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Abstract: Liquid biopsy is a technique that utilizes circulating biomarkers in the body fluids of cancer
patients to provide information regarding the genetic landscape of the cancer. It is emerging as
an alternative and complementary diagnostic and prognostic tool to surgical biopsy in oncology.
Liquid biopsy focuses on the detection and isolation of circulating tumor cells, circulating tumor DNA
and exosomes, as a source of genomic and proteomic information in cancer patients. Liquid biopsy is
expected to provide the necessary acceleratory force for the implementation of precision oncology in
clinical settings by contributing an enhanced understanding of tumor heterogeneity and permitting
the dynamic monitoring of treatment responses and genomic variations. However, widespread
implementation of liquid biopsy based biomarker-driven therapy in the clinical practice is still in its
infancy. Technological advancements have resolved many of the hurdles faced in the liquid biopsy
methodologies but sufficient clinical and technical validation for specificity and sensitivity has not
yet been attained for routine clinical implementation. This article provides a comprehensive review
of the clinical utility of liquid biopsy and its effectiveness as an important diagnostic and prognostic
tool in colorectal, breast, hepatocellular, gastric and lung carcinomas which were the five leading
cancer related mortalities in 2018.

Keywords: liquid biopsy; circulating tumor cells (CTCs); circulating tumor DNA (ctDNA); exosomes;
cancer diagnosis; cancer prognosis

1. Introduction

Decades of astounding cancer research has defined cancer to be a disease that involves mutations
in the cell genome [1]. Random mutations generated due to the development of genomic instability in
cancer cells is considered to be a prominent factor that could orchestrate and expedite the acquisition
of various hallmarks of cancer such as sustaining proliferative signaling, evading growth suppressors,
resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion
and metastasis [2]. The GLOBOCAN 2018 has estimated the global cancer incidence and mortality to
be at 18.1 million and 9.6 million cancer deaths respectively in 2018. Cancer accounted for being the
second leading cause of death globally. Lung cancer (18.4%), colorectal cancer (9.2%), gastric cancer
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(8.2%), hepatocellular cancer (8.2%) and breast cancer (6.6%) accounted for the top five leading causes
of cancer-related deaths globally in 2018 [3].

The idea of precision oncology or precision medicine of cancer has emerged as a powerful clinical
strategy in oncology with the objective of providing the most accurate and effective treatment to each
cancer patient based on the genetic profile of cancer and the individual. Due to the genetic diversity
and the rapidly changing dynamics of genomic profiles among cancer patients, better treatment
efficacy could be attained if cancer therapeutics could shift from a concept of ‘one-size-fits-all’
approach to an individual level tailored treatment strategy [4]. Precision oncology is expected to
emerge as an initiative to tackle various obstacles faced in cancer management, such as unexplained
drug resistances, genomic heterogeneity of tumors and lack of appropriate methods for monitoring
responses to therapies [5]. One of the prime challenges for the clinical implementation of precision
oncology is to identify and detect molecular biomarkers that could predict the prognosis, sensitivity or
resistance to a specific single agent or combination therapies, or specific therapy-associated adverse
drug reactions [6]. In this scenario, liquid biopsy has been recently gaining widespread attention
globally as an alternative/complementary to tissue biopsy in the era of “cancer theranostics” by being
a minimally invasive prognostic and diagnostic tool that can assess the genetic landscape of various
solid tumors.

The present study focuses on the clinical utility of liquid biopsy in the top five cancers that were
the leading causes of cancer-related mortality in 2018 as per the GLOBOCAN 2018. The study was
formulated after an exhaustive literature search from 165 articles collected through Google Search,
PubMed and databases such as World Health Organisation (WHO) and www.fda.gov using the
keywords ‘liquid biopsy’, ‘CTCs’, ‘ctDNA’, ‘exosomes’, ‘cancer diagnosis and cancer prognosis’ in
combination with the Boolean operators “AND/OR.” Only the studies conducted in human subjects
were considered for this report.

Liquid biopsy has emerged as a revolutionary technique that is providing new perspectives and
dimensions to the field of medical oncology. It consists of the detection and isolation of circulating
tumor cells (CTCs), circulating tumor DNA (ctDNA) and exosomes, as a source of genomic and
proteomic information in patients with cancer [7]. Surgical biopsies (SB) are still considered to be
the “gold standard” for diagnosis and treatment choice for diseases of genetic involvement such as
cancer [8]. However, they are associated with inherent deficiencies such as:

• Limited accessibility of tumor tissue during tissue biopsy increases the chance of false-negative
results [9].

• Lack of information regarding spatial and temporal heterogeneity of the tumor [10].
• Genetic landscape of the tumor might change due to the emergence of treatment-resistant sub

clones which were in fewer numbers in the primary tumors [10].
• Problems due to logistic and technical complications such as tissue storage leads to false- positive

results thereby affecting the treatment decision and patient care [11].
• Risk of adverse effects to the patient from the biopsy procedure [9].
• High total cost [12].

These disadvantages make tissue biopsy an unfeasible option for long term monitoring.
Liquid biopsy, obtained with a routine blood draw, overcomes most of the limitations of tissues
and can provide rapid detection of the tumor genetics including de novo and resistant mutations [13].
This technique involves the analysis of circulating tumor DNA, cell-free DNA, exosomes, RNA (mRNA
and microRNA) and circulating tumor cells (CTCs) in the body fluids to determine the mutational
status [14]. The US FDA approved the first liquid biopsy test on 1 June 2016 for analysis of EGFR
mutations in Non-Small Cell Lung Carcinoma (NSCLC) patients using cobas EGFR Mutation Test v2.
The test involves the detection of EGFR mutations in lung cancer patients whose tumors have the exon
18 (G719X) substitutions, exon 19 deletions, exon 20 insertions and substitutions (T790M, S768I) and
exon 21 substitutions (L858R, L861Q) and is indicated to select patients who are candidates for EGFR
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inhibitor therapy [15,16]. Table 1 provides a brief description of the advantages and disadvantages of
liquid biopsy.

Table 1. Advantages and disadvantages of liquid biopsy.

Advantages Disadvantages

• Helps in understanding the spatial and temporal
heterogeneity of cancer [17].

• Requires only a small amount of blood (usually 6–10
mL of blood) [18].

• Minimally invasive [19].
• Early detection of cancer [20].
• Real time monitoring for treatment responses and

resistance could be performed by repeated analysis [21].
• Shorter turnaround time for genotyping mutations [18].
• Aid precision oncology [22].

• Lack of standardization of the techniques [23].
• Sufficient clinical and technical validation is

not yet attained, that is required for the
routine clinical implementation [24].

• In some cancers (e.g., lung cancers), the
diagnosis and subtyping cannot be done by
liquid biopsy and can be established by only
histology [25].

2. Molecular Tumor Targets of Liquid Biopsy

As mentioned above, the analysis of the genetic aberrations could be performed by liquid biopsy
using biomarkers such as ctDNA, CTCs and exosomes.

2.1. ctDNA

DNA is constantly released into the circulation as fragments by apoptosis and necrosis of both
cancerous and non-cancerous cells in our body [26,27]. If the DNA is released irrespective of the cell
of origin, it is typically referred to as cfDNA and when it is released specifically by the cancerous
cells, it is referred to as ctDNA. Mutations, copy number variations (CNVs), methylation changes or
single-nucleotide variations (SNVs) harbored by ctDNA could be analyzed with high sensitivity and
specificity. ctDNA is considered a better option when compared to archival tissue DNA in clinical
scenarios where new biopsies are difficult to obtain [17]. cfDNA levels of healthy subjects range from
0 to 100 ng/mL of blood, with an average of 30 ng/mL, whereas in cancer patients they range from 0
to 1000 ng/mL of blood, with an average of 180 ng/mL [28]. In cancer patients, ctDNA represents only
a small proportion of total cfDNA (varies from less than 0.1% to over 10%). This proportion depends
upon the tumor burden, cancer stage, cellular turnover and response to therapy [29]. The tamount
of ctDNA increases with tumor growth [30]. It is estimated that patients with a tumor load of 100 g
in size (≈3 × 1010 neoplastic cells) release 3.3% of the tumor DNA into the circulation on a daily
basis [31]. ctDNA can be isolated from plasma, serum, ascites, breast milk, lymphatic and peritoneal
fluids, bone marrow aspirates, urine, prostatic fluid, peritoneal lavage, sputum, cerebrospinal fluid,
gastric juice, and biliary and stool samples [32].

2.2. CTCs

CTCs are intact tumor cells shed from both primary tumor sites and metastatic sites into
the circulatory system [33]. The number of CTCs present in the blood is as low as one CTC
per 106–107 leukocytes per milliliter of blood, with even lower numbers in the early stages of
cancer [34]. The detection and isolation of the CTCs have been achieved by the technological
advancements that studied and utilized the antigenic expression of the CTCs and their physical
differences with the leukocytes [35]. CTCs represent a highly dynamic cell population, characterized
by a high heterogeneity at the genetic, transcriptomic, proteomic and metabolomic levels [36].
The phenotypic and genotypic characteristics of CTCs can change during the course of the cancer by
microenvironmental and therapeutic selective pressures [37]. As CTCs counts run in parallel with the
tumor burden of the disease, they serve to be a more accurate method for the real time monitoring of
cancers than many other commonly used soluble biomarkers [38–40].
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2.3. Exosomes

Exosomes consist of a lipid bilayer which contains both transmembrane and nonmembrane
proteins, as well as noncoding RNAs, mRNAs, and either single-stranded or double-stranded
DNA [41]. Presence of exosomes was first reported in 1983 by Pan and Johnstone when culturing sheep
reticulocytes at McGill University [42]. Exosomes are small membrane-enclosed vesicles 50–150 nm
in size and 30–120 nm in diameter [43] which are actively discharged by most cells, including tumor
cells [44] to extracellular space or biological fluids including serum [45], urine [46], breast milk,
plasma, saliva [47], tears [48], pleural effusion [49], semen [50], amniotic fluid [51] and synovial
fluid [52]. Studies have found that the analysis of double-stranded DNA [41] and RNA [53] content
of exosomes provides details about the mutational status of the original cells as the architecture of
exosomes protect RNA and miRNA from RNase catalytic activity thus providing accurate details of
the primary tumor traits. A study has found that the integrin composition of exosomes promotes
organotrophic metastasis [54] and thus the analysis of nucleic acids in exosomes can provide details
regarding metastasis, tissue invasion and angiogenesis [55]. Isolation of exosomes from body fluids is
carried out by technologies that are based on the biophysical properties (size, morphology, density),
immunoaffinity capture or by precipitation method [56]. The clinical utility of exosomes as a tumor
biomarker in cancer require further evidence from large clinical trials as most of the existing data are
limited to small cohort studies [7].

3. Methods

Several methods have been proposed for the isolation and analysis of cfDNA, CTC and exosomes.
cfDNA can be isolated using cfDNA isolation kits such as DNA isolation kit for mammalian blood
(Boehringer Mannheim, now Roche Molecular Biochemicals, Mannheim, Germany), the QiaAmp blood
kit (Qiagen, Germantown, MD, USA), and the Jetquick Blood Kit (Thermofischer, Waltham, MA, USA)
which are available in the market [57]. Other methods used for cfDNA extraction include isolation
with organic solvents such as phenol or chloroform [58] and the use of magnetic beads [59]. Isolation
of cfDNA is followed by massive parallel sequencing [60,61] and digital genomic methods [62,63]
for detection, quantification and molecular characterization of ctDNA fraction. CELLSEARCH® is
an FDA approved test for capturing and enumerating CTCs. This method uses ferrofluid reagent,
which consists of particles with a magnetic core surrounded by a polymeric layer coated with antibodies
targeting the Epithelial cell adhesion molecule (EpCAM) antigen, for capturing CTCs [64]. The CTC
chip, a microfluidic device is one of the techniques used for isolation of CTCs. This chip contains
an array of microposts that contain anti-epithelial-cell-adhesion-molecule (EpCAM, also known as
tumor-associated calcium signal transducer 1 (TACSTD1)) antibodies. These antibodies have an
affinity towards the EpCAM, which is over-expressed by the carcinomas of lung, colorectal, breast,
prostate, head and neck and hepatic origin [65] thereby making it a useful tool in the CTC isolation
process with high specificity [66,67]. Apart from microchips, filtrating systems such as VyCAP or
ISET (Isolation by SizE of Tumor cells) filtration [68] which can be enhanced by the bead-based
capture [68] are also used for CTC isolation. Exosome isolation by conventional methods such as
Western blotting and enzyme linked immunosorbent assay (ELISA) require large sample volume
and extensive processing [69,70]. Hence methods such as nano-plasmonic sensor [71], BEAMing
and Droplet Digital PCR Analysis (ddPCR) [72], microfluidic exosome analysis [73], microfluidic
devices such as ExoChip [74], SOMAmer®-based assay technology [75] and surface plasmon resonance
imaging [76] were developed to overcome these challenges.

Isolation is followed by PCR amplification and next generation sequencing (NGS).
Hypermethylation, hypomethylation, deletions, amplifications, chromosomal rearrangement and
mutations can be detected by PCR and NGS technologies [77] as depicted in Figure 1. Scorpion
amplified refractory mutation system (ARMS), allele-specific quantitative PCR, PCR with peptide
nucleic acid clamps, massively parallel sequencing, and ddPCR [78], COBAS EGFR test, competitive
allele-specific PCR [79] and mutant specific PCR [80] are the widely used PCR techniques. NGS allows
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the detection of multiple mutations in multiple genes in the following four steps: generation of short
fragment DNA library, single fragment clonal amplification, massive parallel sequencing and data
analysis [77]. In ultra-deep sequencing, the focus can be narrowed down on the clinically relevant
gene panels and the mutations can be detected with high sensitivity and specificity [81,82]. AURA II
studies have shown that the testing performance of NGS in detecting the EGFR mutation is relatively
comparable to the PCR based and COBAS technologies [83]. NGS based EGFR mutation testing has
shown to facilitate the determination of prognosis in patients with advanced NSCLC [84], monitoring
genomic alterations [85–87], determining the resistance landscape to targeted therapies [88] and in
predicting the response to therapy [89].
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Figure 1. Procedure for performing liquid biopsy.

4. Significance of Liquid Biopsy in Various Cancers

Several studies have demonstrated that liquid biopsy could be used as a potential tool for the
detection of genetic alterations in a wide variety of cancers. Studies have identified the presence
of cancer-specific biomarkers such as EGFR, KRAS, ERBB2, EML4-ALK, CEA, SEPT9 in the body
fluids of patients and have shown the possibility of reconstructing the tumor genomes from plasma
DNA [90–94]. The clinical utility of other biomarkers in cancer is mentioned in Table 2. As the primary
objective of the therapy is to prevent tumor progression, metastasis and recurrence, proper monitoring
is required to check if the therapy fulfills the above requirement. Since liquid biopsy is feasible
to repeat during follow-up, it can be used for monitoring therapeutic response and prognosis [95].
Here, we describe the clinical utility of liquid biopsy in several cancers.

4.1. Colorectal Cancer

Colorectal cancer (CRC) is the third most common cancer worldwide and the second most
prevalent cause of cancer deaths according to GLOBOCAN 2018 [96]. Mutations of genes such
as KRAS [97], BRAF [98], TP53 [99], APC [100], CEA [101] and SEPT9 [102] are frequent in CRC.
Detection of mutations in these genes by liquid biopsy is being studied as a cancer screening tool in
populations at risk of cancer. Research studies have demonstrated that APC [29], BRAF and KRAS
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mutations were identified in ctDNA with high sensitivity and specificity [103]. When compared
to breast cancer or prostate cancer, colon cancer patients had very low levels of CTCs in external
circulation making their detection difficult [31]. Liquid biopsy has been investigated as a method to
analyse colon cancer staging as well as prognosis. TNM staging is significantly correlated with tumor
traits in the blood samples of the patients [104]. Further, the depth of tumor invasion also showed
a significant correlation with the presence of biomarkers [105]. Additional evidence validating the
detection of ctDNA, CTCs, and cfDNA as a marker for early diagnosis in CRC should be obtained.
Usually, ctDNA and CTC [105,106] levels are found to be associated with poor prognosis.

cfDNA concentration was increased in CRC patients and elevated cfDNA levels were also
associated with poor prognosis [107]. Patients with three or more CTCs/7.5 mL are found to have
a reduced survival [108]. Yet, a study by Bessa et al. found no correlation between CTC levels and
prognosis in postoperative CRC patients [109]. An increase in cfDNA levels has been observed in
patients who had a recurrence of mutation when compared to those with loss of mutation [110].

Table 2. Utility of liquid biopsy in various cancers.

Sl.no Cancer Type Genes Reference

1. Colorectal cancer KRAS, BRAF, TP53, APC, CEA, SEPT9 [97–102]
2. Breast cancer HER2, BRCA1 [111,112]

3. Lung cancer KRAS, EGFR, BRAF, ERBB2, PIK3CA, ALK,
ROS1, RET, HER2, MET [77,81]

4. Hepatocellular cancer
TP53, CTNNB1, PTEN, CDKN2A, ARID1A,
MET, CDK6, EGFR, MYC, BRAF, RAF1, FGFR1,
CCNE1, PIK3CA, ERBB2/HER2

[113–115]

5. Gastric cancer MUC1, CK19, HER2
TERT, CEA [116,117]

4.2. Breast Cancer

Breast cancer (BCa) is the second most common cancer worldwide and the fifth most prevalent
cause of cancer deaths according to GLOBOCAN 2018 [96]. ctDNA of BCa patients contained the
somatic SNVs, CNAs [90] thereby making it a useful tool for monitoring tumor burden [118], screening,
understanding the drug response, determining prognosis [119–121] and detecting minimal residual
disease [122]. Tumor size, lymph node metastasis, stage and grade were found to have a close
relation with ctDNA among BCa patients [123–127]. cfDNA levels were found to be low in patients
with non-metastatic breast disease when compared to malignant breast disease [128]. Studies have
suggested that HER2 receptor status can be assessed using liquid biopsy technique. A retrospective
study done on 107 CTC positive metastatic BCa patients depicted that liquid biopsy could be a useful
method for revaluation of HER2 receptor status [111]. A case report by Tzeng et al. described that
liquid biopsy was superior to IHC in determining the HER2 status [129]. Mayor et al. had reported that
BRCA1 gene mutation could also be identified using liquid biopsy [112]. Several studies have shown
the capacity of ctDNA in identifying the tumor-derived genomic alterations in BCa patients [130].
Dawson et al. demonstrated the presence of ctDNA and CTC in 97% and 87% of malignant BCa
patients respectively [121]. A study reported a reduction in cfDNA integrity in metastatic BCa patients
when compared to primary BCa patients [131]. Aceto et al. demonstrated that CTC clusters have up
to 50 times increased metastatic potential when compared to individual CTCs [132]. Recurrence is a
major problem in BCa. Liquid biopsy can be used as a potential tool for detecting tumor recurrence as
tumor-specific copy number aberrations persist to about 12 years after diagnosis [129]. Liquid biopsy
has been projected to be a potential diagnostic tool for determining the resistance to therapy [133].

4.3. Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the fourth
most prevalent cause of cancer related deaths according to GLOBOCAN 2018 [96]. In all HCCs and
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specifically in small tumors located near the diaphragm, liquid biopsy is considered to be a preferable
option as the tumors are not easily accessed by fine needle biopsy. Many findings have reported that
the occurrence of genetic mutations in plasma, serum and urine samples of patients with HCC [113].
Hepatocytes, cholangiocytes and hepatic stellate cells can act as both exosome releasing or targeting
cells [134]. A study on 14 advanced HCC patients has shown that ctDNA can be utilized as a diagnostic
marker in the detection of TP53, CTNNB1, PTEN, CDKN2A, ARID1A, MET, CDK6, EGFR, MYC, BRAF,
RAF1, FGFR1, CCNE1, PIK3CA and ERBB2/HER2 mutations [113–115]. The role of exomes in the
detection of the mutations in HCC is well established. The exosome content derived from HCC
and non-tumor liver cells varied significantly. Exosomal mRNAs such as miR-21, miR-18a, miR-221,
miR-222 and miR-224 serve as biomarkers in HCC [135–139]. Apart from exomes, CTCs are also
found to be a suitable alternative. Tumor invasion, tumor size, differentiation status, the disease
extent and survival [136], were significantly associated with CTC levels [140]. A major relation
between the number of circulating cancer stem cells and intrahepatic and extrahepatic recurrence was
observed, thus suggesting its role as a sovereign marker of survival [141]. Several studies have found
that liquid biopsy was also found to be helpful in the early detection of HCC. DNA copy number
aberrations were found in two HBV carriers without previous history of HCC during blood collection.
Upon reassessment, two patients developed HCC, thereby shedding light on the evaluation of copy
number aberrations in ctDNA as a screening tool for early HCC detection [142].

4.4. Gastric Cancer

Gastric cancer (GC) is the fifth most common cancer worldwide and the third most prevalent
cause of cancer deaths according to GLOBOCAN 2018 [96]. Ling et al. reported that methylated XAF1
DNA was found in 69.8% (141/202) of GC patients and none in healthy individuals, thereby serving
as a potential diagnostic and prognostic marker [143]. A study by Park et al. [144] reported a high
plasma MYC/GAPDH ratio in GC patients when compared to healthy individuals. Kang et al. [145]
demonstrated the significance of plasma hTERT mRNA as a potential diagnostic and prognostic
marker in GC. CTCs are found to be effective in the detection of cancer-specific modifications such as
altered expression of non-coding RNAs (e.g., miRNAs) in GC [146]. Studies have reported a lower
overall survival rate in metastatic GC patients with higher CTC levels [147,148]. Results of a study
that was conducted by Shoda et al. to detect HER2 amplification in cfDNA using RQ-PCR showed
that cfDNA could be used as a significant therapeutic biomarker in the diagnosis and assessment
of HER2 status [149]. Shoda et al. demonstrated a correlation between plasma and tissue HER2
amplification ratios by ddPCR [116]. Wu et al. [117] have shown that simultaneous sensitivity
assay of the combination of markers such as TERT, CK19, CEA and MUC1 using a high-throughput
colorimetric membrane array provides a platform for assessing the overall survival and postoperative
recurrence/metastasis. Mimori et al. [150] demonstrated that membrane MT1-MMP mRNA levels in
the peripheral blood serves as a prognostic indicator for determining recurrence and distant metastasis.
Programmed death-ligand 1 (PD-L1) mRNA expression in the blood of advanced GC patients is
significantly higher than that of early GC patients, suggesting its utility in assessing the prognosis [151].
The PD-L1 expression significantly correlated with the depth of invasion, metastasis and stage of cancer.

4.5. Lung Cancer

Lung cancer (LC) is the most common cancer worldwide and the most prevalent cause of cancer
deaths according to GLOBOCAN 2018 [96]. Several genomic alterations have been identified in
advanced LC patients using liquid biopsy that could aid in the determination of prognosis [152].
Couraud et al. have shown the utility of liquid biopsy based on detection of EGFR, KRAS, BRAF,
ERBB2, PIK3CA mutations using cfDNA [81,153]. The study by Paweletz et al. demonstrated the
detection of ALK, ROS1, and RET rearrangements, HER2 insertions, and MET amplification in patients
with advanced NSCLC [77]. Newman et al. demonstrated that cfDNA levels in LC patients significantly
correlated with CT and PET measured tumor volume. This study also revealed a correlation between
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ctDNA levels and tumor volume [30]. Liquid biopsy also serves as a guiding tool for estimating the
response of targeted therapy [154]. ctDNA levels can be utilized in tracking the subclonal nature of
NSCLC relapse and metastasis [155]. Sozzi et al. showed that higher plasma DNA levels are associated
with reduced 5-year survival [156]. The CTC count was found to be helpful in the determination of
prognosis and survival time [157]. Multiple studies have demonstrated that patients with high levels
of CTCs at initial diagnosis or after one cycle of chemotherapy showed a poor LC prognosis [158].
CTCs could serve as a surrogate marker of distant metastasis in patients with primary LC [159].
Meta-analysis of 12 randomized control trials has shown that the presence of KRAS mutation correlated
well with the lower survival rate in NSCLC patients [160]. However, another study conducted by
Camps et al. on patients with complex NSCLC demonstrated no relationship between KRAS mutation
and prognosis [161]. Recurrence of LC has been observed in patients who had detectable levels of
CTCs in their blood [162]. cfDNA is now proposed to be a useful tool in determining resistance to
therapy [163].

5. Conclusions

The utilization of CTCs, ctDNA and exosomes as potential biomarkers for cancer theranostics is
an emerging area with a strong potential for clinical utility. Liquid biopsy is emerging as a minimally
invasive, repeatable and inexpensive method for accessing the tumor DNA, understanding the tumor
heterogeneity, monitoring therapeutic effectiveness, prognosis, acquired resistance to therapy and
disease resistance in cancer. Further large scale studies should be conducted to validate the process and
assess its clinical utility in different populations. Currently, liquid biopsies have limited applications in
clinical practice, but its versatility and advantages put forward its application as a promising diagnostic
and prognostic tool for precision oncology.
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