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Abstract

Mucus selectively controls the transport of molecules, particulate matter, and microorganisms to 

the underlying epithelial layer. It may be desirable to weaken the mucus barrier to enable effective 

delivery of drug carriers. Alternatively, the mucus barrier could be strengthened to prevent 

epithelial interaction with pathogenic microbes or other exogenous materials. The dynamic mucus 

layer can undergo changes in structure (e.g., pore size) and/or composition (e.g., protein 

concentrations, mucin glycosylation) in response to stimuli that occur naturally or are purposefully 

administered, thus altering its barrier function. This review outlines mechanisms by which mucus 

provides a selective barrier and methods to engineer the mucus layer from the perspective of 

strengthening or weakening its barrier properties. In addition, strategic design of drug carriers and 

dosing formulation properties for efficient delivery across the mucus barrier are highlighted and 

discussed.
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1. Introduction: Mucus as a Natural Barrier

Mucus lines the wet epithelial surfaces of the respiratory, vaginal, and gastrointestinal tracts, 

forming a barrier against foreign particulates and pathogens. Mucin, the main structural 

component present in mucus, is comprised of a protein backbone with intermittent cysteine 

rich regions which participate in mucin-mucin interactions through disulfide bonds, and a 

central region containing tandem repeats rich in threonine, serine, and proline(Fig 1). The 

tandem repeat region is heavily glycosylated with O-linked oligosaccharides, while C- and 

N-terminal regions primarily consist of N-linked oligosaccharides(1). Each glycan side 

chain may consist of up to 20 neutral and/or negatively-charged sugars, including sialic acid 

(N-Acetylneuraminic acid (NeuAc) and N-Glycolylneuraminic acid (Neu5Gc, abundant in 

non-human mammals)), fucose, N-Acetyl-galactosamine (GalNAc), mannose, galactose 

(Gal), glucose, and N-Acetylglucosamine (GlcNAc)(2; 3). Mucin sugars may contain 

carboxyl (e.g., sialic acid) and sulfate (e.g., GalNAc, GlcNAc, Gal(4)) groups that give 

mucins their overall net negative surface charge. Mucins interact non-covalently (e.g., via 
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electrostatic and hydrophobic interactions, hydrogen bonds, physical entanglements) and 

covalently (e.g., via disulphide bonds) with other mucin molecules and mucus components, 

which include lipids, proteins, salts, and cellular debris(5), to form a mesh-like viscoelastic 

gel layer(2).

The mucus layer is crucial in protecting the underlying epithelium from pathogen invasion. 

For example, Muc2 mucin knockout animals are susceptible to mucosal and systemic 

infection which results in high mortality rates(6). However, the mucus layer also presents a 

complex barrier to drug delivery. To penetrate the mucus layer, drug carriers must overcome 

physical obstructions imposed via the mucus mesh, binding interactions with mucus 

components, and mucus turnover (i.e. secretion and clearance rates)(7–11).

This review is focused on approaches to engineer the mucus barrier, from the perspective of 

modifying the properties of and/or designing systems to overcome the barrier. First, natural 

processes by which mucus physicochemical properties change to maintain a defensive layer 

and alterations to these properties which occur in different disease states, as well as natural 

mechanisms by which microbes and viruses overcome the mucus barrier, are discussed. 

Various methods employed to date that modulate the mucus barrier are then presented, with 

a focus on exogenous administration of materials. Finally, we review drug carriers and 

dosing formulation properties that are utilized to overcome the mucus barrier in drug 

delivery.

1.1. Natural Mechanisms by Which the Mucus Barrier is Maintained

Mucus is cleared and renewed multiple times a day to maintain a defensive barrier that can 

change with respect to viscosity, pH, and composition. Mucus clearance rates and 

composition vary with anatomical position. Nasal mucus undergoes mucociliary clearance 

every 10–20 minutes(10; 11), while intestinal mucus is turned over every 50–270 

minutes(9). Currently, there are 20 known mucin genes expressed in the body, and each 

mucin protein has its own distinct core and glycosylation pattern. On MUC5AC, a mucin 

secreted in the stomach, approximately 50% of the total O-glycans are neutral or mono-

sulfated. MUC2, the main secreted gel-forming mucin in the intestine, is dominated by 

negatively-charged sialylated and sulfated glycans in the small intestine, and has a greater 

amount of fucosylated glycans in the colon than in the small intestine(12).

Mucin sugars (e.g., sialic acid and fucose) can bind viruses and microbes and prevent their 

penetration of the mucus barrier(13). For example, Streptococcus pyogenes (S. pyogenes) 

binds sialic acid moieties of submaxillary mucin. When S. pyogenes was pretreated with 

sialic acid (25 mM), adhesion to pharyngeal cell monolayers decreased by ~70% compared 

to untreated S. pyogenes(14). Moreover, microbial degradation (proteolytic or 

polysaccharide cleavage) of mucin is influenced by mucin glycosylation patterns (e.g., 

presence of terminal sialic acid or sulfate groups)(15; 16). Colonic mucus is less susceptible 

than gastric mucus to degradation by Clostridium and Bacteroides species, potentially due to 

different amounts of sulfated and fucosylated sugars(15).

Mucus composition significantly impacts the rheological properties of mucus(17). For 

example, changes in the concentration of mucin(18) and non-mucin components (e.g., 
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lipid(19), IgA(19), DNA(20)), and/or pH(21) can significantly alter mucus viscosity by 5 to 

85%. Since mucus is composed of 1–5% mucin by weight, small increases in mucin 

concentration are associated with a significant increase in mucus viscosity(22). Over the 

course of an ovulatory menstrual cycle, fertility is influenced by mucin concentration(22). A 

two-fold change in mucin amount was detected in human cervical mucus during ovulatory 

phase, resulting in a thin, watery appearance and a decrease in mucus elastic storage moduli.

Cysteine-rich proteins (e.g., trefoil factor (TFF) and resistin like molecule-beta (RELM-β)), 

are secreted from goblet cells and are associated with an increase in mucus viscosity and 

mucin (MUC2, MUC5AC) secretion, respectively.(23–25). When RELM-β (0.1 nM) was 

introduced apically to a HT29-CL monolayer, MUC2 secretion was increased ~3.75-fold 

over control values. This increase in mucin secretion may explain the method by which 

rectally administered RELM-β (50 nM) minimized inflammatory response and severity in a 

2,4,6-Trinitrobenzenesulfonic acid solution (TNBS) induced colitis animal model(25). TFF3 

has been shown to form covalent bonds with Muc2 C-terminal domain(26), which may 

explain increased viscosity of mucin solutions after the introduction of 0.3% wt/vol dimer 

TFF3 compared to untreated mucin solutions(23). Lysozyme and lactoferrin both interact 

with mucus electrostatically, and control microbe concentrations by lysing the bacterial cell 

wall (lysozyme) or sequestering nutrients (lactoferrin)(27–29). The viscosities of collected 

human sputum and purified bronchial mucin solutions were significantly increased upon 

addition of lysozyme, which was attributed to strong ionic interactions with negatively-

charged mucin sugars(27; 30). Immunoglobulins are reported to have transient adhesive 

interactions via polyvalent low-affinity bonds with mucins, which allow for indirect binding 

of microbes to mucus, thus impacting their penetration through mucus(31; 32). Fluorescence 

recovery after photobleaching (FRAP) analysis supported transient IgG and IgA interactions 

with cervicovaginal mucus (CVM)(31). The addition of IgG to CVM did not alter the 

diffusion of 200 nm carboxyl- and PEG- modified polystyrene particles, i.e. representative 

drug carriers, or mucus structure, but did significantly slow the diffusion of herpes simplex 

virus (HSV) in CVM, apparently as a result of IgG binding interactions(32). After 

intravaginal administration of HSV and IgG in mice, HSV infection rates were shown to be 

inversely proportional to the concentration of IgG, with 25, 40, and 70% of mice infected at 

IgG concentrations of ~30, 3.3 , 0 μg/mL, respectively.

The pH of the mucus gel, which has been shown to impact mucus viscoelastic properties, 

varies throughout the body. For example, gastric and intestinal mucus gels are acidic (pH 2–

4) and neutral (pH 7), respectively(33). Increasing the pH of 0.5% wt/vol reconstituted 

mucin gels from 3 to 7 resulted in a 5-, 9-, and 13- fold increase in diffusivity of 1 μm PEG-, 

amine-, and carboxyl- modified polystyrene particles within the gels(34). The higher 

viscosity of reconstituted porcine gastric mucin solution at low pH (2–4), which is 

representative of gastric mucus, compared to pH 6, was attributed to a reduction in 

electrostatic interactions. Specifically, it is believed that mucin salt bridges are broken at low 

pH, resulting in the aggregation of mucin and decreased pore size(35; 36).
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1.2. Alterations to the Mucus Barrier with Disease States

The importance of the mucus barrier in disease is becoming more apparent, as multiple 

diseases have been associated with an altered mucus barrier (i.e. increased permeability or 

viscosity)(37–40). However, the etiologies behind these links are unknown – does mucus 

dysfunction result in disease, or does disease result in mucus barrier dysfunction? Enhanced 

understanding of changes to the mucus barrier in disease may motivate novel therapeutic or 

prophylactic approaches.

1.2.1. Diseases Associated with Disruption of the Mucosal Barrier—
Gastrointestinal diseases (e.g., peptic ulcer disease, ulcerative colitis (UC), and necrotizing 

enterocolitis (NEC)) can be associated with an increase in permeability of the mucus barrier, 

which may be attributed to decreased mucus thickness and/or goblet cell number. Patients 

with UC have reduced goblet cell numbers(41), reduced mucus thickness(37; 42), and 

altered mucin glycosylation pattern(43). Specifically, there is a decrease in sulfate content 

and a significant change to mucin sugar amounts (i.e. GlcNAc and sialic acid) as compared 

to healthy individuals(44). The resulting decrease in negative surface charge of mucin fibers 

may decrease electrostatic repulsions, causing collapse of the mucus gel, thereby reducing 

mucus thickness. In colonic explants mounted in a custom perfusion chamber, a suspension 

of 2 and 0.5 μm particles penetrated approximately 60% (~240 μm) of the mucus layer in 

UC explants, whereas particles in healthy explants were unable to penetrate the mucus 

barrier (~400 μm thick)(37).

Necrotizing enterocolitis (NEC) occurs primarily in premature and low birth weight infants, 

and is characterized by abdominal bloating, diarrhea, and intestinal infection. NEC patients 

also have significantly fewer goblet and Paneth cells compared to healthy controls(45; 46). 

Fetal NEC patients had a 83% decrease in trefoil factor peptide-3 (TFF3) expression, a 

peptide secreted by goblet cells and upregulated in early stages of mucosal repair, and had 

no lysozyme-positive Paneth cells compared to healthy patients(47; 48). Since both TFF3 

and lysozyme have been shown to interact with mucin, the lack of TFF3 and lysozyme in the 

premature gut may result in a decreased mucus viscosity and contribute to intestinal necrosis 

in NEC patients.

Peptic ulcers occur when the gastric mucosa is compromised. The gastric mucosa is lined 

with a phospholipid surfactant barrier, primarily composed of lecithin, which provides a 

protective hydrophobic barrier resistant to gastric acids and enzymes(49). Bacterial lipases 

and pancreatic enzymes can convert lecithin to lysolecithin, reducing hydrophobicity of the 

protective surfactant barrier(50). Pepsin, a pancreatic enzyme, is a natural protease secreted 

in the gastrointestinal tract (GIT) that breaks down proteins, including mucin(51). Pepsin 1 

(a pepsin associated with peptic ulcers) was shown to have a higher rate of mucolytic 

activity than pepsin 3 (principle human pepsin) when incubated with purified pig gastric 

mucin for 30 minutes(52). Thus, increased concentration and activity of pepsin 1 may play a 

key role in the erosion of the mucus barrier, leading to the formation of ulcers. Moreover, 

non-steroidal anti-inflammatory drugs (NSAIDs) can destabilize the surfactant layer by 

binding with zwitterionic phospholipids, thus reducing hydrophobicity and mucosal 

integrity(53). When NSAIDS, including indomethacin and aspirin, were conjugated to 

Carlson et al. Page 4

Annu Rev Biomed Eng. Author manuscript; available in PMC 2019 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dipalmitoyl phosphatidylcholine, a zwitterionic phospholipid, perturbations to the surfactant 

layer were decreased, reducing gastrointestinal ulceration and bleeding in rats compared to 

those administered non-conjugated NSAIDs.

1.2.2. Diseases Associated with Increased Mucosal Viscosity—Disease states 

can also result in a thicker, more viscous mucus layer. Cystic fibrosis (CF), a disease that 

primarily affects the respiratory tract, is associated with chronic infection, buildup of mucus 

containing pro-inflammatory cytokines and bacteria, mucus hypersecretion, and increased 

mucus adhesion to the epithelium(54; 55) (Fig. 2).CF mucus has altered mucin glycosylation 

(e.g., increased ratio of fucose to sialic acid(56)); increased DNA (0.8 vs. 0.03 g/100g wet 

wt)(57), lipid (16.7 vs. 12.5% of dry weight)(58), solid (8% vs. 2.5% wt/wt), and salt 

content (e.g., Na+, Ca2+, and Mg2+)(59; 60); and decreased water content(59). These 

changes result in increased mucus viscosity and altered microstructure (e.g., pore size: CF 

110–930 nm, control 300–850 nm)(38; 40). Multiple particle tracking (MPT) technique was 

utilized to demonstrate the altered barrier properties of CF mucus. The transport of 100 nm 

polyethylene glycol (PEG)-modified polystyrene particles was slowed further in CF sputum 

relative to sputum from healthy controls, as reflected in ratios of diffusion coefficients in 

sputum relative to those in water (Dw/Deff) of 830(61) and 26(62), respectively. Moreover, 

viscosity was also increased in CF (~30,000 times the viscosity of water) compared to 

control (~13,000 times the viscosity of water) sputum samples.

Hirschsprung’s Disease (HD) is characterized by aganglionic tissue in the distal colon, 

reduced mucus turnover, and significant increases and decreases in neutral and sulphated 

mucins, respectively(63, 64). In a mouse model of HD, relative to healthy controls, the 

transport of carboxyl-modified nanoparticles (200 nm) and Escherichia coli through mucus 

on excised colonic tissue was significantly hindered(65). Decreased mucin sulfation in HD 

patients may have diminished electrostatic repulsive forces between mucin fibers and the 

negatively-charged particles, thus decreasing particle diffusion. HD patients also have 

increased sialylated mucin secretion in the proximal colon(66), and thus increased microbe 

binding to sialylated mucins may explain the reduction in microbe velocity in the proximal 

colon compared to distal colon.

1.3. Microbial Degradation of Mucus

Bacterial enzymes, which are secreted, bound to the bacterial outer surface, or present in the 

periplasm, can degrade mucins through proteolytic or polysaccharide degradation to 

facilitate microbe penetration and/or colonization of mucus(7). Within the vaginal tract, 

Gardnerella vaginalis (G. vaginalis), a bacterium associated with bacterial vaginosis (BV), 

produces sialidase to cleave, sequester, and catabolize sialic acid(67). There was a 

significant increase in free sialic acid and decrease in bound sialic acid concentration in 

mouse vaginal content collected 24 hours after inoculation with G. vaginalis (~5 × 107 

colony forming units (CFUs)) relative to that from control mice. A similar trend was 

observed in women with BV, who had >3-fold higher free sialic acid levels and significantly 

less viscous vaginal fluid compared with healthy women(68). Increased sialidase activity 

may expose the mucin core and sugars to further degradation by proteases and glycosidases 
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thus compromising mucus structure and potentially increasing pathogenic microbe 

colonization(69).

Helicobater pylori (H. pylori) infection is known to cause peptic ulcers, and like pancreatic 

lipases and NSAIDS, has been shown to compromise the gastric mucus barrier. H. pylori 
colonizes the human stomach by secreting urease to hydrolyze urea, which elevates the pH 

of the local environment(70). As the gastric mucus pH is elevated from 4 to 7, mucus 

transitions from gel to solution, reducing bulk viscosity and enabling H. pylori to swim 

through the mucus. The loss of mucus integrity due to H. pylori can allow acidic and gastric 

enzymes present in luminal contents to reach the epithelium, resulting in the formation of 

peptic ulcers or gastric cancer.

1.4. Viral Penetration of Mucus

Viruses utilize similar mechanisms as microbes (i.e. secretion of mucolytic enzymes) to 

penetrate the mucus barrier and reach the underlying epithelium. Influenza A viruses (IAV) 

secrete neuraminidase, which selectively cleaves terminal sialic acid residues on mucin 

fibers(71), minimizing IAV binding and immobilization in, and thus allowing penetration of, 

the mucus layer. Instead of secreting mucolytic enzymes, some viruses have evolved and 

altered their surface properties to elude the mucus barrier. FRAP and MPT techniques were 

utilized to study the diffusion of human papilloma virus (HPV, 55 nm), Norwalk virus (NV, 

38 nm), and herpes simplex virus (HSV, 180 nm) through human cervical mucus(72). Two 

non-enveloped viruses, HPV and NV, were well distributed throughout the mucus gel and 

diffused at similar speeds in mucus and saline. The high density of positive and negative 

surface charges resulted in an overall neutral surface charge of capsid proteins on non-

enveloped viruses, which is believed to aid in minimizing viral adhesion to mucus. 

Moreover, non-enveloped viruses have few hydrophobic regions that can interact with 

hydrophobic domains along mucin fibers. Conversely, HSV, a larger and enveloped virus, 

appeared to stick to and co-localize with mucus strands, slowing HSV diffusion ~100 fold in 

mucus compared to phosphate buffered saline. The viral envelope coats capsid proteins and 

contains glycoproteins that may interact and bind with mucin glycoproteins, thereby 

inhibiting virus diffusion through mucus.

2. Strengthening the Mucus Barrier

Various exogeneous and endogeneous agents, present in food, detergents, and cholinergic 

drugs, have been shown to strengthen mucosal barrier properties and/or mucin interactions. 

These agents can be directly exposed to mucus or systemically administered. In general, the 

mechanisms behind the action of these agents are often not well understood. These factors 

could be further explored for their potential use as prophylactic or therapeutic agents to 

alleviate or prevent disease.

2.1. Agents that Alter the Mucosal Barrier after Direct Exposure

Exogenously administered compounds that are also inherently found in mucus and food 

(e.g., lipids, salts) can significantly strengthen the mucus barrier, as evidenced by decreased 

particle diffusion through mucus in particle tracking experiments. Amine-, carboxyl-, and 
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sulfate- modified polystyrene particles (200 nm) diffused 3-, 30- and 2- fold slower, 

respectively, when dosed to porcine intestinal mucus with lipids compared to control, and 3-, 

4-, and 2- fold lower, respectively, in the presence of 20 mM compared to 5 mM Ca2+, 

respectively(73). The removal of lipids endogenously present in mucus is associated with 

significant decreases in mucus viscosity(19), and it is hypothesized that lipids interact with 

the hydrophobic portions of mucins. Computational models have shown that divalent ions 

(e.g., Ca2+) can be incorporated in transient mucin cross-links limiting gel swelling, which 

may limit the permeability of the mucus gel(74). Thus, the decrease in particle diffusion 

within mucus observed after dosing lipids and Ca2+ may result from increased hydrophobic 

interactions and ionic mucin cross-linking. Monovalent ions (e.g., Na+) can also impact 

mucin-mucin interactions, apparently due to charge shielding of mucin fibers, which leads to 

gel de-swelling. A high concentration of sodium chloride (500 mM) compared to a low 

concentration (20 mM) increased the diffusivity of amine- modified polystyrene particles 

~10-fold in 1% gastric mucin solution(34). The solubilized salt ions may shield the 

positively-charged surface of the amine-modified particles or negatively-charged mucin 

fibers, decreasing electrostatic interactions between diffusing particles and mucus and 

consequently increasing particle diffusion.

Other dietary compounds have also been shown to alter mucus barrier properties. Particle 

tracking microrheology and atomic force microscopy revealed green tea polyphenol 

epigallocatechin gallate (EGCG) increased viscosity and aggregation of purified MUC5B 

and MUC7 salivary mucin solutions(75). TFF, which is endogenously present in mucus as 

noted previously, is also present in breastmilk. TFF3 has been shown to protect against 

intestinal colitis in a dextran sodium sulfate (DSS)-induced mouse model, which had 

increased LPS concentration, and decreased mucus thickness and elasticity compared to 

healthy controls. When orally dosed, TFF3 dimer reduced DSS-induced colitis(76), 

potentially by binding with mucin and increasing mucus viscosity(24). Interestingly, other 

components in breast milk (i.e. lysozyme, mucin, immunoglobulins, TFF, and lipids) are 

also endogenously present within mucus, and significant to its barrier properties, as noted 

previously. When premature infants with NEC, a disease state prone to infection and 

characterized by an altered mucus composition, were given an exclusively human milk diet, 

NEC incidence was reduced from 3.4 to 1%, potentially due to the components in milk(77).

Orally introduced gelatins can also strengthen the mucus barrier. When DSS-induced mice 

were treated with gelatin tannate, the mucus layer thickness and elasticity as measured by 

atomic force microscopy were similar to healthy controls, and disease severity was 

decreased. It was hypothesized that gelatin tannate forms a protective film over the mucus 

layer, thus preventing mucus breakdown, and modulates the gut microbiota composition 

(e.g., decrease in potentially pathogenic strains of Enterobacteriaceae and Enterococci)(78).

Detergents have also been shown to alter mucus barrier and structural properties. A non-

ionic detergent, nonoxynol-9 (N9), frequently used as a spermicide and microbicide, did not 

alter bulk viscous and elastic moduli of CVM, but did impact transport properties and mucus 

pore size. A 10% N9 solution added to mucus at 1% volume decreased the diffusion of 200- 

and 500- nm PEG- modified particles by 160- and 140- fold, respectively, compared to 

control(79); however, the diffusion of 100- nm PEG- modified particles was not altered. N9-
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treated and control mucus samples had < 15% and > 80% of pores larger than 200 nm, 

respectively. It was hypothesized that N9 disrupts hydrophobic interactions between fibers 

resulting in a mucus mesh with smaller pore size.

2.1.1. Stimulation of Mucin Secretion—Mucin secretion from goblet cells occurs 

through two distinct pathways: continuous unregulated or regulated mucin secretion, which 

is the rapid release of apically stored mucin granules in response to microbial toxins or 

exogenous agents(80). Mucin secretion can be regulated by type-2 chloride channel (ClC-2) 

activators (e.g., lubiprostone) or parasympathetic and cholinergic Ca2+ dependent agents 

(e.g., acetylcholine, carbachol). These agents can be used to treat intestinal motility 

disorders (e.g., chronic and IBS-associated constipation), and have been shown to induce 

mucin release and chloride secretion when administered to the lumen (via oral dosing) or 

serosa (via intraperitoneal administration or addition to basolateral compartment of an organ 

culture dish)(81; 82). Acetylcholine induced a higher level of mucin secretion when applied 

to the serosa compared to luminal application(83), depleting goblet cells of mucin within 60 

mins compared to untreated controls(82). Acetylcholine may stimulate innervated mucus 

cells or increase hydrostatic pressure to induce mucin release(84). When chloride (Cl−) 

secretion was inhibited after acetylcholine treatment, liquid secretion was blocked up to 

70%, and there was an accumulation of mucin in excised porcine bronchial gland ducts(85). 

Intraperitoneal injection of carbachol stimulated rat gastrointestinal mucin secretion ~1.7-

fold overall, with the effect dependent on anatomical position. Secretion was unchanged in 

the cecum and proximal colon, while the distal colon and jejunum had 2- and 5- fold 

increase in mucin secretion compared to control(86). Carbachol elevates cytosol levels of 

Ca2+, which stimulates mucin secretion(87). The effect of calcium (Ca2+) concentrations on 

mucus secretion was investigated with excised avian trachea tissue mounted in a glass organ 

bath. When Ca2+ concentrations are low luminally or high submucosally, mucin secretion 

rates were increased. Interestingly, addition of both acetylcholine and Ca2+ has an additive 

effect on mucin secretion when applied to both the lumen and submucosa(83). Oral dosage 

of lubiprostone stimulated Cl− secretion and increased gastric mucin secretion 85% 

compared to untreated control (54.5 vs. 98.4 mg/hour), which increased gastrointestinal 

lubrication and transit times(88).

Dietary fiber constituents (e.g., glucuronic acid, galacturonic acid), food additives (e.g., 

sodium alginate), and bacterial metabolites (e.g., acetate and butyrate), administered into a 

rat colonic loop increased mucin secretion in a dose dependent manner(89). Bacterial 

fermentation of glucuronic acid, and galacturonic acid produces short chain fatty acids 

(SCFA) (e.g., acetate, butyrate) which act as an energy source for epithelial cells and induce 

mucin secretion through activation of cholinergic nerves(90). Dietary long chain fatty acids 

(LCFAs) (e.g., palmitic acid, stearic acid, oleic acid, linoleic acid, docosapentaenoic acid) 

increased MUC2 production when added to HT29-MTX mucus secreting cell lines(91). 

Palmitic acid may increase goblet cell differentiation and maturation by increasing 

hepatocyte nuclear factor 4 alpha expression, a critical component in goblet cell maturation. 

Moreover, palmitic acid may covalently attach to mucin amino acids (e.g., serine and 

threonine) regulating MUC2 production and secretion. Phytonutrients in plant extracts 

altered the expression of Reg3γ (an antimicrobial peptide), TFF3, Muc2, and Muc3 when 
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administered in the drinking water of mice for 7 days. Eugenol, a phytonutrient found in 

clove oil, significantly increased inner mucus layer thickness from 20 to 33 μm, decreased 

TFF3 expression, and increased Reg3γ expression(92). Antibiotics minimized the effect of 

eugenol, thus it was hypothesized that the action of eugenol is influenced by the intestinal 

microbiota. Eugenol may increase microbe-mediated utilization of mucin and production of 

bacterial metabolites (i.e. SCFA), which have been shown to increase mucus 

productiont(90).

Some agents have been shown to increase goblet cell number. Six-week old mice fed high 

fat diets (45 wt% of lipid) had increased goblet cell number in all intestinal segments as 

compared to mice fed low and moderate fat (2.6 and 22 wt% of lipid) diets(93). High fat diet 

treated animals had increased plasma concentrations of adiponectin(94) and leptin(95) 

which have been previously shown to increase goblet cell number and Muc2 production. 

Notch γ-secretase inhibitors (e.g., N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-2-

phenyl]glycine-1,1-dimethylethyl ester (DAPT)) added to HT29 cells co-cultured with 

epithelial colorectal cells (Caco-2) increased mucin production by 10–15% compared to 

untreated controls(96). In another study, cranberry bean pretreatment increased mucin 

content and decreased damage in DSS-induced mice compared to untreated DSS-induced 

mice. When healthy control mice were treated with cranberry beans, mice had increased 

number of goblet cells per crypt, mucus content per colon crypt, and Muc1 mRNA levels 

compared to untreated controls, which may have aided in protecting against colitis(97).

2.3. Beneficial Role of Probiotics on the Mucus Barrier

Probiotics are non-pathogenic microorganisms proposed to play a beneficial role in health, 

for example by promoting the survival of commensal bacteria and/or protecting the gut from 

pathogenic microbes(98). Probiotics have been shown to have anti-inflammatory(99) 

properties and decrease disease severity in rat pups with necrotizing enterocolitis or stress-

induced hyperpermeability(100; 101); however, the mechanisms are generally not well 

understood. Probiotics have been reported to impact mucin expression, goblet cell number, 

and mucin glycosylation, supporting the concept that the benefits of probiotics are due in 

part to their impact on the mucus barrier.

Oral dosing of L. farciminis prevented changes in intestinal permeability and minimized 

changes to mucin glycosylation resulting from water avoidance stress(100). Intestinal 

permeability represents a composite measurement of mucus permeability as well as that of 

underlying cell layers, and thus it is not possible to isolate the changes to the mucus barrier. 

Incorporation of probiotics, specifically L. rhamnosus and L. plantarum 299v, significantly 

increased HT29 MUC3 expression compared to control(102).Similarly, in another study, 

mice given Ultrabiotique® (Lactobacillus acidophilus, Bifidobacterium lactis, Lactobacillus 
plantarum and Bifidobacterium breve) for 7 days had an increased number of goblet cells 

per crypt and increased production of mucus compared to controls(103).

Probiotic adhesion to mucus is strain specific and occurs through electrostatic (ionic 

bridging) and hydrophobic interactions. Probiotics also use lipoteichoic acids on the cell 

wall of gram-positive microbes or external appendages to adhere and persist in mucus(98). 

When three Lactobacillus probiotic strains were added to MUC3 mucus-producing HT29 
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cells, each strain showed different levels of adhesion: 11% of Lactobacillus rhamnosus, 

1.6% of Lactobacillus plantarum 299v), and 0.13% of Lactobacillus acidophilus DDS-1 

adhered to HT29 monolayers after four hours of incubation. Likely due to competitive 

binding and steric hindrance, L. rhamnosus, L. plantarum 299v, and L. acidophilus 
decreased the amount of enteropathogenic E. coli (EPEC) adhesion by 57, 72 and 22%, 

respectively(102).

Probiotics can also alter the intestinal lumen/mucosal barrier environment by secreting lactic 

acid, peroxides, and antimicrobial substances (e.g., toxins) impacting microbiome 

composition. A laboratory culture of 10 Lactobacillus and 5 Bifidobacterium strains 

inhibited pathogen growth of 3 Salmonella and 3 Listeria strains by secreting lactic acid, 

which decreased pH levels, and secreting bacteriocin, a peptidic toxin that inhibits bacteria 

growth(104). Spent media from a Lactobacilli crispatus culture containing H2O2 inhibited 

the growth of Staphylococcus aureus which was attributed to the oxidative effect of H2O2 or 

its metabolites (OH−; O2-)(105).

3. Weakening the Mucus Barrier

It is also sometimes desirable to break down the mucus barrier to allow for more efficient 

drug delivery or to remove mucus buildup. Enzymes and other chemicals can be used to alter 

mucus structure and decrease viscosity (Fig 3). Moreover, commonly ingested food 

components may alter the structural integrity of the mucus barrier.

3.1. Enzymatic Breakdown of Mucus

As mucus is a complex network of crosslinked proteins, proteolytic enzymes can be utilized 

to disrupt peptide bonds and cleave non-glycosylated mucin domains in order to degrade 

mucin protein backbone and/or proteins in the mucus gel and enhance permeability of the 

mucus gel. These enzymes also play a major role in the natural turnover of the mucus layer. 

For example, proteolytic enzymes (trypsin, papain, and bromelain are naturally found in the 

digestive tract, papaya, and pineapple, respectively added to native pig intestinal mucus for 

12 hours at 37 °C had variable efficiency in cleaving the mucus network, which was also 

dependent on pH (5.0, 6.5, and 8.0)(106). Bulk rheological analysis showed that papain 

significantly reduced mucus viscosity after 1 hour regardless of pH. Both trypsin and 

bromelain were most active at their optimal pH of 5 and 8, respectively, but overall 

mucolytic effect for each enzyme was lower than that of papain.

Deoxyribonuclease (DNase) has been explored to enzymatically degrade DNA in mucus and 

thus decrease mucus viscosity. The higher DNA concentration in CF mucus, as mentioned 

previously, results in increased mucus viscosity, which contributes to decreased mucus 

clearance and increased risk of infection. A small amount of recombinant human DNase I (8 

μg/mL) decreased the viscosity (732 cP to 188 cP) and overall DNA molecular weight in CF 

sputum after 15 minutes(107). In another study, diffusion of 500 nm carboxyl-modified 

polystyrene particles was enhanced after piglet intestinal mucus was exposed to DNase(20).
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3.2. Other Chemical Methods to Alter Mucus Structure

In addition to enzymatic degradation, other chemical methods have been used to alter mucus 

structure to allow for both better drug delivery and treatment of diseases associated with 

mucus overproduction. Mucolytics, expectorants, and mucokinetic agents have been used to 

help clear viscous mucus from the respiratory tract of patients with chronic airway 

obstructions by depolymerizing mucin(108; 109), increasing airway water volume to 

promote sputum secretion(109; 110), and removing adhesive mucus secretions from the 

epithelium(111; 112), respectively. N-acetylcysteine (NAC), a mucolytic, reduces mucin 

cross-linking by cleaving disulfide bonds(108), which constitute important intermolecular 

and intramolecular mucin cross-links. NAC decreased mucus viscosity, increased pore size, 

and increased the diffusion rate of 200 nm PEG- modified particles within CF mucus 10-fold 

compared to untreated CF mucus. Another cysteine-containing compound, S-

carboxymethlycysteine (carbocisteine), affects sialyltransferase activity in goblet cells 

resulting in increased sialylated mucin and decreased fucosylated mucin levels(113). When 

patients with chronic bronchitis were treated with carbocisteine (2.7 g for 4 days), there was 

a significant reduction in viscosity and increase in mucociliary transport, which may be 

related to the altered mucin glycosylation(114).

Expectorants, such as guaifenesin (e.g., Mucinex or Robitussin), are used to draw water into 

the bronchi lumen to increase the sputum volume, thus improving the effectiveness of a 

cough(109). In an air-liquid interface culture of primary human airway epithelial cells, 

guaifenesin reduced MUC5AC transcription and secretion from storage granules(110). 

There was also an increase in mucociliary transport rates (66% higher than control) and 

reduction in mucus elasticity and viscosity as measured by bulk rheology.

Mucokinetic agents can increase mucociliary clearance by stimulating cilia beat frequency 

or reducing mucus adhesion to the epithelium(109; 111). In the airways, a thin layer of 

surfactant separates mucus from the cilia, and the addition of phospholipids can disrupt this 

surfactant layer, thus reducing mucus adhesivity to the epithelium(112). To study this 

phenomenon, respiratory mucus was deposited on a glass slide coated with fatty acids, and 

mucus adhesion and cough was analyzed in a custom testing apparatus. 

Phosphatidylglycerol distearoyl significantly improved cough clearance, which was 

attributed to the disruption of the surfactant layer and decrease in mucus adhesion(115). 

Another phospholipid, phosphatidylglycerol dipalmitoyl, also decreased adhesion but was 

unable to significantly improve clearance.

Other chemical agents have also been shown to disrupt ionic interactions to directly alter 

mucin cross-links. For example, chelation of calcium ions (Ca2+) from mucus results in the 

rapid swelling, hydration, and dispersion of purified gastric mucin networks(116; 117). 

Calcium chelators bicarbonate (HCO3
−) and ethylene glycol-bis(β-aminoethyl ether)-

N,N,N',N'-tetraacetic acid (EGTA) impacted viscosity of mucin aggregates and dispersion of 

mucin fibers(118). Specifically, 8.2 mM Ca2+ was added to 1 ng/mL porcine gastric mucus 

diluted in buffer to obtain mucin aggregates ~9 μm in diameter. The addition of 20 mM 

HCO3
− or 5 mM EGTA sequestered bound Ca2+ from mucin aggregates, which dispersed 

mucin fibers, decreasing the diameter of mucin aggregates to ~4.5 μm. Human alveolar basal 

epithelial cells (A549) were cultured with 1 μM ionomycin to stimulate secretion of mucin 

Carlson et al. Page 11

Annu Rev Biomed Eng. Author manuscript; available in PMC 2019 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



granules, and the swelling rate of secreted mucin, which reflects mucin fiber dispersion and 

viscosity of mucus gel, was analyzed via phase-contrast video microscopy. Mucin gel-

swelling rate, quantified by video microscopy, increased 160% and 360% in the presence of 

10 mM HCO3
− and 10 mM EGTA, respectively, relative to control, thus indicating a 

decrease in viscosity.

Urea and guanidinium hydrochloride have been reported to disrupt intermolecular and 

intramolecular mucin hydrogen bonds(119). When 25 mg/mL porcine gastrointestinal mucin 

(PGM) was treated with 2 M urea, there was a decrease in gel viscosity and increase in 500 

nm carboxyl- modified particle diffusion compared to untreated PGM. Similarly, 8M 

guanidinium hydrochloride addition to 20 mg/mL PGM solution resulted in a viscous liquid 

with decreased viscosity compared to untreated PGM. Thus the disruption of mucin bonds, 

especially ionic, disulfide, and hydrogen bonds, can strongly impact the structural integrity 

of the mucus gel.

3.3. Luminal Food Components Can Decrease Mucus Thickness

Food components and digested by-products can also alter the integrity of the mucus barrier 

and affect drug delivery. Chronic long-term oral exposure to two emulsifiers, 

carboxymethylcellulose and polysorbate-80, which are present in some processed foods and 

incorporated as drug excipients, has been shown to result in decreased intestinal mucus 

thickness(120). These emulsifiers, added to drinking water of mice for 12 weeks, also 

resulted in inflammation and metabolic syndrome, as well as increased microbe proximity to 

the epithelium (Fig 4). Although mucus thickness was altered, it is unclear if this was a 

direct result of emulsifier exposure to the mucus layer, or due to changes in mucus 

production after chronic long-term exposure of epithelium.

Acute alcohol exposure has been shown to reduce mucosal hydrophobicity by extracting free 

fatty acid (FFA) and lipids from the mucus layer(121). Rat intestinal loops injected 

intraluminally with 0–40% alcohol had acute, concentration-dependent mucosal changes, i.e. 

increase in permeability correlated with decreases in mucosal hydrophobicity, i.e. contact 

angle. At high alcohol concentration (40%), DNA, protein, mucus, and FFA concentrations 

in the lumen were significantly increased.

4. Considerations for Developing Drug Carriers to Enhance Permeation 

through Mucus

As noted previously, the mucus barrier can be modified by endogenous or exogenous agents 

(e.g., luminal stimuli from ingested materials), and mucus barrier modifications may have 

direct implications for effectiveness of drug delivery targeted at mucosal sites. However, to 

minimize potential detrimental effects associated with weakening mucus structural integrity, 

such as exposure of underlying tissues to microbes, drug delivery carriers themselves can be 

modified to penetrate mucus without compromising the entire mucus layer. Drug carriers 

can be optimized to penetrate mucosal barriers by altering particle size and surface 

chemistry, in addition to carrier solution properties (Fig 5).
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4.1. Impact of Particle Size

Drug carrier size plays an important role in influencing particle penetration and diffusion 

through mucus due to steric obstruction from the mucus mesh structure with pore size 

ranging from 10–1800 nm. For example, an average pore size of 340 ± 70 nm was reported 

in human cervicovaginal mucus(122), while a pore size of 150 ± 50 nm was measured in 

human nasal mucus collected from patients with chronic rhinosinusitis(123). Drug carriers 

larger than the mucus pore size may be size-excluded and unable to diffuse through the 

mucus gel. For example, there was a decrease in the diffusion rate of particles through 

porcine intestinal mucus with increasing particle size from 20 to 500 nm(124). Effective 

diffusivities of 20, 100, and 500 nm carboxyl-modified particles were 0.13, 0.06, and 0.021 

μm2/s, respectively.

Self-nanoemulsifying drug delivery systems (SNEDDS), which are composed of water, oil, 

and surfactants, have been developed as drug carriers for poorly water soluble drugs. 

SNEDDS are able to diffuse through the mucus gel because of their small size, shape 

deformation, and minimal interaction with mucus components(125). Surfactant type (e.g., 

Cremophor RH 40 and triacetin) and concentration impacted permeation through mucus. 

Formulation with Cremophor resulted in smaller particles (<50 nm) that were able to diffuse 

faster through porcine intestinal mucus than particles formulated with triacetin (30–400 nm).

4.2. Particle Surface Functionalization

Since mucus is composed of charged entities (e.g., negatively-charged mucin fibers), surface 

functionalization can impact the interaction (e.g., electrostatic) between a drug carrier and 

mucus, thus altering drug carrier diffusion rate and penetration depth. Two approaches have 

been investigated for enhancing drug delivery at mucosal sites: mucoadhesive particles 

which can increase particle retention within the gastrointestinal tract, and mucus penetrating 

particles which can diffuse relatively quickly through a mucus gel by minimizing 

interactions with mucus.

4.2.1. Mucoadhesive Drug Carriers—Mucoadhesion is the adhesion of a material to 

the mucosal membrane by polymer interpenetration or entanglement, and/or formation of 

chemical bonds or electrostatic interactions, with the mucin network(126; 127). Both natural 

(e.g., cellulose, chitosan, guar, xanthan, pectin, and alginate) and synthetic (e.g., polyacrylic 

acid (PAA) derivatives, poly(vinyl alcohol), and poly(N-vinyl pyrrolidone)) polymers have 

been incorporated in mucoadhesive drug carriers(127). Polymer concentration, 

hydrophilicity, molecular weight, cross-linking, and swelling can all impact 

mucoadhesion(128).

One synthetic mucoadhesive polymer, polyacrylic acid (PAA, Carbopol®), contains a high 

proportion of carboxylic acid groups that can undergo hydrogen bonding with mucus. The 

viscosity of a Carbopol® and purified porcine stomach mucin mixture was dependent on 

pH, in addition to polymer and solution salt concentrations(129). The specific viscosities of 

solutions containing 2 mg/mL mucin and 4 mg/mL Carbopol® at pH 2 and 7 were 1.0 and 

7.4, respectively. The increase in viscosity at pH 7 was attributed to the deprotonation of 
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carboxyl groups resulting in electrostatic repulsion of expanded and rigid Carbopol® 

polymer chains.

Mucoadhesive properties of particulate drug carriers can be enhanced by incorporating more 

than one polymer. Polyglycerol ester of fatty acid (PGEF)-Carbopol® 934P microspheres 

showed higher in vitro adhesion to rat stomach and intestinal mucus compared to PGEF 

microspheres(130). After oral administration, the PGEF-Carbopol® were also retained 

longer within the gastrointestinal tract than PGEF microspheres. It was hypothesized that 

hydrated and swelled Carbopol® polymer anchored the PGEF microspheres to the mucus 

layer. Other polymer mixtures, including polyacrylic acid (Carbopol® 934P) and Eudragit® 

RL 100 (copolymer of acrylic and methacrylic acid), have been utilized as a coating for 

poly(2-hydroxyethyl methacrylate) microspheres(131). As a single component coating, 

Eudragit did not have any mucoadhesive properties (detachment force = 0 mN/cm2), while 

Carbopol® 934P had a detachment force of 6.06 ± 0.24 mN/cm2 from porcine duodenum 

mucosa. When Eudragit® RL 100 was combined with Carbopol® (9:1), the mixture had a 

detachment force of 5.95 ± 0.29 mN/cm2, which was similar to Carbopol® alone. However 

in rat perfusion studies, the mixture of Eudragit® RL 100 and Carbopol® was retained 

longer in the intestine compared to Carbopol® alone. The incorporation of Eudragit® RL 

100 may limit the hydration and swelling of Carbopol®, thus providing a longer 

mucoadhesive contact.

Thiol groups can be conjugated to drug carriers or polymers to form disulfide bonds with 

cysteine-rich regions of mucus glycoproteins. Cationic chitosan was modified with thiol 

groups (203 ± 71 μmol thiol groups per gram polymer), and the rotating cylinder method 

was used to investigate mucoadhesion of chitosan-thiol conjugates or unmodified chitosan at 

pH 3, 5, and 7(132). Mucoadhesive properties of chitosan-thiol conjugates were dependent 

on pH; specifically, lower pH resulted in higher mucoadhesion which may be attributed to 

higher proton concentration on thiol conjugates and thus reactivity to form disulfide bonds. 

After orally dosing chitosan-thiol conjugate particles loaded with calcitonin to rats, there 

was a significant increase in calcitonin absorption in serum compared to unmodified 

chitosan particles(133).

4.2.2. Mucus Penetrating Drug Carriers—While mucoadhesion may increase drug 

carrier retention in mucus, mucoadhesive particles are vulnerable to clearance as mucus is 

secreted and cleared. Thus, it is important to consider not only the length of time a drug 

carrier can reside in the mucus layer, but also if a drug carrier is able to reach the epithelium 

before it is cleared. Mucus penetrating particles (MPP) diffuse through the mucus layer by 

minimally interacting with other particles or mucin fibers, resulting in increased particle 

penetration and distribution(62; 134–136). Some MPP surfaces, e.g., particles with PEG 

coatings, are neutrally charged, similar to surface coatings of viruses, which facilitates 

penetration of the mucus barrier by avoiding interactions with the electrostatically charged 

mucins.

Various polymers (e.g., PEG, Pluronic®, or Polyvinyl Acetate (PVA)) have been used to 

coat carboxyl- modified polystyrene (PS) and poly(lactic-co-glycolic acid) (PLGA) particles 

to form near neutral MPP approximately 200 ± 75 nm in diameter(62; 134–136). The 
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average diffusion coefficients in mucus (Dm) compared to theoretical diffusion in water (Dw) 

for these coated particles (PS/PVA (Dm/Dw=4000), PS/PEG (Dm/Dw=6.3) and PLGA/

Pluronic® F127 (Dm/Dw=20)) were degrees of magnitudes lower than for uncoated (PS 

(Dm/Dw=9000) and PLGA (Dm/Dw=1000)) particles, indicating surface coatings resulted in 

a more diffusive particle(8; 137). PLGA/Pluronic® F127 particles diffused 280-fold faster in 

human cervicovaginal mucus and PLGA/PEG particles diffused 800-fold faster in human CF 

sputum compared to uncoated PLGA(8; 137; 138). Intranasal administration of particle 

solutions (60, 100, or 300 nm) revealed that uncoated particles (PS, PLGA) were clumped, 

non-evenly distributed, and vulnerable to clearance while MPP PEG-coated particles were 

evenly distributed along the mucosa. The ability of MPP to penetrate and diffuse through 

mucus is influenced by both the type of coating material and coating coverage. PS particles 

coated with increasing amounts of PEG (1–8%) showed concentration dependent increases 

in particle diffusion, however PEG coating > 10% did not further increase particle diffusion 

and distribution to a significant degree(139). These polymer coatings can also be used with 

other biocompatible carriers. PEG-coating of DNA-poly(β-amino ester) (PBAE) 

nanoparticles increased coverage by ~50% and ~20% in the large airways and lung 

parenchyma, respectively(140). Similarly, PEG- coated liposomes had increased retention 

and distribution following Intravaginal administration(141).

Zwitterionic materials, which contain positively and negatively charged moieties resulting in 

an overall net neutral charge, have been used as particle coatings as well, due to their ability 

to resist protein binding, as well as bind water molecules more strongly and stably due to 

electrostatically induced hydration, as compared to PEG molecules(142). 

Dilauroylphosphatidylcholine (DLPC) is a zwitterionic polybetaine that contains a 

hydrophilic phosphatidylcholine headgroup and hydrophobic dodecylic acid chains. DLPC 

self-assembles on polylactic acid (PLA) particles (~90 nm in diameter) resulting in a neutral 

and hydrophilic coating(143). Poly(vinyl alcohol) PVA-coated PLA nanoparticles (~120 nm) 

resulted in 20-fold higher aggregation of mucin fibers (measured by fluorescence intensity 

of precipitated fluorescent particle-mucin aggregates) upon incubation with purified porcine 

mucin (2 % wt/vol) relative to DLPC-coated PLA particles. Moreover, DLPC-coated PLA 

particles had 6.3-fold higher apparent permeability through human cervicovaginal mucus as 

compared to PVA-coated PLA particles. DLPC-coated PLA particles also had ~4.5 fold 

increase in Caco-2 cellular uptake compared to PEG-coated PLA particles. Thus, 

zwitterionic coatings, which can be designed to be biocompatible, bioinert, and hydrophilic.

Another approach to improve nanoparticle penetration through mucus is to incorporate 

proteolytic enzymes. For example, papain was complexed with poly(acrylic) acid (PAA), a 

polyelectrolyte, to produce nanoparticles ~190 nm in diameter(106). Papain-PAA 

nanoparticles had a significantly faster transport rate (~2.5 fold increase) through porcine 

intestinal mucus sandwiched between polycarbonate filters in a Transwell-Snapwell™ 

diffusion chamber compared to PAA nanoparticles. In another study, pulsed-gradient spin-

echo nuclear magnetic resonance was utilized to determine penetration capability of PAA 

particles conjugated with bromelain or papain(144). Bromelain-PAA, papain-PAA, and PAA 

particles had diffusion coefficients of 7.6 × 1011, 6.0 × 1011, and 2.8 × 1011 μm2/s, 

respectively. The higher diffusion coefficient of bromelain-PAA compared to papain-PAA 

particles was attributed to higher bromelain vs. papain loading efficiency (10.2 vs. 9.8 
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nmol/mg) and activity (63.31 vs. 42.21% of free native bromelain or papain enzyme 

activity). Papain was also loaded in SNEDDS to improve mucus penetration(145). 

Labrafac™ as oil and Cremophor EL as surfactant were used to produce ~95 nm SNEDDS. 

Papain-SNEDDS had a 2- fold increase in porcine intestinal mucus permeation compared to 

SNEDDS, as measured via rotating tube method.

4.3. Dosing Formulation Properties

Drug formulation properties, such as dosing volume, pH, and ionic strength, can also have a 

large impact on mucus penetration. When high volume solutions were delivered by oral 

gavage or direct injection into intestinal loops, particles were able to penetrate deeper into 

intestinal crypts due to tissue distension compared to low volume gavage solutions(146). 

Furthermore, when formulations are dosed in high volumes, both MPP (PS/PEG) and 

mucoadhesive PS particles had similar distribution and penetration, indicating dosing 

volume had a more significant effect than particle surface functionalization.

Formulation properties, such as osmolarity, can be modulated to enhance delivery through 

the mucus barrier. Within 10 minutes of intravaginal administration of hypotonic 

(absorption-inducing) particle solutions (100 nm PS/PEG, 20–220 mOsm/kg), particle 

retention (~53%), distribution, and coverage were significantly increased as compared to 

particles delivered in isotonic solutions (294 mOsm/kg)(147). Vaginal epithelium coverage 

increased from 60% to 90% as osmolarity decreased from 294 to 20 mOsm/kg. Dosing 

hypotonic solutions of doxorubicin, a chemotherapy drug, also resulted in increased vaginal 

epithelium coverage (~60%) and absorption (2-fold) compared to isotonic solutions(147). 

When dosed intrarectally, hypotonic solutions again aided in particle distribution and 

absorption compared to isotonic solutions (350–450 mOsm). Conversely, hypertonic 

solutions caused fluid secretion and bowel distension, resulting in particles being primarily 

located in the lumen. Hypertonic solution (2200 mOsm) have been reported to result in 

increased drug uptake, however, these increases were attributed to epithelial distention and 

disruption(148; 149). It is apparent that drug formulation properties can impact particle 

diffusion and thus are important to consider when optimizing delivery systems for 

overcoming the mucus barrier.

5. Summary

Mucus barrier properties are important to consider in designing effective systems for drug 

delivery to underlying epithelium, and also in understanding microbe interactions with and 

transport through mucus, and its significance in health and disease. These barrier properties 

depend on composition (e.g., protein, lipid, and salt concentrations) and structure (e.g., pore 

size), which can be dynamically altered in response to endogenous and exogenous stimuli, 

as well as changes in different disease states. As highlighted in this review, these stimuli can 

include factors that bind mucus components to increase mucus cross-links and viscosity, 

stimulate protein secretion, and/or inhibit pathogenic colonization. On the other hand, 

enzymes secreted by the host, viruses, and microbes can degrade the mucus layer by 

cleaving oligosaccharides or the mucin protein backbone; or disrupting inter- or 

intramolecular interactions, thus decreasing mucus viscosity. Understanding the mechanisms 
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by which mucus provides a selective barrier, and how this barrier changes, for example with 

exposure to enzymes, food components, microbes and viruses in normal physiological 

function and with disease, can motivate rational approaches to engineer a mucosal barrier 

which facilitates efficient drug delivery and promotes a healthy microbiome.

Drug carriers can be strategically designed to adhere to or penetrate through the mucus layer. 

In evaluating approaches to permeabilize the mucus barrier, it is important to consider 

potential impact of compromising the integrity of the mucus gel. This could expose the 

underlying tissues to microbes, viruses, and exogenous factors/or exogenous factors (e.g., 

luminal contents in the intestine). Continued research on the mechanisms by which mucus 

provides an effective barrier and mechanisms by which this barrier can be modulated will 

motivate rational approaches to engineering this natural hydrogel to benefit health and 

mitigate disease.
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Figure 1. 
Hierarchical structure of gel-forming mucins. Adapted from (2).
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Figure 2. 
Increased mucus amount in Cystic Fibrosis (CF, CftrΔF508 mouse) compared to wildtype 

(WT). (A) Mucus distribution in ileum of WT and CF mice immunostained for Muc2 

(green) and nuclei (blue). Arrows point to mucus attached to goblet cells. Scale bars=100 

μm. (B) Representative confocal images of WT and CF villi (red) overlaid with 2 μm 

particles (green). Scale bars=50 μm. Adapted from (37).
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Figure 3. 
Methods to break down mucin structure.

Carlson et al. Page 28

Annu Rev Biomed Eng. Author manuscript; available in PMC 2019 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Exposure of mice to emulsifiers (1% CMC (B) or 1% P80 (C)) in drinking water for 12 

weeks decreased mucus (Muc2 (green)) thickness and decreased distance between bacteria 

(red) and colonic epithelium (actin (purple), DNA (blue)). Scale bar= 20 μm. Adapted from 

(120).
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Figure 5. 
Drug carrier size, surface properties, and dosing solutions affect the ability to penetrate 

mucus and reach underlying epithelium. Large drug carriers are size excluded, 

mucoadhesive drug carriers can adhere to mucus to increase residence time, but may be 

eliminated due to mucus clearance, and mucus-penetrating drug carriers have minimal 

interactions to allow penetration of the mucus layer. Dosing formulation properties (i.e. large 

volume, or hypotonic formulations) improve drug carrier distribution and retention in the 

mucus layer. Adapted from (150).
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