Skip to main content
. 2018 Sep 12;19(2):115–126. doi: 10.1038/s41397-018-0044-2

Table 2.

Overview of computational method parameters to assess the functionality of pharmacogenetic variants

Conventional ADME optimized
Algorithm Category Threshold Sensitivity (%) Specificity (%) Threshold Sensitivity (%) Specificity (%)
SIFT Functionality prediction algorithms <0.05 80.7 54.2 <0.0376 75.6 57.6
PolyPhen-2 >0.447 80.8 63 >0.3841 83 61.6
LRT <0.001 66.3 72.3 <0.0025 77.3 65.2
MutationAssessor >1.9 79 63.7 >2.0566 74 67.8
FATHMM <−1.5 18.2 81.9 <0.486 69.9 27.1
FATHMM-MKL >0.73 64.2 68 >0.3982 77.4 63.3
PROVEAN <−2.5 80.7 56.9 <−3.286 72.2 72.2
VEST3 >0.9 14.3 95.9 >0.4534 67.6 78.8
GERP++ Evolutionary conservation scores >4.4 28.4 84.4 >1.2482 84.2 47.6
SiPhy >12.17 32.1 78.2 >7.2442 51.9 72.7
PhyloP (vertebrate) NA NA NA >0.5216 70.5 53.7
PhyloP (mammalian) NA NA NA >0.0461 77.4 49
PhastCons (vertebrate) NA NA NA >0.07 81.1 34.7
PhastCons (mammalian) NA NA NA >0.1872 67.4 49.7
CADD Ensemble scores >15 75.8 74.8 >19.19 74.2 78.9
DANN >0.99 68.9 70.1 >0.9688 85.8 54.4
MetaSVM >0 43.4 86.3 >−0.3371 51.6 78.1
MetaLR >0.5 41.2 84.2 >0.4039 52.2 76.7

Sensitivity and specificity of each prediction method is shown for conventional disease dataset-based parameterization and ADME optimized parameters. Threshold values are in arbitrary units, values for sensitivity and specificity are provided in percentage (%)