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Abstract

This work provides a short summary of techniques for formally-correct handling of statistical 

uncertainties in Poisson-statistics dominated data, with emphasis on X-ray powder diffraction 

patterns. Correct assignment of uncertainties for low counts is documented. Further, we describe a 

technique for adaptively rebinning such data sets to provide more uniform statistics across a 

pattern with a wide range of count rates, from a few (or no) counts in a background bin to on-peak 

regions with many counts. This permits better plotting of data and analysis of a smaller number of 

points in a fitting package, without significant degradation of the information content of the data 

set. Examples of the effect of this on a diffraction data set are given.
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1 Introduction

The x-ray diffraction community collects a great deal of data which consist of patterns with 

very sharp, intense peaks scattered over a background with a weak signal. The individual 

bins in these patterns consist of photon counts, and their statistical variation is well 

described by Poisson (counting) statistics. Such data sets may be collected either as a single, 

uniform scan of an instrument over the full angular range of interest, or as a set of shorter 

scans which cover the regions around the sharp peaks at high resolution, so that most of the 

data acquisition time is spent on ‘interesting’ regions. Hybrid scans which cover the peaks at 

high resolution, and the whole pattern at lower resolution, are particularly effective at 

reducing counting time while assuring precise peak information and a good understanding of 

the background. This paper presents a statistically rigorous set of procedures for 

manipulating such data sets, especially in the case in which the data involve very low 

counting rates, where the difference between exact Poisson statistics and the commonly-used 

Gaussian approximation is significant.
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2 Statistical background

For a Poisson-distributed variable which describes the counting of uncorrelated events at a 

fixed rate, the following well-known relations hold (Wikipedia, 2018) (where a quantity x in 

angle brackets 〈x〉 represents the mean value of the quantity):

P(μ, N) = μN

N ! e−μ (1)

Var(N,μ) ≡ 〈 N − μ 2〉 = N2 − μ2 = μ, (2)

where P(µ, N) is the Probability Distribution Function (PDF) of observing N events in some 

interval if the perfectly-known mean rate of events for this interval is µ, and Var(N, μ) is the 

expected variance of the number of events around this mean, which is also equal to the 

mean. The critical statement here is that μ is somehow known correctly, a priori. However, in 

a real measurement, all that is available is an observation of the number of counts N itself. 

The first issue to address is the determination of the relationship between an observed 

number of counts and an expected mean value μ. This has been addressed by Bayesian 

methods in papers such as Kirkpatrick and Young (2009), which conclude that, for an 

observation of N events in an interval, the most probable assignment of μ is μ = N + 1, and 

that the variance from eq. 2 is also N + 1.

Another (more transparent) approach, which yields exactly the same result, is to directly 

consider the possibilities presented by an observation of N events. To accomplish this, we 

need tonote some properties of P(μ, N):

Σi = 0
∞ P(μ, i) = 1 (3)

∫
0

∞
P(μ, N) dμ = 1 (4)

∫
0

∞
μmP(μ, N) dμ = (m + N)!

N !

= (N + 1) × ... × (N + m) .

(5)

Equations 3 and 4 imply P(μ, N) is both a normalized PDF for the discrete variable N at 

fixed μ and for the continuous variable μ for a fixed N. Then, for a given number N of counts 
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observed, we can consider these counts to have resulted from, with equal probability, a 

parent distribution with any possible value of μ. From this, we calculate the expectation 

value of μ and its variance. The assumption of equal probability is equivalent to a Bayesian 

approach having no prior information. Then,

〈μ〉 = ∫
0

∞
μP(μ, N) dμ = N + 1

μ2 − μ 2 = ∫
0

∞
μ2P(μ, N) dμ − (N + 1)2

= (N + 2)(N + 1) − (N + 1)2 = N + 1.

(6)

3 Application to data

Equation 6, then, establishes that the variance of an observation of N counts is N + 1. As 

pointed out in Kirkpatrick and Young (2009), this is commonly used ad hoc to eliminate 

divide-by-zero conditions in statistical analyses in which a weight of 1/σ2 is used in a fitting 

procedure, but it is formally correct to do this. Data from X-ray power diffraction 

experiments are often stored as ‘xye’ files, in which the first column is the detector angle, 

the second column is the counting rate, and the third column is the standard uncertainty on 

that counting rate. The previous section then yields rules for both creating and manipulating 

xye file data. First, in the creation of an xye entry, if one has N counts in a dwell time of τ, 

the columns would be set to

y = N /τ
e = N + 1/τ .

(7)

If one is faced with already-created xye files, in which the more standard choice of y = N/τ 
and e = N /τ has been made, it is possible to approximately convert them to this standard. 

The problem lies in the bins with zero counts, which therefore are recorded with zero error. 

This makes it impossible to directly compute the dwell time for the empty bins. Assuming 

the data were taken with constant or smoothly varying count times, though, one can use the 

dwell time τ′ from a nearby non-empty bin with rate y′ and error e′, by computing τ′ = y
′/e′2 and then replacing the e value of the empty bin with enew = 1/τ′ = e′2/y′. The e 
column of non-zero bins will be replaced with

enew = N + 1
τ =

y
eorig

2
+ 1

y/eorig
2 = eorig

2 + (eorig
2 /y)2. (8)

Note that the alternative of just dropping empty bins is statistically wrong; the empty bins 

have finite weight and contribute to any analysis.
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After this, the more interesting question is how to combine bins in such data sets. The data 

are always treated as heteroskedastic, but the distributions are not really Gaussian. The usual 

method of computing the minimum-uncertainty weighted mean of two Gaussian-distributed 

quantities y1 ± σ1 and y2 ± σ2:

y =
y1/σ1

2 + y2/σ2
2

1/σ1
2 + 1/σ2

2 , (9)

isn’t really right, since these are Poisson variates, and not Gaussian. The correct solution to 

combine a set of M measurements recorded as yj and ej (j = 1 … M) is to reconstruct the Nj 

and τj which are represented by the recorded values, and compute the total N and τ. This 

preserves the Poisson nature of the statistical distribution (since all that has been done is to 

regroup counts). One can solve equation 7 for each N and τ using an intermediate quantity 

α:

α j ≡
y j
e j

2
=

N j
2

N j + 1

N j =
α j + α j

2 + 4α j
2

τ j =
1 + N j

e j
.

(10)

and the statistics of the M combined measurements are:

y =
Σ j = 1

M N j

Σ j = 1
M τ j

e =
1 + Σ j = 1

M N j

Σ j = 1
M τ j

.

(11)

4 Adaptive Rebinning

Often, it is useful to take a data set which has regions with many bins with only a few 

counts, and accumulate the many low-count bins into a smaller number of bins with higher 

numbers of counts. This is not normally recommended for least-squares fitting procedures, 

assuming the weights are computed carefully, since any aggregation of data results in some 

loss of information. However, most of the aggregation is in regions with few counts, where 

there isn’t much information in the first place, and it may result in a large speed increase due 

to the reduction in the number of bins to analyze. For the purposes of plotting data sets, and 

for presentation of results for distribution, rebinning can be very useful. If such rebinning is 

carried out in such a way as to assure a minimal statistical significance for each accumulated 
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bin, rather than by just collecting fixed-width groups of bins together (which at least results 

in uncorrelated bins, but results in broadening of peaks in regions with plenty of counts), or 

(worse) by computing a running average (which produces correlated bins, most likely 

resulting in incorrect error estimates from fitting software), the resulting data set can 

preserve a great deal of information about the widths and positions of strong peaks, while 

creating points in the weak regions which have reduced y uncertainties at the expense of 

increased x uncertainties.

We present an algorithm here that rebins data from a set of xye values while reasonably 

preserving the shape of strong peaks, and strictly preserving statistics of the counts within 

bins and the first moments of peaks. It transforms an xye set into a new xye set. This set can 

be created from a single xye pattern, or from multiple patterns which have just been 

concatenated into a single array, and then sorted on x. There is no requirement on the 

uniqueness of x values, as long as they are non-decreasing. The notation below implicitly 

uses the conversions in eq. 10. Although we represent the calculation of αj and Nj as 

pointwise operations, if one is working in a computer language which permits direct array 

operations, these can be computed for the entire xye array in advance of the iterative part of 

the algorithm. We assume a computer language which includes lists of objects in one form 

or another (python lists, c++ std::vector, etc.), and in which the first element of a list is 

indexed as element 0, and the the ith element of list z is written as zi. We use quantities in 

brackets {a, b, c, … } to represent a list of items. The pseudocode is written without the use 

of structured programming constructs, even though a ‘while’ loop is likely the real 

implementation of the steps from 3 through 13 in a modern computer language. The ’=’ sign 

is a comparison operator; the ’←’ is assignment.

The input to the algorithm is M points of xye data, referenced as xj, yj, ej, αj, and Nj (from 

eq. 10), and a minimum relative error ε for a bin to be considered sufficient. The tolerance in 

step 8 is just a small fraction of the typical bin spacing, so that combined data sets which 

may have very nearly equal x values don’t get similar bins split across outgoing channels. 

The algorithm runs as follows:

1. create lists sn ← {0}, sτ ← {0}, sxn ← {0}

2. create data counter j ← 0 and current bin counter k ← 0

3. if j = M: go to step 13

4. snk ← snk + Nj

5. sτk ← sτk + τj

6. sxnk ← sxnk + xj Nj

7. j ← j + 1

8. if j < M and xj − xj−1 < tolerance: go to step 3 (make sure nearly repeated x 
values all get summed into the same bin)

9. if snk + 1 < 1/ε2: go to step 3 to accumulate more data

10. append a 0 to lists sn, sτ, and sxn to start a new bin
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11. k ← k + 1

12. go to step 3

13. eliminate any bins in all lists corresponding to bins for which snj = 0. This can 

really only happen on the final bin, if there are empty bins at the end of the 

incoming data sets.

14. compute x′ ← sxn/sn (operations on lists are carried out element-by-element).

15. compute y′ ← sn/sτ

16. compute e′ sn + 1/sτ

These final lists are the new xye data set. It is worth noting, though, that this has thrown 

away one piece of statistical information. The new bins are unevenly spaced, and have an 

uncertainty on their x value, too, since they are aggregated from multiple original bins. A 

more complete version of this algorithm would generate 4 columns of output: x, x error, y, y 

error, and would include a summation of x j
2N j to allow computation of the second moment 

of x which would feed into the x error. The incompatibility of this with common pattern 

fitting algorithms makes it less easy to use, and the benefits seem mostly weak, so in most 

cases the algorithm in this this section suffices.

5 Sample results

Figure 1 shows the result of this type of operation on data sets collected from the NIST 

Parallel Beam Diffractometer (PBD) (Mendenhall et al., 2016; Mendenhall et al., 2017) 

equipped with a focussing mirror. The data consist of a coarse survey scan of diffraction of 

Cu radiation from a silicon powder (SRM660b, NIST 2010) sample (red ’+’ signs), and a 

very fine scan over the peak to get details of the peak shape (green circles). The blue crosses 

are the result of concatenating and sorting these two sets, and rebinning with a ε = 2 % 

relative tolerance. The following characteristics are evident: 1) on top of the peak, the 

rebinned channels are in 1:1 correspondence with the raw data, since statistics are sufficient 

there that each channel satisfies the ε = 2 % requirement; 2) as one moves down the side of 

the peak, the rebinned points move farther apart, since more channels are being aggregated 

to achieve the goal; 3) the variance of the blue crosses is much lower than the red (survey) 

data in the low-counts region, since the bins are highly aggregated. The total number of 

points in the source data sets, over the whole scan range (20 degrees to 140 degrees) is about 

6000, but only 640 remain in the rebinned set, yet very little information has been lost.

The utility of this procedure for preparation of readable graphic representations of data 

becomes particularly clear when data are being presented on a logarithmic vertical scale. In 

this case, the noise in low-count areas, especially if there are channels with no counts, results 

in a nearly unreadable baseline. Figure 2 shows this effect, with data synthesized from those 

of figure 1 to simulate reduced counting statistics. The red crosses are widely scattered on 

the log scale, but the blue, rebinned result has a very easily determined level.

Although, in general, data rebinning is harmful to analyses of data such as least-squares 

fitting, it is worthwhile to quantify the actual effect of such binning on such fits. The 
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complete data set, from 2θ = 20° to 2θ = 140°, used as an example in figure 1 has been 

adaptively rebinned into sets with ε = 10 %, ε = 5 %, ε = 2 % and ε = 1 % tolerances. These 

sets were then fitted using the Fundamental Parameters Approach (FPA) (Cheary and 

Coelho, 1992; Cheary et al., 2004; Mendenhall et al., 2015) and a Pawley procedure 

(Pawley, 1980) using Topas51 (Bruker AXS, 2014) software. The fit parameters allowed to 

vary were the lattice parameter, the Lorentzian crystallite size broadening, and the apparent 

outgoing Soller slit width to fit the axial divergence, and are displayed in table 1. It is 

important to note that the same underlying data set is used in all cases, so the the differences 

between the fits should be much less than the statistical error bars if the rebinning is valid. 

Only the set reduced to 176 points (less than 3 % of the original size) is beginning to show 

changes to the fit that are statistically significant; in this set, many of the weaker peaks only 

have 2 or 3 points across the full width at half maximum. The fit times were the time for 200 

iterations of the fitter, they vary significantly from run to run, and should only be taken as 

general guidance for speed. The difference between the almost-complete (ε = 10 % 

tolerance) and very sparse (ε = 1 % tolerance) data set is shown in figure 3.

6 Conclusion

A formal recognition of the differences between the errors associated with a Poisson 

distribution and those of a Gaussian distribution leads to some rules which allow 

manipulation of counting-statistics data sets in a manner that does not degrade the statistical 

information in them. In particular, the association of a variance of N + 1 with an observation 

of N counts allows uniform handling of statistics in systems that span the extremely-low 

pure-Poisson range up to the usual Gaussian limit. This allows simple aggregation of data 

from multiple sets, as well as adaptive adjustment of the size of counting bins to maintain 

statistical significance even in regions of very sparse counts. Although, in general, precision 

analysis of data sets should be carried out on minimally-preprocessed data, we demonstrate 

that using rebinning, within reason, does not perturb fitting results and can speed up fits due 

to the reduced number of data points. The data compression that results from adaptive 

rebinning may be very useful in building rapidly-searchable catalogs of patterns. This 

probably has its primary utility in patterns in which strong features are sparsely distributed 

over a largely featureless background, or data which are oversampled relative to the 

resolution required to describe the narrowest features.
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Figure 1: 
Example of rebinned data from CuKα diffraction from silicon powder. Green circles, high-

resolution on-peak scan. Red ’+’, low-resolution survey scan. Blue crosses, rebinned 

combination showing variable bin spacing with ε = 2 %. The data sets are offset vertically 

for clarity. Violet crosses at the bottom are the rebinned set projected down to the x axis, to 

make it easier to see the adaptive point spacing. Inset shows a vertically expanded region 

where the count rate is very low.
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Figure 2: 
Log-scale plotted data showing benefit of rebinning to readability of baseline below peaks. 

Red ’+’ are semi-synthetic data; blue ’x’ with line are rebinned. Error bars are 1σ of the 

aggregated data.
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Figure 3: 
Comparison of minimally aggregated data to highly aggregated data used for fits in table 1. 

This is a detail of a weak region of the entire angular range from 20 to 140 degrees. The data 

labels are the tolerance used in the rebinning.
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Table 1:

Results of fitting data set with varying adaptive rebinning tolerance ε. Errors reported are pure statistical 1σ.

tolerance ε (%) set size (points) fit time (s) lattice (pm) size (nm) Soller width
(degree)

10 6686 16 543.1008 ± 0.002 568 ± 13 9.6 ± 0.2

5 2599 13 543.1015 ± 0.002 568 ± 13 9.5 ± 0.2

2 638 3 543.1013 ± 0.001 575 ± 13 9.5 ± 0.1

1 176 3 543.1048 ± 0.003 509 ± 20 9.3 ± 0.2
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