Skip to main content
. 2018 Sep 12;19(2):115–126. doi: 10.1038/s41397-018-0044-2

Table 1.

Comparison of the predictive performance of functionality prediction tools on pathogenic and pharmacogenetic data sets

Algorithm Category Performance on disease-associated data set (AUCROC) Performance on pharmacogenetic data set (AUCROC)
SIFT Functionality prediction algorithms 0.76–0.88 0.74
PolyPhen-2 0.79–0.88 0.77
LRT 0.67–0.72 0.75
MutationAssessor 0.8–0.83 0.78
FATHMM 0.87–0.91 0.51
FATHMM-MKL 0.91 0.73
PROVEAN 0.85 0.76
VEST3 0.91 0.8
GERP++ Evolutionary conservation scores 0.67–0.78 0.67
SiPhy 0.69–0.81 0.63
PhyloP (vertebrate) 0.67–0.83 0.64
PhyloP (mammalian) 0.64
PhastCons (vertebrate) 0.67–0.83 0.58
PhastCons (mammalian) 0.61
CADD Ensemble scores 0.93 0.81
DANN 0.95 0.75
MetaSVM 0.88–0.89 0.68
MetaLR 0.92–0.94 0.68

Performance measures on disease-associated data sets were obtained from refs. [2631]