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Abstract

It is commonly known that respondents exhibit different response styles when responding to
Likert-type items. For example, some respondents tend to select the extreme categories (e.g.,
strongly disagree and strongly agree), whereas some tend to select the middle categories (e.g.,
disagree, neutral, and agree). Furthermore, some respondents tend to disagree with every item
(e.g., strongly disagree and disagree), whereas others tend to agree with every item (e.g., agree
and strongly agree). In such cases, fitting standard unfolding item response theory (IRT) models
that assume no response style will yield a poor fit and biased parameter estimates. Although
there have been attempts to develop dominance IRT models to accommodate the various
response styles, such models are usually restricted to a specific response style and cannot be
used for unfolding data. In this study, a general unfolding IRT model is proposed that can be
combined with a softmax function to accommodate various response styles via scoring func-
tions. The parameters of the new model can be estimated using Bayesian Markov chain Monte
Carlo algorithms. An empirical data set is used for demonstration purposes, followed by simula-
tion studies to assess the parameter recovery of the new model, as well as the consequences
of ignoring the impact of response styles on parameter estimators by fitting standard unfolding
IRT models. The results suggest the new model to exhibit good parameter recovery and seri-
ously biased estimates when the response styles are ignored.
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Response styles represent the different kinds of cognitive bias that result in responses deviating

from individuals’ accurate status, and they are prevalent in responses to the Likert-type items

commonly used in the social and human sciences. Several response styles have been posited that

are all capable of leading to distorted responses in various ways, including extreme response

style (ERS), which involves a tendency to choose the lowest and highest categories; midpoint

response style (MRS), which involves a tendency to choose middle categories; acquiescence

response style (ARS), which involves a tendency to agree with items; and socially desirable

response style (SDRS), which involves a tendency to pretend to look good. The potential of
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using item response theory (IRT) to deal with the various response styles has been promoted in

recent years (Bolt & Adams, 2017; Bolt & Johnson, 2009; Falk & Cai, 2016; Jin & Wang,

2014; Johnson & Bolt, 2010). Most of these response style models were developed for domi-

nance data, in which the probability of endorsement increases monotonically as the latent trait

increases. More recently, the substantive response process and the response style process have

been disentangled to yield richer information concerning the differing mental processes of

respondents (Böckenholt, 2017; Jeon & De Boeck, 2016). An alternative approach models the

threshold parameters either by means of random variation across persons or a multiplicative per-

son parameter (Jin & Wang, 2014; Wang, Wilson, & Shih, 2006; Wang & Wu, 2011).

Furthermore, mixture modeling of response styles explores the hidden classes of response

styles in a compensatory manner (Wetzel, Carstensen, & Böhnke, 2013). In addition, multidi-

mensional nominal response models have been adopted to distinguish the latent traits involved

in response styles from the substantive latent traits (Bolt & Adams, 2017; Bolt & Johnson,

2009; Falk & Cai, 2016; Johnson & Bolt, 2010).

Although different approaches to response styles in relation to dominance data have been devel-

oped in recent decades, only a few studies have dealt with response styles in relation to unfolding

data (Javaras & Ripley, 2007). In unfolding IRT models, unlike in dominance IRT models, the

probability of endorsement increases as the distance between the person location (parameter) and

the item location (parameter) decreases. For example, when respondents are asked to indicate their

degree of agreement with the statement ‘‘I think capital punishment is necessary, but I wish it was

not,’’ they may disagree with the statement for two distinct reasons, namely that capital punishment

is necessary, or that capital punishment should be abolished (Andrich, 1988). Only those respon-

dents with a more neutral attitude are likely to offer an endorsement of the statement. To describe

such a phenomenon, unfolding models postulate an inverted U-shaped item characteristic curve

(ICC) on the relationship between the latent trait and the probability of endorsement.

Unfolding models have attracted significant research interest in relation to the construction

and analysis of attitude, personality, job performance, vocational interests, leadership, emotions,

and other factors (Cao, Drasgow, & Cho, 2015; Tay & Drasgow, 2012). However, the impacts

of the different response styles on unfolding data have been subject to very little investigation

in the literature (Javaras & Ripley, 2007; Wang, Liu, & Wu, 2013). It is widely recognized that

ignoring response styles results in serious estimation bias in dominance data (Bolt & Adams,

2017; Falk & Cai, 2016), and similar consequences should be expected for unfolding data. In

the present study, the authors propose a general unfolding IRT model for multiple response

styles, in which one substantive latent trait is assumed to underlie normal responses, whereas

one nuisance latent trait (propensity) is assumed to underlie each response style.

The remainder of the study is organized as follows. First, the general unfolding model

(GUM) is introduced. Second, the general unfolding model for response styles (GUMRS) in

unfolding data is proposed. Third, the new GUMRS and those models previously developed in

the literature are discussed and compared. Fourth, the new model is applied to an empirical data

set to demonstrate its advantages when accounting for different response styles in unfolding

data. Fifth, a series of simulation studies is conducted to evaluate the parameter recovery of the

new model, as well as the consequences of ignoring response styles when standard unfolding

models are fitted. Finally, conclusions are drawn and suggestions for further studies are offered.

IRT Models for Response Styles

The GUM

In the present study, the GUM for polytomous data (Luo, 2001) is employed as a general frame-

work mainly because of the flexibility of the operational function and intuitive interpretation of
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the item threshold parameters. The probability function of the polytomous response Zni 2 (0, 1,

. . ., C), given person parameter un and item parameter di, is defined as,

Pr Zni = zð Þ=

QC
k = 1

PUzk

nik Q1�Uzk

nik

PC
w = 0

QC
k = 1

PUwk

nik Q1�Uwk

nik

, ð1Þ

where C is a positive integer equal to the number of categories minus one, while the dummy

variable Uzk = 1 if z� k, but Uzk = 0 otherwise. In addition, Uwk = 1 if w� k, although Uwk = 0

otherwise. It is important to note that the conditional parameters are omitted from the probabil-

ity function for reasons of brevity. Pnik is a probability function defined as,

Pnik[Pr Ynik = 1ð Þ= ck rkð Þ
ck ai un � dið Þ½ �+ ck rkð Þ

, ð2Þ

and Qnik = 1 –Pnik, where un is the substantive latent trait (ideal point) of person n, di is the item

location, ai2R� 0 is the slope parameter of item i, rk2R� 0 is the kth threshold parameter

across items because the same scoring rubric is used, and c(�) represents an operational func-

tion (Wang et al., 2013).

The properties of the operational function c(�) are crucial for generating a valid unfolding

probability function (Luo, 1998), including (a) nonnegativity: c(x) ¼. 0 for any real x; (b)

monotonicity in the positive domain: c(x) . c(y) for any x . y . 0; and (c) symmetry of the

function: c(x) = c(2x) for any real x. Accordingly, the probability function will exhibit a sym-

metrical ICC. Several operational functions are available (e.g., see Luo, 1998) although the fol-

lowing operational function is used for illustrative purposes in this study (Luo, 2001):

c xkð Þ =
cosh 2C + 1

2
+ 1� k

� �
x

� �
cosh 2C + 1

2
� k

� �
x

� � : ð3Þ

The operational function enables users to create various ICCs to fit their own unfolding data.

The choice of the operational functions can be based on substantive theories and/or model selec-

tion criteria (e.g., the deviance information criterion [DIC]). As shown in Equations 58 to 65 in

Luo (2001) and Equation 10 in Wang et al. (2013), the GUM subsumes the generalized graded

unfolding model (GGUM; Roberts, Donoghue, & Laughlin, 2000) via an appropriate opera-

tional function. Wang et al. (2013) used the following operational function:

Pnik =
ck aibikð Þ

ck ai un � dið Þ½ �+ ck aibikð Þ , ð4Þ

where bik is the item threshold for threshold k of item i, ai is the discrimination for item i, and

the others are defined previously. In Equation 2, the authors used a common threshold parameter

rk across items. If rik is used instead of rk in Equation 2, rik can be partitioned as aibik. When

Equation 3 is imposed, the GUM becomes the GGUM (Wang et al., 2013). Furthermore, when

ai = 1, the GUM becomes the graded unfolding model (Luo, 2001; Roberts & Laughlin, 1996).

With respective to the interpretation of the threshold parameters rk in the GUM, they are the

locations where the ICCs of adjacent categories intersect. However, such interpretation does not

exist for the threshold parameters in the GGUM or the graded unfolding model.

We set rik = rk in this study because of two reasons. First, Likert-type items in an inventory

often adopt the same scale (e.g., 5-point disagree–agree scale) so they share the same scoring
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rubric. Second, as observed by Luo (2000) and this pilot study, constraining a common set of

thresholds across items helps stabilize the estimation.

The General Unfolding Model for Response Styles (GUMRS)

The kth threshold parameter rk of the GUM for k = 1, . . ., C represents the location where two

adjacent ICCs intersect and the probability is equal to 0.5. That is, rk indicates the location of

the intersection between categories k – 1 and k. Assuming that the thresholds vary across

respondents (i.e., an individual’s tendency toward the scoring rubric), it is appropriate to extend

rk to rnk, which is related to the nth person’s tendency toward the threshold between the adja-

cent categories (Luo, 1998). However, such an approach can only capture the randomness

across individuals, as it does not account for different response styles (Jin & Wang, 2014; Luo,

1998; Wang et al., 2013).

To simultaneously describe multiple response styles, a ‘‘softmax’’ function is proposed and

integrated into the GUM. Thus, Equation 1 becomes,

Pr(Zni = z) =

Wniz

QC
k = 1

PUzk

nik Q1�Uzk

nik

PC
w = 0

Wniw

QC
k = 1

PUwk

nik Q1�Uwk

nik

, ð5Þ

where Wniz denotes the softmax function, which is defined as,

Wniz =
exp li s s

1 + z
ð Þ0gn

� �
PC
z = 0

exp li s s
1 + z

ð Þ0gn

� � , ð6Þ

where li is a vector of the slope parameters of size D3 1 for item i, s1 + z is the (1 + z)th col-

umn vector of the scoring functions S (D3K), K = 1 + C, s denotes the entrywise product, and

g is a vector of the response style latent propensities of size D3 1. Therefore, Equations 2 and

5 together form the new unfolding model for response styles for unfolding data, where Pnik and

Qnik are defined as in Equation 2. li reflects the relationship between the corresponding

response style latent propensities, gn, and item i. If an element of li is zero, then the corre-

sponding latent propensity does not affect the item response and thus can be ignored. In the

GUMRS, we constrained li = l for all items mainly for estimation stability. If an element of l
= 0, then the corresponding latent propensity does not affect any item response.

It is assumed that g and u follow a multivariate normal distribution. The assumption is also

made in other studies of multiple response styles (Böckenholt, 2017; Falk & Cai, 2016).

Although it is possible that g and u may exhibit nonlinear relationship, linear relationship is

simpler, easier to understand, and preferred when the model-data fit is acceptable. Besides, non-

linear relationship usually requires more parameters, larger sample sizes, and longer tests,

which may not be feasible in practice.

In the GUMRS, g is specified as a vector of nuisance parameters to account for the random-

ness of the response styles. The correlation between g and u can be estimated under a condition

of proper identification (Falk & Cai, 2016; Johnson & Bolt, 2010), which will be explained

later. The scoring function S is highly flexible so as to characterize the response styles (Falk &

Cai, 2016). Table 1 presents an example of the scoring functions for a 6-point item. For

instance, the scoring function, [1 0 0 0 0 1], is used to model the ERS for a 6-point item. The

tendency to choose the second, third, and fourth categories is relatively weaker than the
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tendency to choose the first and last categories, while the first and last categories share the

same likelihood of being chosen. l is very useful for examining the magnitude of response

styles, and it can be used to detect whether the corresponding response style trait is significant

for dimension d (i.e., H0: ld = 0 for d = 1, . . ., D). The GUMRS is reduced to the traditional

GUM when either l = 0 or g = 0.

Figure 1 illustrates the ICCs (6-point rubric) of the GUMRS for the ERS (score function:

[1 0 0 0 0 1]) and the MRS (score function: [0 0 1 1 0 0]) under different magnitudes of g, given

that lERS = lMRS = 1. The upper panel presents the ICC without any response style (i.e., the

GUM). The two panels on the left show the ICCs influenced by the ERS with a moderate mag-

nitude (g = 1) and a strong magnitude (g = 3). The first and last categories tend to be chosen

more frequently when the magnitude of the ERS increases. The two panels on the right show

the ICCs influenced by the MRS, wherein the third and fourth categories are more likely to be

chosen as the magnitude of the MRS increases.

Comparison of the GUMRS With Previous Models

Due to space constraints within this article, the authors only comment on those previous models

that are most closely related to the GUMRS. Falk and Cai (2016) proposed a multidimensional

nominal response model to simultaneously deal with substantive constructs and multiple

response styles. Their model’s probability function is defined as,

Pr Zni = zð Þ=
exp li s s

1 + z
ð Þ0hn + tz

� �
PC
z = 0

exp li s s
1 + z

ð Þ0hn + tz

� � , ð7Þ

where hn is a vector containing the substantive latent trait fn (a dominance trait) and the

response style latent propensities gn for person n, s1 + z is the (1 + z)th column vector of the

scoring functions, and tz is the intercept parameter of category z. Their model was solely devel-

oped for dominance data, whereas the GUMRS is customized for unfolding data. Notably, the

scoring function S is applied to the GUMRS to account for multiple response styles in unfold-

ing data.

Luo (1998) extended rk to rnk to relate person n to threshold k and allow for different thresh-

old parameters for different persons, which reflects the variations in the distance judgment

between adjacent categories in unfolding data. Thus, Equation 2 becomes,

Pnik[Pr Ynik = 1ð Þ= ck rnkð Þ
ck ai un � dið Þ½ �+ ck rnkð Þ : ð8Þ

Table 1. Example of Scoring Functions for 6-Point Likert-Type Items.

Scoring function Response style latent propensity

[1 0 0 0 0 1] Extreme response style (ERS)
[0 0 1 1 0 0] Midpoint response style (MRS)
[2 1 0 0 1 2] Extreme midpoint response style (EMRS)
[0 0 0 1 2 3] Acquiescence
[0 0 0 0 1 1] Acquiescence above agree (AAA)
[0 0 0 0 1a 0] Socially desirable responding

aThe fifth category is assumed to be the most socially desirable response.
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Wang et al. (2013) further proposed a random threshold approach by decomposing rnk into rk

and a multiplicative parameter exp(knk) for unfolding data, where k represents the individual’s

tendency parameter and exp(�) denotes the exponential function. The corresponding function is,

Pnik[Pr Ynik = 1ð Þ= ck rkexp knkð Þ½ �
ck ai un � dið Þ½ �+ ck rkexp knkð Þ½ � , ð9Þ

Figure 1. ICCs of the GUMRS under the influence of the ERS ([1 0 0 0 0 1]) and the MRS ([0 0 1 1 0 0]),
given l = 1.
Note. The upper panel is the ICC without any response style (g = 0). The middle panels present the ICCs for the ERS

and the MRS with a moderate effect (g = 1). The lower panel present the ICCS for the ERS and the MRS with a large

effect (g = 3). r = [5, 4, 3, 2, 1] and d = 0. ICC = item characteristic curve; GUMRS = general unfolding model for

response styles; ERS = extreme response style; MRS = midpoint response style.
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where knk is a random threshold parameter for person n at threshold k. Notably, neither Luo

(1998) nor Wang et al. (2013) explicitly accounted for multiple response styles.

In contrast to Wang et al. (2013), Jin and Wang (2014) proposed a multiplicative approach to

account for the ERS and the MRS using a single dominance trait (f) for dominance data. The

probability function is defined as,

Pr Zni = zð Þ=
exp yi z fn � bið Þ � vn

Pz
k = 0

tiz

� �� 	

PC
w = 0

exp yi w fn � bið Þ � vn

Pw
k = 0

tiz

� �� 	 , ð10Þ

where yi is the item discrimination for item i, bi is the item difficulty for item i, and vn is a

weight parameter of person n on threshold tiz, which is posited to follow a log-normal distribu-

tion with a mean of zero and a variance of s2
v. When v . 1, the respondent tends to choose the

middle categories, and the higher the value, the higher the tendency. However, when v \ 1,

the respondent tends to choose the extreme categories, and the lower the value, the higher the

tendency. Hence, the ERS and the MRS are treated as two ends of a continuum. The magnitude

of s2
v depicts the degree of randomness of persons on thresholds. When s2

v = 0, Equation 9 is

simplified to the general partial credit model (Muraki, 1992). This approach is only applicable

for dominance data, and the assumption of a single dimension for both the ERS and the MRS

should be empirically tested (Falk & Cai, 2016).

Javaras and Ripley (2007) developed a similar random threshold approach to allow for

person-specific variations in unfolding data. Their model is posited as,

Pr Zni = zð Þ= Pr pn k�1ð Þ � Z�ni � pnk

� �
, ð11Þ

where Z�ni is a latent response defined as,

Z�ni = ai un � dij j ð12Þ

and

pnk = jnð Þ
�1

pk + mn, ð13Þ

where jn is the weight parameter and mn is the mean of a threshold parameter pnk. The model

can be made group-specific by adding covariates such as gender or region. Unfortunately, it can-

not account for multiple response styles simultaneously.

The multiple decision approach (Böckenholt, 2017; Jeon & De Boeck, 2016) aims to disen-

tangle different response processes. To implement this approach, original data sets should be

reformed in different ways according to the pointed response processes. When using this

approach, the use of traditional model comparison statistics such as the Akaike information cri-

terion becomes unfeasible (Jeon & De Boeck, 2016), making it difficult to decide which

response process is most appropriate. Due to this constraint, the multiple decision approach will

not be discussed further in this study.

The constrained dual scaling (CDS) approach (Schoonees, van de Velden, & Groenen,

2015) adopts dual scaling, quadratic monotone spline, and latent class methods to scale persons,

items, and classes of persons with different response styles in a nonparametric and exploratory

way. Compared with the CDS, the parametric GUMRS is more advantageous for model-data fit

assessment, model comparison, prediction of persons’ rating, large number of response styles

(possibly larger than four), assessment of differential item functioning, and applications to
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computerized adaptive/classification testing, among others. The CDS assumes that a person has

only one response style, whereas the GUMRS allows users to check whether a person has mul-

tiple response styles. In addition, inspecting the slope parameter for a specific response style in

the GUMRS reveals whether the corresponding response style exists across persons. On the

contrary, the CDS relies on subjective judgment on the scree plot to determine the number of

response styles and the meaning of the latent classes.

Of the aforementioned approaches, only Falk and Cai (2016) multidimensional nominal

response model, the multiple decision approach, and the GUMRS allow for multiple response

styles in a person and correlation between substantive latent traits and response style latent pro-

pensities, whereas the other approaches assume one single response style in a person and statis-

tical independence. In practice, it is possible that a person has multiple response styles, so it is

too restricted to assume a person has only one response style. How will these response styles be

put into operation in a test may depend on test contents and contexts. As demonstrated later in

the empirical data analysis, approximately 12% of the respondents exhibited both the ERS and

the AAA response style.

Parameter Estimation for the GUMRS

Marginal maximum likelihood estimation is commonly used to estimate parameters in IRT

models, especially when the number of dimensions is low (e.g., less than five), as the necessary

computation time and computer memory requirement increase exponentially as the number of

dimensions increases linearly (Bock & Aitkin, 1981). In recent years, the Bayesian Markov

chain Monte Carlo (MCMC) approach has also been widely used for IRT models, although it

typically requires heavier computation and Bayesian knowledge (e.g., convergence checking

and prior distribution specification). That said, MCMC algorithms are easy to implement, espe-

cially for complicated IRT models, including the GUMRS, and they are readily available in

open-source software such as the Just Another Gibbs Sampler (JAGS; Plummer, 2003). The

effectiveness of the JAGS for unfolding models appears to be satisfactory (Liu & Wang, 2016;

Wang et al., 2013; Wang & Wu, 2016). In this study, the authors use the JAGS to estimate the

parameters in the GUMRS.

The GUMRS belongs to the class of within-item multidimensional IRT models (Adams,

Wilson, & Wang, 1997), whose identification problems require special attention. Falk and Cai

(2016) observed that their model, including the scoring functions, could be identified provided

that the scoring functions are linearly independent of both each other and the substantive con-

struct. Furthermore, due to the trade-off between ai and li (i.e., the outcome probability can be

the same when ai increases and li decreases simultaneously, and vice versa), it may be useful

to impose an equality constraint on li = l across items (Johnson & Bolt, 2010). Such a con-

straint is in line with the common phenomenon whereby response styles are stable across items.

All the latent traits are postulated following a multivariate normal distribution with zero means

and a covariance matrix where the diagonals are constrained as ones and the off-diagonals are

to be estimated.

The settings of the MCMC algorithms are as follows. The prior distributions were set as l ~

N(0, 10)I(0, N), r ~ N(0, 10)I(0, N), a ~ N(0, 10)I(0, N), where the suffix ‘‘I(�,�)’’ of the nor-

mal distribution notation N(�,�) specifies the lower and upper bounds of the parameter space. In

consideration of the sampling d, di ~ N(vi, 2)I(li, ui) was used (Liu & Wang, 2016), where vi is

the starting value generated by the correspondence analysis and standardized with a mean of

zero and a standard deviation of one (Polak, Heiser, & de Rooij, 2009), li is the lower bound,

and ui is the upper bound, for item i. The sign of item i was assumed to be known in the follow-

ing simulation study, although the sign should be predetermined by a content expert in a real
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data analysis (Liu & Wang, 2016). u and gd were assumed to follow a multivariate normal dis-

tribution with zero means and a covariance matrix where the diagonals are constrained as ones

and the off-diagonals are to be estimated (making it a correlation matrix). For the GUMRS, the

JAGS internally chose the slice sampler to draw the MCMC samples. The JAGS code for the

GUMRS is provided in the online appendix. Readers can easily modify the code to fit their own

data.

Empirical Data Analysis

The censorship data set, which is available on prdlab.gatech.edu/unfolding/data/, was used to

demonstrate the GUMRS. Some 223 participants responded to 20 six-point items (1 = strongly

disagree, 2 = disagree, 3 = slightly disagree, 4 = slightly agree, 5 = agree, and 6 = strongly

agree). Wang et al. (2013) used the same data set to investigate random variations within thresh-

olds, and they found that the variations were larger for polar categories than for middle cate-

gories. However, their approach did not account for multiple response styles. Due to the small

sample size and moderate test length, a single latent construct together with three response

styles (the ERS, the MRS, and AAA) were investigated in this study for illustrative purpose (see

Table 1). The three response styles led to eight combinations of models: (a) GUM, (b) GUM-

ERS, (c) GUM-MRS, (d) GUM-AAA, (e) GUM-ERS-MRS, (f) GUM-ERS-AAA, (g) GUM-

MRS-AAA, and (h) GUM-ERS-MRS-AAA.

The burn-in period featured 10,000 cycles, followed by an additional 40,000 cycles that were

thinned by four to obtain the final 10,000 samples. Two MCMC chains were used. Convergence

was assessed using the Gelman–Rubin diagnostic statistic (Gelman & Rubin, 1992), where a

value less than 1.1 is typically regarded as acceptable as a rule of thumb. After individually fit-

ting the eight models to the censorship data set, the DIC was used to compare the models. A

model with a smaller DIC value was preferred. The posterior predictive p (ppp) value with the

outfit statistic was used to assess the absolute model-data fit (e.g., van der Linden & Hambleton,

1997).

Preliminary analyses showed that a2, a4, a5, a11, and a17 were not statistically significantly

different from zero for all the models (i.e., unrelated to the substantive construct); thus, these

five items were removed and the remaining 15 items were reanalyzed.

Results

The Gelman–Rubin diagnostic statistic indicated no convergence problem for any of the

models. The DIC indicated that Model 6 had the lowest value (9,799.05), followed by

Model 5 (9,866.21), Model 8 (9,875.94), Model 2 (9,960.28), Model 7 (10,031.65), Model 3

(10,135.08), Model 4 (10,177.12), and Model 1 (10,387.08). Model 6 exhibited the best fit

among the eight models, which implied significant ERS and AAA. In contrast, the tradi-

tional GUM ignored the response styles and thus exhibited the poorest fit. The ppp value for

Model 6 was .16, which suggested a reasonably good fit. For illustrative purpose, we also fit

the GGUM (Roberts et al., 2000) to the data and its DIC was 10,317.57, which was much

larger than that of Model 6.

It was found that l̂ERS = 1.33 with SE = 0.10 and l̂AAA = 0.99 with SE = 0.09 in Model 6. To

test whether the corresponding parameters lERS and lAAA were zero, we calculated their 95%

credible intervals, which were [1.14, 1.55] and [0.82, 1.18], respectively. Because the intervals

did not contain zero, it could be claimed that lERS and lAAA were not zero, and the ERS and

AAA response styles affected the item responses. The estimates of the correlation matrix for the
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substantive latent trait (Dimension 1), the ERS latent propensity (Dimension 2), and the AAA

latent propensity (Dimension 3) are as follows:

Cor =

1

�:30(:12) 1

�:57(:11) :22(:15) 1

2
4

3
5, ð14Þ

where the substantive latent trait was significantly correlated with both the ERS and AAA latent

propensities, although the correlation between the ERS and AAA latent propensities was not

significantly different from zero. The results implied that ignoring the correlation between the

substantive latent trait and the response style latent propensities might lead to deviating esti-

mates. For illustrative purposes, we compared Model 6 (GUM-ERS-AAA) and Model 1 (GUM)

and then plotted the results of the comparison in Figure 2a. It appeared that Model 1 overesti-

mated nine item parameters, but underestimated four item parameters, when compared with

Model 6. The standard errors of the item parameter estimates were between 0.14 and 0.73 for d̂,

between 0.05 and 0.18 for â, and between 0.08 and 0.14 for r̂. The range of standard errors for

d̂ was rather wide due to the small sample size.

Figure 2b shows a scatter plot of the person estimates (expected a posteriori) between Model

6 and Model 1. The Pearson correlation coefficient was .97. It was evident that the differences

were large in the vicinity of the negative pole, which might result from the mixed effect of the

ERS and the AAA on the person estimates.

Table 2 presents three examples of response patterns and person parameter estimates for

three persons under the GUM and the GUMRS. For Person 1, there appeared to be no specific

response style, so the two response style latent propensities were around 0 under the GUMRS,

while the u (substantive latent trait) estimates were almost identical under the GUM and the

GUMRS (20.56 and 20.55, respectively). For Person 2, 14 out of 15 item responses were

either 1 or 6, indicating a very strong ERS. Under the GUMRS, Person 2 had an ERS of 2.69,

but an AAA of only 0.30. In addition, the u estimates were 22.52 and 21.50 under the GUM

and GUMRS, respectively, which suggests that when such an ERS was ignored, the u estimate

Figure 2. Comparison of (a) item estimates and (b) person estimates (expected a posteriori) between
the GUM-ERS-AAA and the GUM for the censorship data set.
Note. GUM-ERS-AAA = general unfolding model–extreme response style–acquiescence-above-agree; GUM = general

unfolding model.
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would be underestimated. For Person 3, 13 out of 15 responses were either 5 or 6, indicating a

very strong AAA. Furthermore, only one of the 15 responses was extreme (6), indicating a very

weak ERS. Under the GUMRS, Person 3 had an ERS of 21.33 and an AAA of 1.93. The u

estimates were 0.64 and 0.23 under the GUM and the GUMRS, respectively. It appeared that

the effects of a weak ERS and a strong AAA canceled out each other out to a certain degree, so

ignoring them did not substantially affect the u estimate under the GUM.

If a respondent had a latent propensity estimate that was statistically larger than 1 SD or

smaller than 21 SD, it was declared that the respondent had exhibited the corresponding

response style substantially. Overall, approximately 12% of the participants exhibited both ERS

and AAA response styles substantially, which supported multiple response styles and the super-

iority of the GUMRS.

Simulation Studies

The aim of the simulation studies was to investigate the parameter recovery of the GUMRS, as

well as the consequences of ignoring the impact of response styles on parameter estimates, by

comparing the parameter estimates obtained from the GUMRS with those obtained from the

GUM.

Method

A series of simulations were conducted to assess the recovery of the item parameters and the

accuracy of the standard error estimators. A single substantive latent trait and two nuisance

latent propensities (ERS and AAA) were included in the GUMRS to generate data. A total of

1,000 respondents were drawn from a multivariate normal distribution with zero means and a

covariance matrix where the diagonals were constrained as ones and the off-diagonals were to

be estimated (i.e., a correlation matrix), with three levels of correlation: 0, .4, and .8. The zero

correlation was used as a baseline, in which the response style latent traits could be ignored

because they did not provide information about the substantive latent trait. A correlation of .4

indicated a moderate magnitude, while .8 indicated a large magnitude; hence, the response style

latent propensities should not be ignored because they provide information about the substan-

tive latent trait (Liu & Wang, 2016). Negative correlations were not considered because reverse

biased patterns could be expected. The correlations were set as equal between the latent traits.

In addition to the three correlation conditions, the correlation matrix from the previous empiri-

cal example under the GUMRS (Equation 14) was also employed. There were 15 six-point

items, which was consistent with the previous empirical example and appeared sufficient to

demonstrate the consequences of ignoring response styles. The values of a, r = [1.91, 1.46,

Table 2. Response Patterns and Person Parameter Estimates of Three Persons Under the GUMRS and
the GUM on a 6-Point (1-6) Scale in the Empirical Example.

Person Response pattern uGUM uGUMRS gERS gAAA

1 3 2 3 1 5 2 2 5 2 6 4 4 1 4 6 20.56 20.55 0.04 0.13
2 6 1 6 1 1 1 1 1 1 4 1 6 1 1 6 22.52 –1.50 2.69 0.30
3 4 5 5 5 6 5 2 5 5 5 5 5 5 5 5 0.64 0.23 –1.33 1.93

Note. GUMRS = general unfolding model for response styles; GUM = general unfolding model; ERS = extreme

response style; AAA = acquiescence-above-agree.
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1.45, 0.48, 0.07], and l = [1.33, 0.99] were set as the same as those obtained from the previous

empirical results of Model 6. To avoid extreme values for the item locations, which may result

in large sampling variations, the d was generated from a uniform distribution between –2 and 2

with an equal step (Liu & Wang, 2016; Wang et al., 2013).

Four data sets, one for each of the three correlations and one for the correlation obtained from

the empirical example, were generated according to the GUMRS and then analyzed using the

GUM and the GUMRS. The item parameters were fixed, and the latent traits were randomly dis-

tributed across 60 replications. Regarding the MCMC algorithms, the burn-in cycles were set at

4,000, followed by an additional 16,000 cycles, which were thinned by four to obtain the final

4,000 samples. Such settings appeared sufficient for unfolding models (Wang et al., 2013). For

each replication, the Heidelberger and Welch (1983) convergence diagnostic statistic was used

to evaluate the convergence. If the test failed, an additional 4,000 samples were generated until

no convergence problem was found.

The overall results were assessed using the bias and root mean square error (RMSE) of an

estimator ĵ computed as R�1
PR

r = 1 (ĵr � j) and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�1

PR
r = 1 ĵr � j
� �2

r
, respectively, where j

was the true parameter and R = 60. For the standard error estimation, the average of SE(ĵr)

across the replications was assessed by dividing the empirical standard deviation of the para-

meter estimator SD(ĵ) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2 � bias2
p

, which is defined as a relative measure (RM):

RM(ĵ) = ½R�1
PR

r = 1 SE(ĵr)�SD(ĵ)�1 � 1. The SE(ĵr) was estimated using the empirical standard

deviation of the MCMC samples. In practice, an RM value of around zero indicates a satisfac-

tory recovery of the standard error estimator.

Results

Figure 3a presents a box plot showing the bias values of the item parameter estimators of the

GUMRS (i.e., a, d, r, l, and the correlations were aggregated) and the GUM (i.e., a, d, and r
were aggregated) under the three correlation conditions, namely 0, .4, and .8, which are denoted

as GUMRS.0, GUMRS.4, and GUMRS.8, respectively, and the correlation obtained from the

empirical example, which is denoted as GUMRS.E. The upper and lower quartiles of the bias

values were very close to zero for the GUMRS. In contrast, the bias values were rather high for

the GUM when the correlation was not zero (see GUM.0, GUM.4, GUM.8, and GUM.E). In

addition, the higher the correlation, the more serious the bias values. The RMSE values shown

in Figure 3b exhibited similar patterns to those for the bias values in that the RMSE was much

lower for the GUMRS than for the GUM, especially when the correlation was as high as .8.

Figure 3c shows the RM of the standard error estimators. The quartiles for the GUMRS.0,

GUMRS.4, GUMRS.8, and GUMRS.E were within the range of 6.25. In contrast, the RM was

much more extreme for the GUM, especially when the correlation was .8. In general, the stan-

dard errors were underestimated when the response styles were ignored.

In summary, the GUMRS yielded both good parameter recovery and accurate standard

errors. In contrast, when response styles existed but were ignored by fitting the GUM, the para-

meter recovery was poor and the standard errors were underestimated. The stronger the correla-

tion between the substantive latent trait and the response style latent propensities, the worse the

estimation of the parameters and their standard errors. These findings were consistent with

those obtained for dominance data (Falk & Cai, 2016; Jin & Wang, 2014; Johnson & Bolt,

2010).
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Conclusion

Most previous approaches to response styles were developed for dominance data (Falk & Cai,

2016; Jin & Wang, 2014; Johnson & Bolt, 2010). Although there do exist approaches to

response styles in unfolding data, they cannot distinguish between different response styles

(Javaras & Ripley, 2007; Luo, 1998; Wang et al., 2013). To meet the demand for IRT models

for multiple response styles in unfolding data, the authors developed the GUMRS. The empiri-

cal example presented here demonstrates the utility of the GUMRS in accommodating various

response styles by forming eight models. Through the model comparison, the statistical signifi-

cance of the response styles could be tested. The simulation studies demonstrated good para-

meter recovery for the GUMRS and serious consequences for parameter estimation when the

response styles were ignored, especially when the response style latent propensities were highly

correlated with the substantive latent trait. These findings are consistent with those found in the

literature concerning dominance data (Falk & Cai, 2016; Jin & Wang, 2014; Johnson & Bolt,

2010).

Figure 3. (a) Bias values, (b) root mean square error of the parameter estimators, and (c) relative
measure of the standard error estimators, for 1,000 people and 15 six-point items from the GUMRS and
the GUM in the simulation study.
Note. The suffixes ‘‘.0,’’ ‘‘.4,’’ ‘‘.8,’’ and ‘‘.E’’ added to GUMRS and GUM denote the correlations used to generate data

from the GUMRS but analyzed with both the GUMRS and the GUM. GUMRS= general unfolding model for response

styles; GUM = general unfolding model.

Liu and Wang 207



To fit the GUMRS to empirical data, the following steps are recommended. First, examine

whether the data conform to the unfolding process. The procedures developed by Tay and

Drasgow (2012) and Carter, Dalal, Guan, LoPilato, and Withrow (2017) may be helpful at this

stage. Second, determine which types of response styles are involved in the data. In theory, one

can include as many scoring functions as possible in the GUMRS; however, a high number of

response styles lead to a high dimensionality (the number of dimensions in the GUMRS is one

plus the number of response styles), which usually requires a large amount of data (i.e., large

sample size and long test) and may result in estimation difficulty. Model compassion statistics,

for example, the DIC, can then be applied to compare the models to identify significant response

styles. Third, test whether the slope parameter l for the response styles is significant. If it is sta-

tistically significant, which means that the item triggers the corresponding response style, practi-

tioners should review the item content to identify possible reasons for this, rewrite the item, or

remove it. Fourth, conduct follow-up interviews with persons who exhibited strong response

styles to identify their underlying cognitive bias.

Several issues need further investigation. As the number of response styles employed in the

GUMRS increases linearly, the number of combinations of response styles increases dramati-

cally, rendering the MCMC methods very time consuming. Future studies should aim to develop

more efficient algorithms for parameter estimation, for instance, the Metropolis–Hastings

Robbins–Monro algorithm (Cai, 2010), to replace the MCMC algorithms. Missing data are com-

mon, and data may not be missing at random (Liu & Wang, 2016). Hence, the best means of

extending the GUMRS to accommodate data that are not missing at random deserves further

study.

Model extension is another direction to consider. Sometimes, a test may consist of multiple

subtests (or a test battery consists of multiple tests) and each subtest measures a distinct substan-

tive latent trait. Joint analysis of multiple subtests can improve measurement precision because

the correlation among latent traits is taken into consideration (Wang, Chen, & Cheng, 2004).

The GUMRS can be extended to accommodate multiple subtests. For example, a subscript t for

subtest t can be added to Equations 2, 5, and 6 so the item parameters include ait, dit, rkt, and

lit, and the person parameters include unt and gnt. Where appropriate, the constraint gnt = gn

can be set to indicate that each person has a common set of response style propensity parameters

across subtests. Furthermore, if the substantive latent traits have a higher order structure, the fol-

lowing linear relationship can be incorporated (Huang & Wang, 2014):

u
(1)
nt = btu

(2)
n + e(1)

nt , ð15Þ

where u
(1)
nt is the first-order latent trait t for person n, u(2)

n is the second-order latent trait, e(1)
nt is

assumed to be normally distributed with mean zero and independent of other es and us, and bt

is the regression weight (factor loading) of the second-order latent trait on the first-order latent

trait t. More orders are possible.
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