly, neurons that displayed a specialist profile with 
a low concentration stimulus were transformed to generalists when 

the same stimuli were tested at higher concentrations. At concentra-
tions that produced maximal responses, half the neurons exhibited 
responses to multiple distinct stimuli. Unless half the information 
from the periphery is discarded, which seems unlikely, a resolution 
to the question of taste coding is that a cross-fiber code involving a 
combination of primary afferent axons that vary in their “tuning,” 
from specialists to generalists, encode taste.

In addition to encoding the basic taste qualities, there is a question 
of how stimuli that produce a similar quality may be discriminated 
from one another. For instance, in primates, individual afferent fibers 
that responded to one sweet stimulus typically also responded to sev-
eral other sweets and minimally to bitter or sour tastants (Hellekant 
and Ninomiya 1994; Wang et al. 2009). This type of narrow tuning 
is much less prevalent for taste qualities other than sweet: individual 
neurons respond quite variably to different salts (Frank et al. 2008). 
However, this feature remains incompletely explored in the periph-
ery as most studies have utilized only limited panels of taste stimuli.

Whether sensory afferent fibers and their parent ganglion neu-
rons employ patterns of action potentials to encode stimulus identity 
has been explored to only a limited extent. Different taste stimuli 
appear to cause primary afferent fibers to fire action potentials 
with somewhat different patterns, though these differences are not 
marked (Ogawa et al. 1974; Nagai and Ueda 1981; Lawhern et al. 
2011). Thus, spike discharge pattern may augment and refine the 
combinatorial coding described above (Nagai and Ueda 1981). Taste 
coding in the periphery most likely involves activating a combination 
of afferent fibers having varying tuning capabilities (from specialists 
to generalists) and subtly different firing patterns. All these factors 
together play a role in the transmission of information needed to 
discriminate sweet, sour, salty, bitter, and umami.

Parenthetically, a key point that should be noted is that to 
date, recordings from the primary afferent neurons have only 
been obtained in anesthetized animals. It is possible that some of 
the distinctions noted below in the response properties between 

Figure 1.  Schematics of the (A) rodent and (B) human gustatory pathways with a focus on peripheral and thalamo-cortical relays. In both species, information 
is conveyed via cranial nerves VII, IX, and X from the tongue to the brainstem. NST, nucleus of the solitary tract; PbN, parabrachial nucleus; VPMpc, parvicellular 
portion of the ventroposteromedial nucleus of the thalamus; IC, insular cortex; OFC, orbitofrontal cortex.
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peripheral afferents and higher level neurons may be attributable 
to anesthesia.

Hindbrain neurons: evidence for temporal 
coding

Gustatory afferents from the periphery project directly to the nu-
cleus of the solitary tract (NST) in the brainstem where there is 
substantial convergence (Whitehead and Frank 1983; Whitehead 
1986). Cells in the brainstem, NST, and parabrachial nucleus of the 
pons (PbN; the main target of projections from the NST), are gen-
erally more broadly tuned than peripheral fibers in both anesthe-
tized (see Spector and Travers 2005, for a review) and awake (see 
Roussin et al. 2012, but see Nakamura and Norgren 1991) rodents, 
though there are still groups of neurons in each structure that are 
narrowly tuned to a single taste quality. Like fibers/cells in the per-
iphery, neurons in the brainstem can become more broadly tuned 
with changes in stimulus concentration. Moreover, response profiles, 
defined as the subset of taste qualities that evokes a response, of NST 
and PbN cells can change over time (Sammons et  al. 2016). This 
may be due to the changing inputs to these cells as taste receptor 
cells die and are replaced. Despite such turnover, the network obvi-
ously needs to remain stable in its output. It is possible that extensive 
convergence from neurons with different profiles of sensitivities may 
support this stability; that is, the loss or addition of a few inputs with 
different taste sensitivities would have minimal impact on the target 
cells if there were enough variety in the array of inputs. Further, sim-
ultaneous recordings from taste-responsive NST and PbN cells have 
shown that NST with a particular best stimulus are more effective in 
driving PbN cells with a similar best stimulus, though the same PbN 
cells receive input from NST cells with all types of best stimulus pref-
erences (Di Lorenzo and Monroe 1997; Di Lorenzo et al. 2009). As 
a changing array of inputs to NST cells shift their response profiles 
from one best stimulus to another, simultaneous activation of enough 
inputs responding to a given best stimulus may also cause PbN cells 
upstream to shift their best stimulus in kind, as well as modifying the 
effectiveness of inputs that were activated. Thus, response profiles 
may change but the overall proportions of the constituents of the 
network encoding taste stimuli may remain consistent.

With a variety of response profiles in the taste-responsive por-
tion of the NST and PbN, there remains the problem of how confu-
sion among similar-tasting, but not identical, tastants is resolved. As 
discussed, the across-fiber/neuron patterns may offer one solution, 
but another might be response dynamics, that is, temporal coding. 
Variation in the temporal pattern of taste-evoked firing offers a way 
to disambiguate two tastants that evoke similar response magnitudes 
within the same cell (Di Lorenzo et al. 2009).

Both specialist and generalist neurons have been described in 
brainstem taste areas in electrophysiological studies with anesthe-
tized animals. Perceptually similar stimuli evoke similar patterns of 
neuronal population activity, lending support to the combinatorial 
coding model discussed above (Smith et al. 2000; Simon et al. 2006; 
Geran and Travers 2009). However, unlike taste bud cells and sen-
sory afferent neurons, gustatory neurons of the brainstem do exhibit 
evidence of temporal coding. “Metric space analysis” (MSA; Victor 
and Purpura 1996, 1997) has been used to quantify this. MSA begins 
by determining a “distance” between spike trains in terms of the 
“cost” of making them identical, via adding, deleting, or moving 
spikes. Adding or removing a spike costs one arbitrary unit. The cost 
of moving a spike in time by an amount t is given by qt, where q 
is a parameter that controls the sensitivity of the distance to spike 

timing. Based on these distances, calculated from repeated neural 
responses to presentations of several tastants, one can determine 
two information-theoretic quantities: Hcount and Hspike[q]. Hcount is the 
amount of information about taste quality conveyed by spike count 
alone, and Hspike[q] is the amount of information about taste quality 
when spike timing is taken into account.

In early work using anesthetized rats, spike timing was shown 
to convey a significant amount of information about taste stimuli 
in both the NST (Di Lorenzo and Victor 2003) and the PbN (Rosen 
et al. 2011), the first and second synapses, respectively, in the cen-
tral gustatory pathway in rodents. Specifically, in about half of the 
taste-responsive cells in NST (Di Lorenzo and Victor 2003) and 
PbN (Rosen et al. 2011), spike timing contributes to taste quality 
discrimination–and in both NST and PbN, this contribution was 
largest in neurons that would appear to be broadly tuned if only 
spike count were considered. In addition, in the NST, spike timing 
contributes significant amounts of information to distinguishing 
among responses to the components of binary mixtures (Di Lorenzo 
et al. 2009), between tastants of different concentrations (Chen et al. 
2011a) and tastants of the same taste quality but different chemical 
compositions (Roussin et al. 2008).

Although evidence for temporal coding of taste stimuli in brain-
stem structures has been obtained in the anesthetized animal, further 
studies asked whether there was similar evidence of temporal coding 
of taste in the alert animal (Roussin et al. 2012; Weiss and Di Lorenzo 
2012). To that end, rats were implanted with 8-channel microw-
ire electrode bundles aimed at either the NST or PbN. Following 
recovery from surgery, mildly water-deprived rats were placed in an 
experimental chamber with a drinking spout that allowed control of 
various fluids on a lick-by-lick basis. Taste responses in the NST and 
PbN of awake, freely licking rats differed in several ways from those 
recorded under anesthesia. For example, in addition to the typical 
phasic-tonic time course of response seen under anesthesia, brief 
lick-by-lick responses were also apparent in many NST and PbN 
cells recorded in awake rats. Of these, some cells had responses that 
progressively increased with successive licks. There were also many 
cells with very long latency (>2 s) taste responses that began long 
after the licks were completed (Roussin et al. 2012), which might be 
the result of stimulation of post-oral receptors during swallowing.

Recordings from the NST (Roussin et al. 2012) and PbN (Weiss 
et al. 2014) of awake, freely licking rats revealed a rich variety of cell 
types in addition to those that respond solely to taste. For example, 
many cells fire in phase with licking, with peak firing rates just at 
the time of the lick or between licks. In addition, there are cells that 
significantly decrease their firing rate during a lick bout. The relative 
silencing of such cells when the rat engages in consummatory behav-
ior suggests that they may set the initial conditions for the network 
to acquire sensory information. Moreover, these data underscore the 
idea that sensory and motor components of gustation are inextrica-
bly linked.

In a separate series of experiments, the effects of pairing olfactory 
stimuli with tastants were tested (Escanilla et al. 2015). Widespread 
modulation of taste responses was observed, including changes 
in response magnitude and latency following taste–odor pairing. 
MSA of taste- and odor-evoked responses showed that NST cells 
were more competent at discriminating tastants when they were 
presented with odors than when presented alone. This applied for 
all taste qualities, and whether or not spike timing was taken into 
account, leading to the hypothesis that brainstem neurons may be 
most keenly tuned to respond to naturalistic stimuli, that is food, 
rather than pure chemical exemplars of taste qualities (Escanilla 
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et al. 2015). This was tested by presenting complex, natural stimuli 
such as grape juice (sweet), clam juice (salty), lemon juice (sour), and 
coffee (bitter). Evoked spike trains in the PbN of awake, freely lick-
ing rats displayed conveyed significantly more information to natu-
ralistic stimuli than those associated with single compounds (Weiss 
et al. 2014).

In conclusion, data from electrophysiological recordings from 
awake, freely licking rats underscores the role of the gustatory brain-
stem as an important node in the neural circuit that controls food 
identification and ingestion. In addition, dynamics—both intrinsic 
to the spike trains and related to the lick cycle—are prominent and 
functionally significant aspects of neural responses.

From the gustatory brainstem, afferents target the most medial 
portion of the ventral posteromedial thalamus. Taste-responsive tha-
lamic neurons in this nucleus form an important source of input to 
gustatory cortex. Although this small region has been understudied 
relative to other taste areas, there is recent evidence that the gusta-
tory thalamus may play important roles in taste quality and palat-
ability coding, as well as stimulus expectation (Liu and Fontanini 
2015).

Patterns of activity in the rodent 
gustatory cortex

Within gustatory cortex (GC), physiological studies demonstrate 
that taste-responsive cells are often multimodal, responding to 
other sensory stimuli in addition to taste (for review, see Maffei 
et al. 2012). When recordings are made in in either anesthetized or 
awake animals probed with only sapid stimuli, both narrowly and 
broad taste-responsive neurons are found, similar to those found in 
both peripheral and other central taste areas (e.g. Yamamoto et al. 
1984, 1985, 1989; Ogawa et al. 1992a, 1992b; Katz et al. 2001; 
Spector and Travers 2005; Sadacca et  al. 2016; Stapleton et  al. 
2006). The roles of these cell types are still ambiguous in terms of 
function, although there is evidence that some cortical taste neu-
rons may respond broadly to sets of stimuli that can be classified 
as sharing a hedonic value (Yamamoto et al. 1989; Fontanini and 
Katz 2006).

An important and related, yet not well-understood, aspect of 
taste coding involves the spatial organization of taste neurons—are 
cells responsive to particular taste stimuli clustered together? Other 
sensory systems differ in this mode of organization; from the well-
known somatotopy of barrel cortex to the apparent random overlap 
of odorant responses in piriform cortex (Petersen 2007; Stettler and 
Axel 2009). Chen et al. (2011b) used 2-photon imaging to describe 
a sharply segregated quality representation in mouse GC. Here, 
quality-specific clusters of singly responsive neurons were sepa-
rated in space along the cortical surface by areas with only sparse 
taste-evoked activity. In contrast, the vast majority of work on taste 
cortex is entirely consistent in suggesting that there is little to no 
stimulus topography in how taste qualities are represented in the 
gustatory cortex. Across the anterior–posterior expanse of GC, map-
ping studies using different techniques have yielded very different 
conclusions. For instance, studies using either in vivo recordings, or 
intrinsic imaging, show a large degree of overlap among the basic 
taste stimuli, with bias toward overrepresentation of individual 
qualities at the anterior and posterior extremes (Yamamoto et  al. 
1985; Bahar et al. 2004; Accolla et al. 2007; Carleton et al. 2010). 
A genetically encoded trans-synaptic tracer similarly suggested that 
neurons receiving input for different taste qualities are intermingled 
in the gustatory cortex (Sugita and Shiba 2005).

More recently, 2-photon imaging was used to investigate taste 
responses to stimuli, representing four primary qualities (acid, bit-
ter, salty, and sweet) in an area of mouse gustatory cortex defined 
by taste thalamic input (Fletcher et al. 2017). This “central” area, 
located just posterior to the landmark middle cerebral artery, pos-
sessed thalamic terminal labeling concentrated in the dysgranular 
subdivision. Using a virally expressed calcium indicator (GCaMP6s), 
taste imaging responses were collected in anesthetized mice in this 
delineated area. Not surprisingly, cortical taste cells were found 
to respond either best to individual stimuli or combinations of 
stimuli. Spatial mapping demonstrated that taste quality responses 
overlapped in this region, with no evidence of segregation of cells 
responding to a single quality. Principle components analysis of this 
aggregate data suggested that the primary taste qualities were dis-
tinctly represented in the population response, providing a basis for 
discrimination despite spatial overlap. Moreover, the stimuli were 
ordered along the first component in a way that suggested hedonic 
character may also be represented in the response.

The finding of an area of quality overlap in the center of mouse 
GC fits in nicely with the previously mentioned mapping studies in 
the rat (Yamamoto et al. 1985; Accolla et al. 2007) and other recent 
2-photon approaches in mice (Livneh et al. 2017; Lavi et al. 2018). 
Still, these papers and the Chen et al. (2011b) study leave open the 
possibility that bitter taste responses and sweet taste responses may 
be overrepresented posteriorly and anteriorly, respectively, in GC. If 
so, any topographic representation of taste quality likely stems from 
the source of peripheral input. The glossopharyngeal (IX) nerve, 
which innervates posterior taste buds, is known to be more respon-
sive to bitter-tasting stimuli than branches of the facial nerve (VII), 
which innervate taste buds on the anterior tongue and palate (Frank 
et al. 1983; Frank 1991). In rat taste cortex, information from the 
chorda tympani branch of VII projects to the anterior GC, whereas 
information from IX targets the posterior GC (Yamamoto et  al. 
1980; Hanamori et al. 1998). A similar “gradient” of taste quality 
representation that follows peripheral input has also been described 
in the parabrachial nucleus in the rodent brainstem (Halsell and 
Travers 1997; Geran and Travers 2006). In this discussion, however, 
it is important to consider the multimodal nature of GC as well as 
surrounding cortical areas. For example, there is also a prominent 
viscero-sensory representation found in posterior insular cortex, 
adjacent to GC (Cechetto and Saper 1987). Perhaps correspondingly, 
the hotspot for conditioned taste aversion learning is also found in 
posterior insular or GC (Schier et  al. 2014, 2016). Furthermore, 
Hanamori et  al. (1998) found that over 75% of taste-responsive 
neurons in posterior GC in rat were also responsive to a nociceptive 
stimulus (tail pinch).

In summary, reports (Chen et al. 2011b; Peng et al. 2015) from a 
single laboratory notwithstanding, the evidence is now quite strong 
that gustatory signals for taste quality are distributed and intermin-
gled in the gustatory cortex.

Patterns of gustatory activity in the human 
cortex

Although taste processing in the periphery and also the CNS has 
gained considerable attention in animal models, these processes are 
still to be investigated in humans. Of particular interest are ques-
tions on how, when, and where taste information, in general, and 
specific taste attributes such as taste quality, intensity, and hedonics, 
in particular, are processed in the human brain. Human neuroimag-
ing studies have shown that taste consistently activates a range of 
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cortical areas including the anterior insula and frontal operculum 
(FOP), mid-dorsal insula and overlying Rolandic operculum, pos-
terior insula and parietal operculum (POP), as well as the postcen-
tral gyrus (cf. Veldhuizen et al. 2011; Yeung et al. 2018). Evidence 
suggests that the mid-dorsal insula and the adjacent FOP form GC 
(Small et al. 1999; O’Doherty et al. 2001; Bender et al. 2009; Small 
2010; Iannilli et  al. 2012), whereas the posterior insula and POP 
have been implicated in oral somatosensation and attention to the 
mouth rather than gustation (Veldhuizen et al. 2007). These findings 
are in line with macaque anatomy, where the anterior and mid insula 
and the FOP, but not the POP, receive taste afferents from the thala-
mus (Pritchard et al. 1986) but may not directly translate to human 
physiology. Observations that taste sensations can be elicited by 
electrical stimulation of the mid-dorsal insula (Mazzola et al. 2017), 
further corroborating its role as GC. Consistent with the anatomical 
evidence, scalp-level electrophysiological studies found pronounced 
activation of the bilateral anterior in mid insula and adjacent FOP in 
response to electric (Ohla et al. 2010) and sapid taste (Tzieropoulos 
et al. 2013; Crouzet et al. 2015) within 150 ms of taste delivery.

Functionally, insular activation has been linked with sensory 
taste features, such as taste intensity (Guest et al. 2007; Grabenhorst 
and Rolls 2008; Ohla et al. 2010; Spetter et al. 2010; Tzieropoulos 
et al. 2013) and taste quality (Schoenfeld et al. 2004; Crouzet et al. 
2015); taste pleasantness and valuation, on the other hand, have 
been mostly associated with activity in the OFC, the anatomically 
later, secondary taste area (Guest et  al. 2007; Grabenhorst and 
Rolls 2008). However, it has also been proposed that the GC jointly 
encodes both the chemical identity and palatability of a tastant (de 
Araujo et  al. 2006), thereby suggesting a role of the insula in the 
evaluation of taste or its precursors beyond mere sensory processing. 
This notion is corroborated by observations that expectations about 
the value of a taste, induced by visual cues, modulate taste-related 
processing in the rodent (Grossman et al. 2008) and in the human 
(Nitschke et al. 2006; Ohla et al. 2012) insula.

In contrast to animal models, the mechanisms underlying taste 
quality coding have received little attention in humans mostly due 
to the limited spatial resolution of noninvasive brain imaging tech-
niques such as functional magnetic resonance imaging (fMRI) yield-
ing a spatial resolution of a few millimeters at best. Accordingly, 
only a few fMRI studies have addressed the question of a gustotopic 
organization of the human GC and their results failed to provide 
evidence for a clear spatial segregation of taste qualities but rather 
suggest a partial overlap of insular representations for different 
tastes (Schoenfeld et al. 2004; Dalenberg et al. 2015; Prinster et al. 
2017). However, cortical activation patterns change rapidly, within 
milliseconds, rendering temporal information a candidate variable 
for taste quality coding. In fact, neuronal response patterns obtained 
from electrophysiological recordings at the scalp allow deciphering 
which taste participants tasted on a given trial. The onset of this dis-
criminability coincided with the earliest taste-evoked responses that 
were localized in GC, signifying that quality is among the first attrib-
utes of a taste represented in the central gustatory system (Crouzet 
et  al. 2015) in strong accord with electrophysiological studies in 
awake rodents (Stapleton et  al. 2006; Graham et  al. 2014; Pavao 
et al. 2014). The results also align with and add to observations that 
neuronal response patterns along the rodent gustatory neuroaxis, 
including the nucleus of the solitary tract (Di Lorenzo et al. 2009), 
parabrachial nucleus (Geran and Travers 2013), and insula (Jezzini 
et al. 2013), code taste quality.

More recent evidence linked the predictive value of gustatory 
neural response patterns and taste-related decision-making. For this, 

behavioral reports from different tasks were combined with multi-
variate analyses of large-scale electrophysiological recordings in a 
series of studies. Specifically, Crouzet et al. (2015) showed that the 
more alike the neural response patterns of any two tastes were, as 
indicated by poorer discriminative performance of a classifier, the 
more these tastes were confused by the participants. The results were 
surprising for the taste domain because they provide evidence for a 
mapping between neural and phenomenological rather than between 
neural and chemical spaces. Whether the information encoded in gus-
tatory neural response patterns drives actual behavior was addressed 
in two further studies. In the study by Wallroth et al. (2018), partici-
pants were to detect the presence of a taste as quick as possible. They 
found that the onset of taste decoding (discriminable brain response 
patterns) indeed predicted “when” participants detected a given taste 
by button press and linked neuronal response patterns to the speed 
of simple gustatory perceptual decisions—a vital performance index 
of nutrient sensing. Interestingly, the onset of taste decoding was ear-
lier in this study, where participants responded speedily, compared 
with the previous study, where participants performed a delayed 
response task suggesting that the timing of gustatory coding is in a 
way flexible and dependent on behavioral goals.

Although the mere detection of a taste in the oral cavity may 
prepare a nonspecific response, the regulation of nutrient uptake and 
expulsion of potential toxins calls for quick and reliable taste detec-
tion and identification. Whether taste detection and discrimination 
are sequential or parallel processes, that is, whether you know what 
it is as soon as you taste it, was addressed in another study (Wallroth 
and Ohla forthcoming). To uncover the sequence of processing steps 
involved in taste perceptual decisions, participants performed taste-
detection and taste-discrimination tasks. Irrespective of taste quality 
and task, neural decoding onset and behavioral response times were 
strongly linked, demonstrating that differences between taste judg-
ments are reflected early during chemosensory encoding. Moreover, 
neural and behavioral detection times were faster for the iso-hedonic 
salty and sour tastes than their discrimination time. No such latency 
difference was observed for sweet and bitter, which differ hedoni-
cally. These results indicate that the human gustatory system detects 
a taste faster than it discriminates between tastes, yet hedonic com-
putations may run in parallel (Perez et al. 2013) and facilitate taste 
identification.

Together these studies clearly show that the information encoded 
in taste-related neural response patterns is also the foundation for 
gustatory decision-making and that the timing aligns with task-spe-
cific goals.

Cortical population coding of taste decisions 
and behavior

Taste quality is tightly linked to taste palatability or pleasantness. 
Whereas sweet taste is typically liked, bitter taste is commonly 
aversive to most mammals. Accordingly, the gustatory neuroaxis 
needs to represent both features as they, together, drive food-
related decisions and allow adaptive behavior. In awake rats, 
taste administration is represented by complex temporal coding 
in single neurons: a brief period of nonspecific firing is followed 
by approximately 500  ms of identity-related firing, which is, in 
turn, replaced by firing that is reliably related to taste palatability 
(Katz et  al. 2000; Sadacca et  al. 2012). A  series of studies have 
demonstrated that the palatability “epoch” can be independently 
manipulated, validating the characterization: changes in per-
ceived palatability, such as that observed at the transition from 
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an attentive to “withdrawn” state (Fontanini and Katz 2005, 
2006) and across conditioned taste aversion learning (Grossman 
et  al. 2008; Moran and Katz 2014), change palatability epoch 
coding although having no impact on the earlier approximately 
800 ms of taste-induced activity.

CNS neural responses provide information about the identity 
of tastes on the tongue. Countless studies have demonstrated that 
sapid stimuli flowing across the tongue of anesthetized animals 
induce responses in neurons across the gustatory neuroaxis (for 
just a few examples, see (Azuma et al. 1984; Yamamoto 1984; Di 
Lorenzo 1988; Yamamoto et al. 1989; Nishijo and Norgren 1990; 
Erickson et al. 1994; Di Lorenzo and Victor 2003; Li et al. 2013). 
Perhaps the most discussed facet of these studies is the fact that taste 
responses vary vastly in breadth; a great deal of energy has been 
devoted to debating theories of gustatory coding that turn on these 
breadths of responsivity (e.g., Smith and St John 1999; Di Lorenzo 
2000; Scott 2004; Spector and Travers 2005; Lemon and Katz 
2007). Neural circuitry in general, and taste circuits in particular, 
are rife with cross-talk and feedback at both microcircuit (within 
region) and macrocircuit (between region) level (Jones et al. 2006). 
Empirical and theoretical work makes it clear that neural responses 
in such interactive networks should contain functionally interpret-
able dynamics that are most meaningful when examined at the 
ensemble rather than at the single cell level (e.g., see Abarbanel and 
Rabinovich 2001).

An independent set of studies have made use of analytic tech-
niques specialized to interpret the real-time firing of multiple simul-
taneously recorded neurons (hidden Markov modeling, or HMM). 
This work reveals that firing rate modulations within taste responses, 
which appear gradual in across-trial averages of single-neuron fir-
ing, are in fact not gradual at all. Rather, they reflect sudden coher-
ent shifts between ensemble states: at particular time points within 
individual trials, the firing rates of (on average) approximately 50% 
of the recorded neurons will change simultaneously; across-trial 
averages “smear” these changes, making them look more gradual, 
because they happen at different latencies in different trials (Jones 
et  al. 2007; Miller and Katz 2010). Together, these two sets of 
results suggest the testable hypothesis that GC neural ensembles, 
far from simply coding what the taste is, may process that infor-
mation to directly drive action. If in fact palatability-related firing 
appears suddenly in single trials (a possibility implied by but not 
directly demonstrated in the above-described work), it is possible to 
hypothesize that this appearance predicts the onset of consumption 
behavior. Our testing (Sadacca et  al. 2016) proves this to be the 
case, in that analyses keyed to the onset of the ensemble state domi-
nant during the palatability epoch (rather than to stimulus onset 
time, as is more typical) reveal that palatability coding does emerge 
suddenly—more suddenly than a range of ramping models, includ-
ing the model used to explain primate perceptual decision-making 
(see Shadlen et al. 1996; Gold and Shadlen 2001) can explain and 
as fast as models assuming instantaneous state transitions (Sadacca 
et al. 2016).

Armed with the knowledge of precisely “when” decision-related 
information appears in GC on individual trials, the authors were 
then able to compare this information to within-trial latencies of pal-
atability-related behavioral responses, measured through electromy-
ography. This analysis specifically reveals that the sudden emergence 
of the “palatability-related state” in GC neural ensembles predicts 
both “whether” the rat will gape in response to taste stimulation and 
precisely “when” that gape will occur, in single trials, with correla-
tion values of approximately 0.75 (Sadacca et al. 2016).

The above results, although robust, are phenomenological. Li 
and et al. (2016) performed two types of perturbation experiments 
to test whether GC ensemble transitions are causally linked to con-
sumption behavior. In one experiment, arrival of an aversive taste 
was cued: as the rats learned the meaning of the cue across a full 
session, the latency with which they gaped in response to the taste 
decreased by approximately 150 ms; recordings showed that the cue 
had an almost identical impact on neural coding of that aversive 
taste. In the second experiment, optogenetic silencing of GC neu-
rons was shown to change the likelihood of gaping. Together, these 
experiments confirm the general hypothesis that GC is a part of a 
distributed system responsible for transforming an incoming identity 
code into a taste decision.

These results, although perhaps surprising within the field of 
taste research, are consistent with a great deal of work on senso-
rimotor systems—and, more specifically, on work describing the 
top-down modulation of multirhythmic central pattern generators 
(Marder 2012).

Conclusion

When examined at each level of the nervous system—periphery, 
brainstem, and cortex—it is evident that individual taste-responsive 
receptor cells or neurons may respond either selectively or broadly 
to stimuli of different taste qualities. Recent approaches to rodent 
and human central taste also emphasize the importance of tempo-
ral response patterns, which likely underlie the progression of taste 
behavior, from detectability to discrimination. This response com-
plexity supports the notion of combinatorial coding along the gus-
tatory neuroaxis. The flexibility inherent in this type of coding for 
the sense of taste may be necessary for animals to exhibit adaptive 
behavior in food selection and consummatory behavior.
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