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ARTICLE INFO ABSTRACT

We studied the dynamic functional connectivity profile of dementia with Lewy bodies (DLB) and Alzheimer's
disease (AD) compared to controls, how it differs between the two dementia subtypes, and a possible relation
between dynamic connectivity alterations and temporally transient clinical symptoms in DLB.

Resting state fMRI data from 31 DLB, 29 AD, and 31 healthy control participants were analyzed using dual
regression to determine between-network functional connectivity. Subsequently, we used a sliding window
approach followed by k-means clustering and dynamic network analyses to study dynamic functional con-
nectivity. Dynamic connectivity measures that showed significant group differences were tested for correlations
with clinical symptom severity.

Our results show that AD and DLB patients spent more time than controls in sparse connectivity configura-
tions with absence of strong positive and negative connections and a relative isolation of motor networks from
other networks. Additionally, DLB patients spent less time in a more strongly connected state and the variability
of global brain network efficiency was reduced in DLB compared to controls. There were no significant corre-
lations between dynamic connectivity measures and clinical symptom severity.

An inability to switch out of states of low inter-network connectivity into more highly and specifically
connected network configurations might be related to the presence of dementia in general as it was observed in
both AD and DLB. In contrast, the loss of global efficiency variability in DLB might indicate the presence of an
abnormally rigid brain network and the lack of economical dynamics, factors which could contribute to cog-
nitive slowing and an inability to respond appropriately to situational demands.
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1. Introduction both strength and directionality on a timescale of seconds to minutes

(Chang and Glover, 2010; Hutchison et al., 2013b) and that studying

Resting state functional MRI has been used to study changes in
functional connectivity associated with different forms of dementia
such as dementia with Lewy bodies (DLB) and Alzheimer's disease (AD)
(Kenny et al.,, 2012; Lowther et al.,, 2014; Peraza et al.,, 2014;
Schumacher et al., 2018). To date, most functional connectivity studies
have focused on analyzing mean connectivity over the duration of a
scan of several minutes, thereby implicitly assuming that functional
connectivity remains stationary during that time. However, it has re-
cently been shown that functional connectivity can vary substantially in

these dynamics can provide important complementary information to
the traditional analysis of stationary functional connectivity (Calhoun
et al., 2014; Hutchison et al., 2013a). DLB is characterized by transient
changes in cognition. A large number of patients experience fluctua-
tions in cognition and attention/arousal which are qualitatively dif-
ferent from the less frequently seen fluctuations in other dementias,
such as AD (Bradshaw et al., 2004). In DLB, they occur mostly spon-
taneously without any situational explanation and result in pronounced
variation in cognitive ability over time (Bradshaw et al., 2004; McKeith

* Corresponding author at: Biomedical Research Building 3rd floor, Campus for Ageing and Vitality, Institute of Neuroscience, Newcastle University, NE4 5PL

Newcastle upon Tyne, United Kingdom.
E-mail address: j.a.schumacher2@newcastle.ac.uk (J. Schumacher).

https://doi.org/10.1016/j.nicl.2019.101812

Received 31 August 2018; Received in revised form 12 March 2019; Accepted 2 April 2019

Available online 03 April 2019

2213-1582/ © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/BY/4.0/).


http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2019.101812
https://doi.org/10.1016/j.nicl.2019.101812
mailto:j.a.schumacher2@newcastle.ac.uk
https://doi.org/10.1016/j.nicl.2019.101812
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2019.101812&domain=pdf

J. Schumacher, et al.

et al., 2005). In addition, the majority of DLB patients present with
visual hallucinations that are not constantly present, but recur over
time (Aarsland et al., 2001). The transient nature of these symptoms
suggests that changes in functional connectivity dynamics might play a
particularly important role in DLB (Sourty et al., 2016). Furthermore,
DLB patients often show marked slowing in information processing or
bradyphrenia (Firbank et al., 2018) further suggesting that temporal
aspects of brain function might be affected by DLB. We therefore stu-
died dynamic functional connectivity in DLB compared to healthy
controls and patients with AD. The aims of our study were to (1)
identify the differential dynamic connectivity profile of DLB compared
to healthy controls, (2) investigate how functional connectivity dy-
namics in DLB differ from AD, and (3) test a possible relation between
abnormal connectivity dynamics and the severity of clinical symptoms
in DLB.

2. Materials and methods
2.1. Participants

The study involved 102 participants over 60 years of age: 33 were
diagnosed with probable DLB, 36 with probable AD, and 33 were age-
matched healthy controls (HCs) with no history of psychiatric or neu-
rological illness. Participants from two contemporary and independent
dementia studies conducted at one research center (Newcastle) were
combined for this analysis. Both studies recruited patients from the
local community-dwelling population who had been referred to old age
psychiatry and neurology services. Dementia diagnoses were performed
independently by two experienced old age psychiatrists; AD was diag-
nosed using the National Institute on Ageing-Alzheimer's Association
(NIA-AA) criteria for probable AD (McKhann et al., 1984, 2011) while
DLB was diagnosed based on the consensus criteria for probable DLB
(McKeith et al., 2005). According to these criteria a diagnosis of
probable DLB is made if at least two of the three core DLB symptoms
(visual hallucinations, cognitive fluctuations, and Parkinsonism) are
present or if one core symptom is present in the presence of one or more
suggestive features including REM sleep behavior disorder, severe
neuroleptic sensitivity, and low dopamine transporter uptake in the
basal ganglia on PET or SPECT imaging (McKeith et al., 2005). The
Clinician Assessment of Fluctuations (CAF) scale was administered
prior to fMRI acquisition to assess the frequency and duration of cog-
nitive fluctuations (Walker et al., 2000). The hallucinations subscale of
the Neuropsychiatric Inventory (NPI) was used to assess the occurrence
of visual hallucinations in terms of severity and frequency (Cummings
et al., 1994). Furthermore, the Unified Parkinson's Disease Rating Scale
(UPDRS) motor subscore was used for the assessment of motor symp-
toms in the dementia patients (Fahn and Elton, 1987).

Exclusion criteria for all participants included co-morbid severe or
unstable medical illnesses and contraindications for MRI such as pa-
cemakers, cochlear implants, and metal body clips. Written informed
consent was obtained from all participants and both studies were ap-
proved by the local ethics committee.

2.2. Data acquisition

Imaging for both studies was performed on the same 3T Philips
Intera Achieva scanner. The imaging protocol was the same in both
studies except for a different resolution of the structural scans.
Structural images were acquired with a magnetization prepared rapid
gradient echo (MPRAGE) sequence, sagittal acquisition, echo time
4.6 ms, repetition time 8.3 ms, inversion time 1250 ms, flip angle = 8°,
SENSE factor = 2, and in-plane field of view 256 x 256 mm? with slice
thickness 1.2mm, yielding a voxel size of 0.93 x 0.93 x 1.2mm?>
(study 1) and in-plane field of view 240 x 240 mm? with slice thickness
1.0 mm, yielding a voxel size of 1.0 X 1.0 x 1.0 mm? (study 2). Resting
state scans were obtained with a gradient echo echo-planar imaging
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sequence with 25 contiguous axial slices, 128 volumes, anterior-pos-
terior acquisition, in plane resolution = 2.0 X 2.0 mm, slice thick-
ness = 6 mm, repetition time (TR) = 3000 ms, echo time = 40 ms, and
field of view = 260 x 260 mm?. Participants were asked to keep their
eyes open and stay awake for the duration of the resting state scan. DLB
patients who were taking dopaminergic medication were scanned in the
ON state.

2.3. Preprocessing

FEAT (FMRI Expert Analysis Tool, version 6.0) which is part of the
FMRIB's software library (FSL, www.fmrib.ox.ac.uk/fsl) was used to
perform motion correction with MCFLIRT, slice-timing correction, and
spatial smoothing with a 6.0 mm full width at half maximum Gaussian
kernel. Participants were excluded if the MCFLIRT motion parameters
exceeded 2mm translation and/or 2° rotation. To ensure that there
were no group differences in motion between the groups, motion was
compared between the groups using the formula introduced in (Liao
et al., 2010). Additionally, mean framewise displacement was com-
pared between the groups following the approach of (Power et al.,
2012).

A denoising procedure was performed with ICA-AROMA in FSL
which performs single-subject independent component analysis (ICA) to
remove motion components from each participant's functional data
(Pruim et al., 2015). Subsequently, eroded CSF and white matter masks
were estimated using FAST in FSL and the mean signal inside the mask
was regressed out of each participant's cleaned functional data. Func-
tional and structural images were co-registered using boundary based
registration in FSL, and normalized to standard MNI space using Ad-
vanced Normalization Tools (Avants et al., 2011). As a final step,
functional data were temporally high-pass filtered with a cut-off of
150 s and resampled to a resolution of 4 X 4 x 4 mm?.

2.4. Analysis of resting state data

Resting state networks (RSNs) were estimated with an independent
set of 42 healthy control participants from two previous studies that
were conducted on the same MR scanner using a similar imaging pro-
tocol (see Supplementary Table S1). Data from all 42 HCs were tem-
porally concatenated and subjected to a group-ICA using FSL's
MELODIC. A meta ICA approach was adopted to obtain reliable com-
ponents (Biswal et al., 2010; Poppe et al., 2013) using a model order of
70 independent components which has been shown to be optimal for
assessing disease-related group differences (Abou Elseoud et al., 2011).
The meta ICA consisted of repeating MELODIC 25 times on randomized
subsets of 30 out of the 42 independent HC participants. This was fol-
lowed by a meta MELODIC on the concatenated components from all
individual ICA runs. Components that showed a spatial correlation >
0.6 across runs were selected for subsequent analysis (Cerliani et al.,
2015). Additionally, the whole meta ICA procedure was repeated using
all HC participants from the main analysis and the resulting compo-
nents were compared to the ones obtained from the independent group
to ensure that all selected RSNs were present in both cohorts
(Schumacher et al., 2018). Meta ICA components that survived these
reliability checks were visually inspected with respect to their spatial
maps (Kelly et al., 2010) and 27 were identified as being of biological
interest according to previous literature (Agosta et al., 2012; Beckmann
et al., 2005) (Fig. 1 and Supplementary Table S2).

Subsequently, FSL-dual regression was run with all 27 identified
RSNs concatenated in a single 4D image, to obtain subject-specific re-
presentations of the RSN spatial maps and associated subject-specific
time courses (Fig. 2A). Results from a static connectivity analysis using
dual regression have been published previously using the same data
(Schumacher et al., 2018).

The subject-specific time courses resulting from dual regression
were further processed in Matlab (R2016b) using functions from the
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Fig. 1. Resting state networks. Spatial maps of the 27 RSNs obtained from the independent healthy control group. RSN maps are thresholded at 3 < z < 12. Images
are shown in radiological convention, i.e. the left side of the image corresponds to the right hemisphere.
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Fig. 2. Sliding window approach and k-means analysis. A) Data from all healthy control subjects from the independent cohort is concatenated in time and subjected
to group ICA to identify RSN spatial maps. Subject-specific time courses of each RSN are estimated using dual regression. B) Static functional connectivity (FC)
analysis by calculating correlation between each pair of RSNs using the whole time course (see (Schumacher et al., 2018)). C) Sliding window approach and
estimation of standard deviation (SD) of connectivity over time. D) K-means clustering.

Group ICA of fMRI toolbox (GIFT, http://mialab.mrn.org/software/
gift/index.html) to remove remaining noise sources. Postprocessing
included (1) detrending to remove linear, quadratic, and cubic trends,
(2) outlier detection based on AFNI's 3dDespike function (http://afni.
nimh.nih.gov/afni) and interpolation of outliers using a third-order
spline fit to the clean parts of the time courses, and (3) low-pass fil-
tering using a fifth-order Butterworth filter with a cutoff frequency of
0.15Hz.

2.5. Sliding window analysis

The postprocessed dual regression time series were analyzed with a
sliding window method to assess changes in between-network con-
nectivity over time (Fig. 2C). This analysis was performed in Matlab

(R2016b) based on functions from GIFT (Allen et al., 2014). A tapered
window was created by convolving a rectangle of 22TR (66 s) with a
Gaussian with sigma of 3TR and moved in steps of 1TR. Since there
were 128 volumes available, this resulted in a total of 107 overlapping
time windows for each participant. To assess the robustness of the re-
sults with respect to different window sizes, all analyses were repeated
for window sizes ranging from 18 to 28 TR.

A covariance matrix between all RSN-to-RSN pairs was estimated
for each window separately. Following Allen et al. (2014) regularized
inverse covariance matrices were estimated using the graphical LASSO
approach. Regularization was applied because it has been shown that
estimation of covariance based on relatively short time series can
otherwise be noisy. To achieve regularization and promote sparsity, an
L1-norm constraint was imposed on the inverse covariance matrix. The
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L1 regularization parameter A was optimized for each participant in-
dividually by evaluating the log-likelihood of unseen time windows
from the same participant using 20-fold cross-validation. All covar-
iances were subsequently converted to correlation values and trans-
formed into z-scores using Fisher r-to-z transformation. To control for
the effect of possible covariates the z-scores were then residualized with
respect to age, gender, and study membership using multiple linear
regression (Damaraju et al., 2014).

The variability of the connection strengths between RSNs (dynamic
functional connectivity) was assessed by calculating the standard de-
viation (SD) of the RSN-to-RSN correlations across time windows. To
assess whole-brain dynamics the mean SD across all connections be-
tween RSN pairs was computed. Additionally, the mean SD for each
network across all other networks was considered and each RSN-to-RSN
connection was also tested separately.

2.6. K-means clustering

To assess patterns of functional connectivity that reoccur over time
across different participants, k-means clustering was applied to the
windowed covariance matrices from all windows and all participants
using the Manhattan (L1) distance function (Fig. 2D). The optimal
number of clusters k was chosen based on the elbow criterion of the
cluster validity index, computed as the ratio of within-cluster to be-
tween-cluster distance (Allen et al., 2014). The clustering algorithm
was repeated 500 times in Matlab with random initializations of cluster
centroid positions to get a stable solution. In addition to using the op-
timal value for k, the analyses were repeated for k ranging from 2 to 8
to assess the robustness of the results regarding different values of k.

Group differences were assessed with respect to (1) frequency:
proportion of windows assigned to a state, (2) mean dwell time: average
number of consecutive windows assigned to a state, (3) intertransition
interval: average number of consecutive windows before a state tran-
sition occurs, (4) number of transitions: overall number of transitions
between different states (Hutchison and Morton, 2015; Marusak et al.,
2016).

2.7. Dynamic network analysis

We also considered a graph-theoretic approach to study the dy-
namics of global and local efficiency using the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010). For each time window a graph
was constructed using the 27 RSNs as nodes and the correlation be-
tween the RSNs within the respective time window as edge strength. We
created binarized, unweighted, and undirected graphs by thresholding
the absolute value of the individual time window correlation matrices
to achieve different edge densities. The edge density of a graph is de-
fined as the number of existing edges divided by the maximum number
of possible edges (351 in our case). We used edge density thresholds
ranging from 3.7% to 39.3% based on previous network studies (Peraza
et al., 2015; van Wijk et al., 2010). Global and local efficiency were
computed for each time window separately (Achard and Bullmore,
2007; Latora and Marchiori, 2001). Variability of efficiency was then
assessed by integrating over all edge density thresholds and computing
the standard deviation of the respective measure over time (Kim et al.,
2017). The same analysis was repeated in a static way by calculating
local and global efficiency from the whole time course.

2.8. Statistical analysis

All statistical analyses were performed in R (https://www.R-project.
org/). The variability of functional connectivity of each network and
each connection was compared between the groups using a non-para-
metric multivariate ANOVA (MANOVA (Burchett et al., 2017)) with
diagnosis as between-subject factor. The different k-means measures
were also compared between the groups using non-parametric
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MANOVA followed by Kruskal-Wallis ANOVAs and post-hoc Dunn's
tests using false discovery rate (FDR) correction for multiple compar-
isons. Effect sizes for all group comparisons were calculated using r?
(see Supplementary Tables S3 and S5). Spearman's rank correlations
between dynamic functional connectivity measures that showed sig-
nificant group differences and clinical variables in the DLB group were
assessed for the CAF total score as a measure of cognitive fluctuation
severity, the UPDRS motor subscale as a measure of the severity of
Parkinsonism, the NPI hallucination subscale which was specifically
scored for the severity and frequency of visual hallucinations, and Mini
Mental State Examination (MMSE) and Cambridge Cognitive Ex-
amination (CAMCOG) as measures of global cognition. In the AD group,
correlations with MMSE and CAMCOG were calculated.

To assess the effect of dopaminergic medication on dynamic con-
nectivity measures, DLB patients were divided into those patients who
were taking dopaminergic medication and those who were not on these
medications and all dynamic connectivity measures were compared
between the two groups using Mann-Whitney U-tests (see Section 7 of
the Supplementary Material).

Additionally, to investigate the possible influence of motion arte-
facts on the dynamic connectivity measures, we calculated correlations
between mean framewise displacement and the dynamic connectivity
measures across all participants (see Section 8 of the Supplementary
Material).

2.9. Effect of grey matter atrophy

To study differences in regional grey matter (GM) volume between
the three groups, a voxel-based morphometry (VBM) analysis was
conducted using DARTEL in SPM12 using age, gender, and total in-
tracranial volume as covariates. Additionally, total grey matter volume
and total intracranial volume (TIV) were compared between the groups.
Total GM volume and TIV were also considered as covariates when
residualizing the windowed correlation matrices (see Section 2.5).

3. Results

One AD patient had to be excluded due to coregistration errors.
Additionally, two controls, six AD, and two DLB participants were ex-
cluded because of excessive motion. This resulted in 31 DLB, 29 AD
patients, and 31 HCs for further analysis. The overall motion for all
included participants did not differ between the groups (Kruskal-Wallis
ANOVA; rotation, H, =0.79, p = 0.67; translation, H, = 0.67,
p = 0.71). Furthermore, mean framewise displacement was not dif-
ferent between the groups (HC, mean (SD) = 0.24 (0.11); AD, mean
(SD) = 0.25 (0.15); DLB, mean(SD) = 0.24 (0.09); Kruskal-Wallis
ANOVA, H, = 1.22, p = 0.54).

3.1. Demographics

Age and gender were not significantly different between the groups
and the two dementia groups did not differ significantly in terms of
overall cognition (MMSE and CAMCOG) and dementia duration
(Table 1). As expected, the number of patients taking dopaminergic
medication was significantly higher in the DLB group while the number
of patients taking cholinesterase inhibitors was not different between
the dementia groups. DLB patients had worse motor function, more
visual hallucinations, and greater cognitive fluctuations than AD pa-
tients.

3.2. Group differences in dynamic connectivity

The subject-specific values for the regularization parameter A that
resulted from the optimization procedure did not differ between the
three groups (Kruksal-Wallis ANOVA, H, = 0.06,p = 0.97).

Fig. 3 shows matrices representing the mean SD of the strength of
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Table 1
Demographic and clinical variables, mean (standard deviation).
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HC (N = 31) AD (N = 29) DLB (N = 31) Between-group differences
Male: female 22:9 20:9 19:12 x2 = 0.73, p = 0.70°
Study 1: study 2 15:16 13:16 12:19 x> = 0.60, p = 0.74"
Age 76.4 (7.2) 75.2 (8.6) 78.1 (6.7) Fogs = 1.16, p = 0.32"
AChEI - 26 28 x2 = 0.007, p = 0.93¢
PD meds - 1 18 x> = 20.66, p < 0.001°
Duration - 3.7 (1.7)! 3.4 (2.3) U = 339, p = 0.14¢
MMSE 28.9 (1.1) 21.8 (3.8) 22.0 (4.3) tsg = 0.20, p = 0.85°
CAMCOG 96.7 (3.2) 70.3 (13.5) 73.3 (13.6) tsg = 0.86, p = 0.39°
UPDRS III 1.94 (2.8) 3.5 (4.0) 18.1 (10.0) tss = 7.32, p < 0.001°
CAF total - 1.00 (2.5)" 4.8 (4.9) tse = 3.66, p = 0.001°
NPI total - 5.9 (5.5)" 14.6 (11.0)' tsq = 3.68, p = 0.001°
NPI hall - 0 1.6 (1.8)' ts3 = 4.53, p < 0.001°

AChEL, number of patients taking acetylcholinesterase inhibitors; AD, Alzheimer's disease; CAF total, Clinical Assessment of Fluctuations total score; CAMCOG,
Cambridge Cognitive Examination; DLB, Dementia with Lewy bodies; Duration, duration of cognitive symptoms in years; HC, healthy controls; Mayo total, Mayo
Fluctuations Scale; MMSE, Mini Mental State Examination; PD meds, number of patients taking dopaminergic medication for the management of Parkinson's disease
symptoms; UPDRS III, Unified Parkinson's Disease Rating Scale III (motor subsection); NPI, Neuropsychiatric Inventory; NPI hall, NPI hallucination subscore.

2 Chi-square test HC, AD, DLB.

> One-way ANOVA HC, AD, DLB.
¢ Chi-square test AD, DLB.

4 Mann Whitney U test AD, DLB.
€ Student's t-test AD, DLB.

f N =28
8 N = 30.
h N =27.
N =29.
I N = 26.

each RSN-to-RSN connection within each group. Overall mean varia-
bility of connectivity is shown in the bottom right panel of Fig. 3. When
considering average variability of each RSN, the overall MANOVA did
not show a significant effect of diagnosis (F(10,442) = 1.39, p = 0.18).
Similarly, when considering each individual RSN-to-RSN connection,
the MANOVA did not reveal a significant group difference across all
variables (F(96,4221) = 1.02, p = 0.43). Supplementary Table S3 and
Supplementary Fig. S2 show effect size estimates for all comparisons.
Overall, effect sizes were largest for the comparison of HC and DLB
participants while they were lowest for the comparison between both
dementia groups.

SD matrices were re-estimated using different window sizes from 18
to 28 TR showing that the overall appearance of the SD matrices was
not dependent upon the specific choice of window size (Supplementary
Fig. S1). Furthermore, repeating the analysis of connectivity variability
for different window sizes did not show any significant group differ-
ences (all p > 0.05).

3.3. K-means clustering

An optimal number of k = 3 clusters was determined by the elbow
criterion (Supplementary Fig. S3). State 1 was characterized by rela-
tively strong positive and negative between-network correlations
(Fig. 4). Especially strong positive correlations were present within the
visual and the motor networks and between these two groups of net-
works (Fig. 4E). Additionally, the motor and visual networks showed
negative correlations with cognitive control, salience, and temporal
networks and there was a strong connection between two components
of the default mode network (DMN). In contrast, state 2 was char-
acterized by much sparser connections, with weaker connectivity
within visual and motor networks and a relative lack of connections
between the two groups. There were a few positive connections be-
tween visual and default mode networks and additional positive con-
nections between DMN and attention networks. State 2 was the most
common state, being present in almost all participants and accounting
for 50% of all time windows. Similar to state 2, state 3 was char-
acterized by weaker connections and the relative absence of strong anti-

correlations. In addition to some within-module connections in the vi-
sual, motor, and default mode networks, there were weak connections
between visual and DMN and attention networks.

There were no significant differences between the groups in the
number of state transitions or the intertransition interval
(Supplementary Tables S4 and S5). The frequency of occurrence of the
three states was not correlated with time, i.e. we did not observe an
increase or decrease in the occurrence of any state over the duration of
the scan (Supplementary Table S4).

Non-parametric MANOVAs revealed that there was a significant
effect of diagnosis on frequency and mean dwell time across all three
states (Supplementary Tables S4 and S5). Follow-up univariate Kruskal-
Wallis ANOVAs and pairwise post-hoc tests demonstrated that state 1
occurred less frequently in AD and DLB compared to controls with no
difference between the dementia groups (Fig. 4F and Supplementary
Tables S4 and S5). In contrast, state 2 occurred more often in DLB
compared to controls. However, there was no difference between HC
and AD or between AD and DLB for state 2. The mean dwell time of
state 1 and 2 followed the same pattern as the frequency, i.e. DLB pa-
tients spent shorter periods of time in state 1 and longer periods of time
in state 2 than HC; AD patients spent shorter times in state 1 than HC
with no difference for state 2, and there was no difference between the
dementia groups (Fig. 4G). There were no group differences in fre-
quency or dwell time for state 3 (Supplementary Tables S4 and S5).

Several further analyses were performed to assess the robustness of
the k-means analysis. Supplementary Fig. S4 shows results for different
numbers of clusters demonstrating that the main result of differences in
frequency and dwell time of state 1 and 2 persisted when using a higher
k. Additionally, repeating the k-means analysis with k = 3 for different
window sizes confirmed that the specific choice of window length did
not influence the state identification (Supplementary Fig. S5). We also
performed split-half and bootstrap resampling which showed that states
1 and 2 were consistently identified in both split-half and all bootstrap
resamples, while state 3 failed to be identified in some of the bootstrap
resamples (Supplementary Fig. S6).
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Fig. 3. Results from dynamic functional connectivity analysis. Matrices representing mean standard deviation over time for all HC, AD, and DLB participants and
boxplot showing a group comparison of mean standard deviation across all connections.

3.4. Dynamic network measures

There was no difference between the groups in terms of variability
of local efficiency (Fig. 5B and Supplementary Table S4). In contrast,
global efficiency variability differed significantly between the groups.
Post-hoc tests revealed that it was less variable in DLB compared to
controls with no significant difference between AD and HC as well as
between the two dementia groups (Fig. 5A and Supplementary Tables
S4 and S5). Fig. 5C shows variability of global efficiency for different
edge densities and indicates that the largest group difference occurred
for edge densities of around 20%.

The static analysis of global and local efficiency did not reveal any
group differences (see Supplementary Tables S4 and S5).

3.5. Relation to clinical scores

Table S6 shows correlations between clinical variables and all dy-
namic connectivity measures that showed significant group differences
in the DLB and AD group separately. There were no significant corre-
lations between cognitive fluctuation or visual hallucination severity
and the dynamic connectivity measures. Frequency of state 2 was po-
sitively correlated with the UPDRS in DLB. However, this correlation
did not survive correction for multiple comparisons. There were no
significant clinical correlations in the AD group.

Comparing DLB patients who were on dopaminergic medication to
those who were not, did not reveal any significant differences between
the two groups (Supplementary Table S7).

There were no significant correlations between the dynamic
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Fig. 4. Results from k-means analysis. A) Centroids resulting from clustering on all windows with the overall percentage of windows assigned to the respective cluster
(shown above each matrix). B) Cluster medians in the healthy control (HC) group and the number of HC patients expressing a state displayed above the respective
matrix. C) Cluster medians in the Alzheimer's disease (AD) group and the number of AD patients expressing a state displayed above the respective matrix. D) Cluster
medians in the DLB group and the number of DLB patients expressing a state displayed above the respective matrix. E) Network representation of cluster centroids
showing only the 5% strongest positive (red) and negative (blue) connections. F) Comparison of frequency of occurrence between the three groups for each state,
solid lines represent the means per group, shaded areas represent error bars of the standard error. G) Comparison of mean dwell time in each state between the three
groups. FDR-corrected p-values < 0.05 (from post-hoc tests) are marked with an asterisk.

LSMN, lateral sensorimotor network; MSMN, medial sensorimotor network; SMAN, supplementary motor network; LMN/RMN, left/right motor network; BGN, basal
ganglia network; THN, thalamic network; CBN, cerebellar network; MVN, medial visual network; LVN, lateral visual network; SVN, superior visual network; TN,
temporal network; TPN, temporal pole network; ISN, insular network; ACN, anterior cingulate network; DMN, default mode network; SPGN, supramarginal gyrus
network; RFPN/LFPN, right/left fronto-parietal network; DAN, dorsal attention network; VAN, ventral attention network.
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Fig. 5. Results from the dynamic network analysis. Comparison of the varia-
bility of A) global (p-values FDR-corrected) and B) local efficiency between
groups. C) Variability of global efficiency at different network edge densities.

connectivity measures that showed group differences and mean fra-
mewise displacement (Supplementary Table S8).

3.6. Effect of grey matter atrophy

The AD group showed clusters of reduced GM volume compared to
controls, mainly in right and left hippocampus (Supplementary Fig. S7).
No regions showed increased GM volume in AD compared to controls.
The DLB group had reduced GM volume in a small cluster in right
cingulate cortex (Supplementary Fig. S8). Again, there were no areas of
increased GM volume in DLB compared to controls. There were no
significant differences in regional GM volume between the two de-
mentia groups.

Mean GM volume (in litres) was 0.56 (SD = 0.06) in healthy con-
trols, 0.53 (SD = 0.06) in AD patients, and 0.53 (SD = 0.06) in the LBD
group. Since this was not normally distributed in the AD group, a
Kruskal-Wallis ANOVA was performed to compare total GM volume
between the groups. This test revealed a marginally significant overall
effect of group (Hy = 6.09, p = 0.048). However, post-hoc Dunn's tests

showed that there were no significant differences between any groups
(p(HC,AD) = 0.06, p(HC,DLB) = 0.18, p(AD,DLB) = 1.0). The same
analysis was repeated for TIV which did not show any differences be-
tween the groups (univariate ANOVA, F5gg = 0.23, p = 0.80).

Adding total GM volume or TIV as covariates when residualizing the
windowed correlation matrices had no effect on the estimation of
standard deviation matrices or the cluster centroids resulting from the
k-means analysis (see Supplementary Figs. S9 and S10).

4. Discussion

In this study we investigated differences in functional connectivity
dynamics and dynamic brain network topology between patients with
DLB, patients with AD, and healthy controls. In terms of dynamic
changes in overall network structure, we found reduced variability of
global efficiency in the DLB group compared to controls which was not
observed in the AD group. Using a state-based analysis it became evi-
dent that both dementia groups spent less time in a state of strong in-
ternetwork connectivity than controls. Additionally, DLB patients spent
more time in a more sparsely connected state characterized by the re-
lative loss of strong anti-correlations and an isolation of motor networks
relative to other networks. While dynamic connectivity measures of the
AD group were often between those of the control and DLB groups, we
did not see significant differences in the direct comparison of both
dementia groups.

4.1. State-based analysis

While the number of states visited and the number of state changes
was not altered in the dementia groups, there was a significant differ-
ence in the type of state changes in dementia patients compared to
controls. The frequency with which the control participants visited each
of the three states was relatively balanced, i.e. they spent about a third
of their time in each state. In contrast, the distribution of states in the
AD and DLB groups was more out of balance compared to controls with
a clear decrease in frequency of state 1 in both dementia groups ac-
companied by an increased frequency of state 2 in DLB. In addition to
visiting state 1 less often, the dementia patients also switched out of this
state more rapidly and DLB patients stayed in state 2 for longer con-
secutive periods of time. In accordance with previous reports in healthy
participants (Allen et al., 2014), development (Marusak et al., 2016),
ageing (Viviano et al., 2017), and Parkinson's disease (PD) (Kim et al.,
2017), the most common state in the present study (state 2) was
characterized by a sparse connectivity profile with relatively weak
inter-network connections and the absence of strong anti-correlations.
The frequency of this state has been linked to the amount of self-focused
thought (Marusak et al., 2016) and it has been suggested to represent a
general connectivity pattern that participants spend most of their time
in, with other states reflecting temporary deviations that might be due
to cognitive, physiological, or motion-related processes (Viviano et al.,
2017). State 1 deviated from this state by stronger positive and negative
connections. It seems that AD as well as DLB patients remain in states of
low inter-network connectivity and switch less often into more highly
and specifically connected network configurations. This may relate to
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the presence of dementia in general even though we did not see any
specific correlations between the time spent in different states and the
severity of cognitive impairment. A specific hallmark of state 1 is strong
connectivity within visual and motor networks and between these two
groups of networks that is not present in state 2. A reduced ability to
switch into this state thus accords with Sourty et al. (2016) who found
dynamic connectivity changes in DLB for networks related to visual
processing using Hidden Markov Models. Another important char-
acteristic of state 1 that differentiates it from state 2 is the existence of
strong anti-correlations in the former. Furthermore, while the DMNs do
not show strong correlations with task-positive networks in state 1, the
other two states are characterized by positive connections between
DMN, visual and attention networks. Anti-correlation between default
mode and task-positive networks has been shown to be important for
attentional function (Fox et al., 2005) and a loss of anti-correlations has
been associated with ageing, mild cognitive impairment, and cognitive
impairment in PD (Baggio et al., 2015; Esposito et al., 2017). Our re-
sults further suggest that an absence of this antithetic relationship be-
tween default mode and task-positive networks might also be a feature
of more established neurodegenerative disease in the case of AD and
DLB.

4.2. DLB-related changes in dynamic network topology

Regarding dynamic network topology, we found less variable global
efficiency in DLB compared to controls. Global efficiency is a measure
of communication efficiency across the whole brain network (Latora
and Marchiori, 2001). In general, more pronounced variability of
functional connectivity has been shown to be related to superior per-
formance on a range of behavioral tests including attention and
memory tasks (Jia et al., 2014) indicating that the dynamic and flexible
engaging and disengaging of different brain regions seems to be crucial
for efficient and adaptable communication within the brain (Zalesky
et al., 2014). Reduced dynamics in turn can lead to less flexible, in-
effective communication and a reduced ability of the network to re-
spond to situational demands. The reduced variability of global effi-
ciency in DLB might thus indicate a disease-related and abnormal
rigidity of the brain network which might relate to the cognitive
slowing (bradyphrenia) that is observed in DLB patients (Firbank et al.,
2018). In contrast, in healthy brains efficiency is temporally modulated
which has been shown to represent more economical network dynamics
allowing for a more specific response to situational demands (Zalesky
et al., 2014). In contrast to the dynamic analysis, we did not see sig-
nificant group differences when considering efficiency across the whole
time course. This finding stands in contrast to a previous study from our
group which reported increased global efficiency in DLB compared to
AD (Peraza et al., 2015). However, Peraza et al. (2015) performed a
network analysis on the basis of atlas-defined regions of interest
whereas network nodes in our analysis were RSNs. In both approaches
the extraction of the time series is very different; in the case of network
analysis based on RSNs, the efficiency of communication between
whole-brain networks is assessed whereas Peraza et al. (2015) in-
vestigated the efficiency of communication between individual cortical
regions. Nevertheless, similar to our results, Peraza et al. (2015) re-
ported no difference between AD and controls with respect to global
efficiency which indicates that static and dynamic changes in efficiency
might be a specific feature of DLB that might not be associated with
dementia per se. In contrast to our results, Kim et al. (2017) found
increased variability of global efficiency in PD. However, this finding
was not replicated in another study in PD patients with mild cognitive
impairment (Diez-Cirarda et al., 2017) and thus further research will be
needed to identify the specific changes related to these different Lewy
body diseases.
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4.3. Relation to clinical symptoms in DLB

Given the transient nature of clinical DLB symptoms such as visual
hallucinations and cognitive fluctuations, we expected to find relations
between symptom severity and dynamic connectivity measures.
However, we did not observe any relation with respect to visual hal-
lucinations and cognitive fluctuations, even before correcting for mul-
tiple comparisons. A possible reason for this might be the difference in
time-scales: while our data only allowed the characterization of dy-
namics during a 6-minute resting state scan, the time-scale of cognitive
fluctuations and visual hallucinations can be on the order of minutes to
hours and even days. Performing repeated scans with DLB patients at
different times of the day or over several days might thus help to un-
derstand more about the relation between functional connectivity dy-
namics and clinical symptom severity. There was a trend for an asso-
ciation between frequency of state 2 and severity of Parkinsonism in
DLB, i.e. an increased time spent in this sparsely connected state might
relate to more severe Parkinsonism. Relative to state 1, this state was
characterized by a disconnection of motor networks from other net-
works and the observed correlation might thus indicate that the isola-
tion of motor networks might contribute to the severity of clinical
motor symptoms. However, this is only an exploratory result that did
not survive multiple comparison correction and further research will be
needed to confirm this conjecture.

4.4. Reliability of dynamic connectivity results

The interpretation, functional significance, and origin of dynamic
functional connectivity have been the subject of an extensive debate
(Hindriks et al., 2016; Laumann et al., 2016). However, recent studies
using concurrent fMRI and EEG measurements point towards a neu-
ronal origin of dynamic functional connectivity (Chang et al., 2013).
Additionally, several studies have provided support for a cognitive role
by showing that temporary changes in connectivity are related to
changes in behavioral or vigilance states (Jia et al., 2014; Kucyi et al.,
2017; Thompson et al., 2013) and cognitive performance in healthy
older adults (Cabral et al., 2017). Finally, the study of dynamic func-
tional connectivity in clinical populations has led to the identification
of specific dynamic connectivity alterations associated with specific
disorders which provides further evidence of the neurocognitive sig-
nificance of time-varying functional connectivity (Damaraju et al.,
2014; Jones et al., 2012; Sourty et al., 2016).

Although the sliding window approach has been widely applied to
study dynamic functional connectivity (Allen et al., 2014; Damaraju
et al., 2014; Hutchison and Morton, 2015; Jones et al., 2012; Marusak
et al., 2016) its validity has been debated (Hindriks et al., 2016). Ad-
vantages are its interpretability and computational efficiency which
make this kind of analysis especially suitable for the investigation of
clinical questions. However, problematic aspects include the need for
an a priori specification of parameters such as window length and the
number of states for the k-means analysis and the possibility of spurious
connectivity fluctuations which can arise due to noise sources such as
head motion (Hutchison et al., 2013a). In the present study we applied
several pre- and postprocessing steps to reduce the effect of these noise
sources (see Section 2.4). It was also ensured that the groups did not
differ with respect to motion which makes it unlikely that the observed
group differences were merely motion artefacts. Additionally, there was
no significant relation between dynamic connectivity measures and
mean framewise displacement indicating little influence of motion on
the dynamic connectivity measures in our participants. Regarding the
choice of window length, we showed that our results can be reproduced
using windows of different lengths (see Supplementary Figs. S1 and S5).
While most previous studies examined a larger number of states (Allen
et al., 2014; Damaraju et al., 2014; Hutchison and Morton, 2015;
Marusak et al., 2016; Viviano et al., 2017), we focused on a smaller set
of three states which was determined as the optimal number of states in
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our dataset and is comparable to a previous report in PD (Kim et al.,
2017). The states tended to get more unstable as more states were
added with states appearing that were specific to certain participants
(Supplementary Fig. S4). This might be due to the small number of
participants and large heterogeneity in our sample. Nevertheless, we
showed that the observed group differences in terms of frequency and
dwell time remained largely unchanged for different values of k and
states were reproducible on split-half and bootstrap resamples of the
data which confirms the robustness of this approach. Notably, adding
more states did not result in more significant group differences in-
dicating that these three states represent the most important states in
terms of dementia-related changes in connectivity dynamics.

A potential limitation in the interpretation of dynamic connectivity
results is that dynamic connectivity measures are sensitive to changes in
other features of the data such as variance and signal-to-noise ratio of
the fMRI time series and non-stationarities in mean and variance. In
theory, this problem can be overcome by generating data under the null
hypothesis of static connectivity and showing that the probability of
finding group differences in dynamic connectivity from these data is
low. However, while for Gaussian data this can be achieved by using
coherent phase randomization (Hindriks et al., 2016) or vector auto-
regressive null models (Zalesky et al., 2014), these techniques cannot be
applied in the present context due to the non-Gaussianity of the RSN
time series. This therefore remains as a potential limitation of this
study.

Another factor that might influence dynamic connectivity measures
is GM atrophy and group differences in GM atrophy have been shown to
potentially lead to spurious results in a group comparison of functional
connectivity (Damoiseaux et al., 2012). However, we confirmed that
there were only subtle regional GM differences between the three
groups included in this study and adding total GM volume as a cov-
ariate did not change the results.

4.5. Limitations

A limitation of this study is that over half of the DLB patients were
on dopaminergic medication and scanned in the ON state which might
have influenced their functional connectivity measures. However, do-
paminergic medication has been shown to normalize connectivity to-
wards more healthy levels (Tahmasian et al., 2015) suggesting that the
observed group differences were not due to medication. Furthermore,
we did not find differences in terms of dynamic connectivity measures
between DLB patients who were taking dopaminergic medication
compared to those not on these medications. All diagnoses were based
on clinical assessment rather than pathological confirmation. However,
the standardized diagnostic criteria that were used in this study have
demonstrated high specificity when validated against autopsy findings
(McKeith et al., 2000).

4.6. Conclusion

The loss of variability of global efficiency in DLB indicates an ab-
normally rigid brain network. This might be associated with less eco-
nomical dynamics that can prevent specific and effective responses of
the brain network to situational demands. This loss of dynamics was not
observed in AD patients and seems to represent a DLB-specific ab-
normality that might relate to the cognitive slowing observed in DLB
patients. In contrast, the inability to switch out of states of low inter-
network connectivity into more highly and specifically connected net-
work configurations was observed in both dementia groups and might
thus be related to the presence of dementia in general rather than any
symptoms that are specific to AD or DLB.
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