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Abstract

The bottom-up prediction of the properties of polymeric materials based on molecular dynamics 

simulation is a major challenge in soft matter physics. Coarse-grained (CG) models are often 

employed to access greater spatiotemporal scales required for many applications, but these models 

normally experience significantly altered thermodynamics and highly accelerated dynamics due to 

the reduced number of degrees of freedom upon coarse-graining. While CG models can be 

calibrated to meet certain properties at particular state points, there is unfortunately no temperature 
transferable and chemically specific coarse-graining method that allows for modeling of polymer 

dynamics over a wide temperature range. Here, we pragmatically address this problem by 

“correcting” for deviations in activation free energies that occur upon coarse-graining the 

dynamics of a model polymeric material (polystyrene). In particular, we propose a new strategy 

based on concepts drawn from the Adam−Gibbs (AG) theory of glass formation. Namely we 

renormalize the cohesive interaction strength and effective interaction length-scale parameters to 

modify the activation free energy. We show that this energy-renormalization method for CG 

modeling allows accurate prediction of atomistic dynamics over the Arrhenius regime, the non-
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Arrhenius regime of glass formation, and even the non-equilibrium glassy regime, thus allowing 

for the predictive modeling of dynamic properties of polymer over the entire range of glass 

formation. Our work provides a practical scheme for establishing temperature transferable coarse-

grained models for predicting and designing the properties of polymeric materials.

GRAPHICAL ABSTRACT

1. INTRODUCTION

Glass-forming (GF) polymer liquids have diverse applications in structural components, 

electronics, and biomaterials. However, the bottom-up prediction of the dynamical behavior 

of glasses at arbitrary temperatures remains a major challenge.1–3 In accord with recent 

advances in computational materials science, there has been growing interest in applying all-

atomistic (AA) modeling techniques to link the molecular features of GF polymers to their 

dynamical properties.4–6 However, the steep increase in viscosity and relaxation times of GF 

liquids upon vitrification greatly limits what can be learned from AA simulations. This has 

necessitated modeling techniques that can access greater spatiotemporal scales while 

retaining chemical specificity, such as atomistically informed coarse-grained (CG) 

modeling.

Many of the proposed CG modeling efforts have focused on accurately reproducing the 

many-body potential of mean force (PMF) of a starting AA model in order to preserve the 

thermodynamic properties of the fluid under coarse-graining. One classic approach is to 

derive CG force-fields by AA probability distribution inversions, such as the inverse 

Boltzmann method (IBM)4,5,7 and inverse Monte Carlo.8 Other means to achieve this 

include the multiscale coarsegraining (MS-CG) approach,9–12 which minimizes a 

forcematching functional of the CG force-field, and the relative entropy method,13,14 which 

reproduces the configurational entropy sc of the CG bead sites present in the AA model 

through a minimization effort (on their relative entropy difference). Despite the success of 

these approaches in representing key structural features and thermodynamics for CG 

modeling, it is generally observed that the resulting CG models exhibit an accelerated 

dynamics and softer mechanical responses relative to their AA counterpart.6,7,15 This occurs 

mainly because of the reduced degree of freedoms associated with sc under coarse-graining, 

which can be viewed as reducing fluctuating and frictional forces associated with lost fine 

atomistic details as pointed out in specific statistical mechanical models and theories.16–19 

The central role of sc in the collective dynamics of GF systems has been emphasized by 

Adam and Gibbs (AG),20 who introduced a highly successful model of the how the 
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segmental friction coefficient of polymers in the melt is related to the configurational 

entropy sc. On the basis of the AG theory, it is expected that the loss of sc due to coarse-

graining inevitably causes a change in the activation free energy in the regime of incipient 

glass formation, where molecular motion becomes progressively more cooperative upon 

cooling.20 The alteration of sc under coarse-graining is then expected to lead to a serious 

problem in describing the dynamics of polymeric and other GF liquids, which might 

ultimately limit the practical value of CG modeling for polymeric materials.

Numerous methods have instead focused on accurately reproducing the AA dynamics by CG 

models rather than thermodynamics. Such methods emphasize the need to introduce 

nonconservative forces (i.e., dissipative and random forces) to the CG degrees of freedom at 

a given state point. These methods include the generalized Langevin equations,19,21 

dissipative particle dynamics (DPD),22–25 dynamic relative entropy (formulated in terms of 

time correlation function),26 dynamic force-matching (using particles that mimic Langevin 

heat-baths),27,28 and nonequilibrium thermodynamics (via a nonequilibrium reversible-

irreversible coupling (GENERIC) formalism).16,17 Despite the success of these approaches 

in reproducing AA melt dynamics at finite state points, the transferability (i.e., temperature 

transferability) of these methods remains a significant hurdle.29 This is a particular challenge 

for the prediction of the dynamic properties of GF polymers, which characteristically exhibit 

a dramatic slowdown in their dynamics upon cooling.1 A fundamental understanding of the 

strong temperature dependence of the GF dynamics is known to be one of the most difficult 

problems in condensed matter physics so that a rigorous treatment of how coarsegraining 

influences nonconservative forces seems to be out of question. As one might expect, the 

aforementioned frictional terms alone have generally failed to account for the dynamics and 

mechanics of cooled polymer fluids, particularly in the glassy regime where such materials 

are normally utilized.15 Currently, it is rather unclear as to how to account for the 

temperature dependence of these dissipative terms in order to predict polymer properties as a 

function of temperature for use in practical applications.

In the present work, we address this fundamental problem (i.e., capturing the GF dynamics) 

through an alternative CG modeling strategy based on the AG theory20 of liquid state 

dynamics that emphasizes the significance of the configurational entropy sc for the dynamics 

of GF fluids. We also base our CG method on the general observations that changes in the 

enthalpy of activation by changes in molecular parameters (e.g., cohesive interactions) lead 

to a proportionate change in the entropy of activation, called the “entropy−enthalpy 

compensation” effect.30–35 Our hypothesis is that if this effect exists under coarse-graining, 

it ay provide a means for predicting how the energetic parameters governing fluid dynamics 

become modified to compensate for the reduction in overall sc under coarse-graining.

Here, we take advantage of the compensation effect to develop a temperature transferable 

CG model that covers the entire range of glass formation. Specifically, we introduce 

temperature-dependent renormalizations of the cohesive interaction parameter ε and length-

scale parameter σ in our CG model, which are directly related to the cohesive energy of the 

material.36,37 Recent simulation studies exploring the variation of ε revealed that this 

parameter has a large effect on the dynamics and mechanical properties of the polymers, 

such as the Young’s modulus E and glass-transition temperature Tg,36,38–41 establishing the 
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signicance of utilizing this energetic parameter in CG model development. We demonstrate 

our approach on a CG model of atactic polystyrene (PS) (Figure 1a), and show that our 

energy-renormalization method is able to replicate the dynamics of the atomistic PS model 

in the CG model calculations over the entire temperature (T) range of glass formation−from 

the high-T Arrhenius dynamics regime to the cooled GF regime (where the dynamics is 

highly nonArrhenius) and the low-T glassy regime.

2. COARSE-GRAINING STRATEGY

2.1. Influence of Coarse-Graining on Activation Energies in Cooled Liquids.

Our energy-renormalization approach starts from the common observation that the dynamics 

of fluids at elevated temperatures is universally described by an Arrhenius activated 

behavior, as expected from the transition state theory developed long ago by Eyring and co-

workers.42,43 This has provided a powerful semiempirical framework for understanding 

observed trends in the dynamics of fluids at elevated temperatures, where relaxation times, 

viscosity and diffusion coefficients all exhibit an Arrhenius temperature dependence. Adam 

and Gibbs (AG)20 later generalized this transition state theory framework to cooled liquids, 

which often exhibit a non-Arrhenius structural relaxation time τ governed by a temperature-

dependent free energy of activation ΔG(T):

τ = τ0exp ΔG(T)
kBT (1)

where τ0 is vibrational relaxation time and kBT is the thermal energy. The main idea behind 

the AG theory is that the increase in ΔG associated with segmental relaxation time and the 

resulting slowdown in the dynamics of complex fluids upon cooling arise from the growth of 

“cooperatively rearranging regions” (CRR). Specifically, AG argued that ΔG is renormalized 

by the factor z(T), the ratio of sc (T) with its high temperature limiting valuesc*,

ΔG(T) = z(T)Δμ (2)

where Δμ is free energy of activation (assumed by AG to be predominantly enthalpic) in the 

Arrhenius relaxation regime and z(T) ≡
st*

sc(T)  (the CRR “size” in AG terminology) governs 

the energy barrier for non-Arrhenius relaxation, where sc* is the configurational entropy 

(density) in the high temperature Arrhenius regime. While the arguments of the original AG 

theory were rather heuristic in nature, their predictions have been found to be supported 

subsequently by a large body of evidence,33,44,45 and we base our CG method partly on this 

classic model of the dynamics of GF liquids.

The accelerated dynamics of CG models relative to the atomistic counterpart is often 

described by an empirical scaling factor ζ (≫1) defined as the ratio of CG to AA diffusivity, 

i.e., ζ = DCG/DAA.7 Previous studies have shown that this ζ is temperature-dependent and 
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increases at lower temperatures.46 According to the AG theory, this implies that the 

activation free energy of the AA model is greater than that of the CG model (i.e., ΔGAA > 
ΔGCG). This also implies that ΔGCG(T) grows less than ΔGAA(T) upon cooling, leading to a 

greater divergence between the AA and CG models at lower temperatures, as one could 

expect if coarse-graining was greatly influencing sc of the fluid in relation to the atomistic 

model. This picture is confirmed from our simulations. Figure 1b shows a comparison of the 

AA and CG models derived using the IBM method, which involves matching the AA RDF 

(shown in Figure S1 in the Supporting Information) using tabulated potentials rather than a 

Lennard-Jones approximation. The comparison reveals a similar increasing trend, but a 

notable divergence in ΔG(T) between the AA and CG PS models upon cooling. Here, ΔG(T) 

is evaluated from the segmental relaxation data τseg by calculating the second Legendre 

order parameter P2(t) of the bond vector AA (see section 2.3, Simulation Methods). It is then 

evident that our main difficulty in capturing fluid dynamics is the preservation of ΔG under 

coarse-graining.

For this purpose, the generalized entropy theory (GET), a combination of the AG model and 

the lattice cluster theory (LCT) of polymer melts, provides a tractable theoretical framework 

to develop CG models that capture atomistic dynamics. Specifically, the GET predicts that 

the strength of the monomeric cohesive interaction, often described by the cohesive 

interaction parameter ε in the Lennard-Jones (LJ) potential, has a direct influence on the 

dynamics of GF liquids as manifested by its effects on factors such as sc, dynamic fragility, 

and characteristic temperatures of glass formation. This has been verified in recent 

molecular simulations by Xu et al.,36,41 where ε was shown to correlate with sc, activation 

enthalpy and τ. A large body of evidence has suggested that an “entropy-enthalpy 

compensation” effect can be expected for polymer fluids wherein entropy and enthalpy of 

activation vary proportionally as molecular parameters are varied.30–33If the compensation 

effect is operative under coarse-graining, then correcting ε as a function of temperature 

might allow us to capture the fluid dynamics by preserving the overall ΔG(T).

Notably, the GET indicates that z(T) for flexible polymers evolves sigmoidally with 

temperature, wherein the CRR size is a constant value in the Arrhenius regime, but grows 

upon cooling until reaching a plateau value in the non-equilibrium glassy regime.47,48 

Accordingly, since ΔG of both the AA and CG models have similar form but with a different 

range of variation, it follows that a sigmoidally dependent cohesive interaction term ε(T) in 

a CG model (provided that a good approximation of the AA model density is maintained via 

σ(T)) might be sufficient to reproduce the full atomistic GF dynamics. We put this idea to 

the test by introducing a temperature dependent rescaling factor α(T) (i.e., ε(T) = α(T)ε0, 

where ε0 is the initial cohesive interaction parameter determined by the IBM), which would 

be required to capture AA dynamics in a chemically specific two-bead CG model for PS. 

Similarly, the density is preserved by the introduction of β(T) (i.e., σ(T) = β(T)σ0, where σ0 

is also obtained by the IBM).

2.2. Coarse-Grained Mapping.

Our findings are built upon molecular dynamics (MD) simulations of a two-bead-

permonomer (λ = 8 atoms per bead on average) CG model for atactic PS by Hsu et al. 

Xia et al. Page 5

Macromolecules. Author manuscript; available in PMC 2019 April 15.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



(Figure 1a),40 from which we retrieve the bonded interactions (bond, angle, dihedral 

potentials) derived by the IBM4,5 (summarized in Table S1 in the Supporting Information). 

Here, we focus on parametrizing basic molecular parameters σ and ε for which we adopt the 

standard 12−6 LJ potential as described above, which is commonly applied for the CG 

models with the form:

Unonbond = 4ε σ
r

12
− σ

r
6

+ SLJ(r)r < router (3)

where σ governs the effective van der Waals radius of the CG model and marks the distance 

at which Unonbond is zero, and ε is the depth of the potential well in energy unit. The 

polynomial term SLJ(r) is implemented to ensure a smooth transition to zero energy and 

force from rinner = 12 Å to router = 15 Å.49

The CG model considers six different parameters for Unonbond: σAA and εAA for backbone 

and backbone (AA) interactions, σBB and εBB for side-group and side-group (BB) 

interactions, and σAB and εAB for backbone and side-group (AB) interactions. The cross-

interaction terms σAB and εAB are taken as the arithmetic σAB = 1
2 σAA + σBB  and 

geometric averages εAB = εAAεBB  of the AA and BB terms, respectively. Temperature 

rescaling factors β(T) and α(T) are implemented for σ and ε, respectively. Therefore, the 

effective LJ parameters σ and ε can be expressed as a function of T by introducing 

“renormalization factors”: εii = α(T)εii
0andσii = β(T)σii

0, where the subscripts ii denote either 

AA or BB. As a starting point, ℰii
0and σii

0 are the initial estimates of the nonbonded LJ 

parameters, which can be obtained from the AA radial distribution function (RDF) of the 

CG force centers:U0
nonbond(r)= −kBT ln[g′(r)], where g′(r) is the RDF measured from the 

AA monomer model as shown in Figure S1 in the Supporting Information.

2.3. Simulation Methods.

All our simulations are carried out using the LAMMPS software package.50 For the 

simulations of AA PS, a DREIDING force-field is employed.51 The chain length N = 10 is 

used to calculate physical properties and derive CG force-fields − the small N value in this 

demonstration is chosen due to its computational expediency, but the method should be 

applicable to other chain lengths. The simulated AA and CG systems consist of 24 300 and 

12 140 beads, respectively. Periodic boundary conditions are used in all the directions to 

simulate bulk properties of PS. A timestep Δt of 1 fs and 4 fs is chosen for the AA and CG 

simulations, respectively. During the equilibration, the total energy of the system is 

minimized via the conjugate gradient algorithm, followed by annealing cycle between 210 K 

and 1000 K for 4 ns, respectively, under the isothermal−isobaric (NPT) ensemble with a 

constant 101 kPa (1 atm) applied. Then, the systems are further relaxed for 2 ns at 850 K.

For the calculation of self-diffusivity D, we calculate the MSD of the center of mass of 

polymer chains via the Einstein relation of the form:
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D = lim
t ∞

1
6t rCM(t) − rCM(0)2 (4)

where rCM(t) is the position of the center of mass of each chain at time t. The segmental 

relaxation time τseg is calculated by the second Legendre order parameter P2(t):

P2(t) = 3
2 cos2θ(t) − 1

2 (5)

Where θ(t) is the angle of a vector under consideration at time t relative to its position at t = 

0. The vector is chosen to be parallel to the backbone vector (i.e., AA bond) of the CG 

polymer chain, which connects two nonconsecutive carbon atoms separated by one carbon in 

the corresponding AA system. We then fit P2(t) with a stretched exponential function:

P2(t) = exp − t
τKWW

βKNW
, where τKWW and βKWW Kohlrausch−Williams−Watts (KWW) 

parameters that describe relaxation process. The segmental relaxation time τseg can be 

determined as the integral of the KWW curves with the expression:τseg =
τKWW

βkWw Γ 1
βKWN , 

where Γ() is the gamma function. The shear modulus G is calculated by nonequilibrium MD 

simple shear simulations at a constant shear strain rate of 0.5 ns−1, from which the shear 

modulus G can be obtained from the linear slopes in the elastic regime (≲ 2% strain). The 

stress component in the shear deformation is calculated based on the atomic virial stress 

tensor:52

σxy = − 1
V ∑

A

n
mA νA x

νA y
+ ∑

A > B

n ∂U
∂rAB

rAB x
rAB y

rAB
(6)

where V is the volume of the system, n is the total number of CG beads, rAB is the distance 

between bead pairs A and B, U is the total energy of the system, and mA and νA denote the 

mass and velocity of the nth bead, respectively.

3. RESULTS

3.1. Capturing Atomistic Dynamics via Energy-Renormalization.

We begin our analysis in the Arrhenius regime where the activation energy remains 

temperature independent. In this regime, the self-diffusivity D of polymer system can be 

described by an Arrhenius temperature dependence:42,43,53D(T) = D0exp − ΔE
kBT , where D0 is 

a prefactor and ΔE is the activation energy of diffusion. This Arrhenius behavior is limited to 

a high temperature regime above onset temperature TA, below which the D starts to deviate 

from the Arrhenius scaling. TA can be estimated from the segmental relaxation data τseg as 
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reported in prior work.33 The calculation of TA of the AA system is shown in Figure S3 in 

the Supporting Information.

As noted before, the activation energy of diffusion in the high temperature regime is largely 

independent of temperature and scales linearly with the cohesive interaction strength (i.e., 

ΔE ~ ε).47 It is well-known that the heat of vaporization also follows a linear scaling with 

respect to ΔE for many fluids, consistent with their direct relation between ΔE and cohesive 

interaction.43,54 We then expect that increasing ε by a single scalar αA should enable the CG 

model to capture the ΔE of the AA system.. We test this hypothesis by investigating the 

effect of α on the D of CG models. The Arrhenius fits in Figure 2a indicate that varying the 

cohesive interaction strength indeed renormalizes the ΔE of the CG system, which increases 

linearly with α (inset of Figure 2b). In the Arrhenius regime at high T, the CG model can 

reproduce D and ΔE of the AA system by a constant value αA ≈ 2.3 as shown in Figure 2b.

At lower temperatures, below the onset temperature TA for non-Arrhenius relaxation, we can 

expect that a constant renormalization of ε will not provide an adequate description of AA 

dynamics as the activation energy becomes temperature dependent. Accordingly, in the GF 

regime, we use atomistic segmental relaxation to determine α in this non-Arrhenius regime. 

Figure 3a shows the effect of cohesive interactions on τseg of the CG models with varying α. 

τseg increases with α in a nonlinear fashion, which is consistent with recent simulation work.
36 To capture the atomistic τseg (marked as dashed lines in the plot) in the CG model, we 

need to renormalize ε at each temperature in this non-Arrhenius regime. The effect of 

adjusting cohesive energies on the non-Arrhenius relaxation dynamics becomes more 

pronounced as temperature is lowered toward Tg, as expected from the GET.47

By employing a temperature-dependent energy-renormalization scheme, we find a good 

agreement between the segmental relaxation dynamics of the CG and AA models in this 

regime, shown in Figure 3b. The temperature dependent τseg of both AA and CG models can 

be captured by a single Vogel−Fulcher − Tammann ( V F T ) expression : 55–57

τseg(T) = τ0exp
DT0

T − T0 , where τ0, Dand T0 are fitting parameters that characterize the 

relaxation process. The Vogel temperature T0 dictates the “end” of glass formation range, 

where the structural relaxation time formally extrapolates to an infinite value, and D ̅ is 

inversely related to the fragility parameter K.47 The T0 is estimated to be about 250 K for the 

AA and CG systems with a chain length N = 10 based on the VFT fits. Tg can be determined 

by extrapolating the relaxation data to the empirical observation time scale, τseg(Tg) ≈100 s, 

which we find to be about 280 K for the AA and CG models. This Tg estimation is in good 

agreement with the values determined experimentally, after accounting for the molecular 

mass effect using the Flory−Fox relation (Tg ≈ 273 K).58 The dashed slope shows the 

Arrhenius fit to τseg for the CG model at high temperatures, and the onset temperature TA, 

below which non-Arrhenius relaxation occurs, is estimated to be about 600 K (marked by a 

vertical dashed line in Figure 3b), consistent with the AA estimate.

We also evaluate another important characteristic temperature of GF processes, the so-called 

“localization temperature” Tl, which represents the onset of caged particle motion 

(schematically illustrated in Figure 3c) – a quantity closely related to TA.33,59 As discussed 
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previously, caging effects manifest as local minima of the logarithmic derivative of the 

segmental mean-squared displacement (MSD) r2(t) :
∂ ln r2(t)

∂[ln(t)] (here,⟨r2⟩ and t are defined 

relative to basic atomic length and time scales, 1 Å and 1 fs). As shown in Figure 3c and 3d, 

by implementing α(T), we observe that both the AA and CG models exhibit caging minima 

at around 4 ps at lower temperatures until it vanishes at Tl ≈ 560 K (highlighted by the 

dashed line in the plots), which is somewhat lower than TA ≈ 600 K. It is evident that the 

CG model is capable of reproducing the characteristic temperatures of glass formation for 

the AA model.

We proceed to study the dynamics in the non-equilibrium glassy regime (T ≲ Tg) where τseg 

becomes intractable. Accordingly, we analyze the high-frequency shear modulus G, an 

important dynamic and mechanical property that is strongly correlated with the segmental 

dynamics in the non-equilibrium glassy regime.60 Figure 4a shows the shear stress vs. strain 

plot that illustrates the effect of cohesive energy-renormalization on the shear modulus G. 

Our result demonstrates that both stress response and G of the CG models are strongly 

dependent on α. As α is varied from 2.8 to 3.7, G increases correspondingly from 0.47 to 

0.85 GPa at T = 250 K, respectively. The stress−strain curve of the AA model falls in 

between α = 3.4 and 3.7, yielding a G estimate of 0.81 GPa. Similar to the high-T Arrhenius 

regime where α was chosen to be a constant, using a temperature invariant α (αg ≈ 3.6) can 

reproduce the atomistic G in the glassy regime, as shown in the inset of Figure 4a. The 

convergence to a constant value agrees well with the expected trends for z(T) and the string 

(CRR) size,61 which is predicted to saturate to a finite value at low T. This can also be 

rationalized by the notion that sc depends weakly on T in the glassy regime below Tg, due to 

a near constant residual entropy of the fluid.

Next, we analyze the success of αg in capturing caging effects in the glassy regime by 

calculating the Debye−Waller factor (DWF) ⟨u2⟩, a physical quantity related to thermal 

vibrations of atoms in a glassy solid at picosecond time scales. This quantity can be 

measured experimentally via incoherent neutron scattering experiments. The DWF is 

effectively a measure of local molecular stiffness,62–65 and has been shown to be empirically 

related to G by an inverse scaling relation of the form66 G ≈ A + B/⟨u2⟩, where A and B are 

constants. We define ⟨u2⟩ as the MSD of the center-of-mass of the chain segments for the 

AA and CG models at the previously defined caging time of around 4 ps. We verify this 

scaling relationship between G and 1/⟨u2⟩ for our AA and CG model for a range of 

temperatures in the glassy state (Figure 4b). The quantitative agreement between AA and 

CG model demonstrates that our coarse-graining approach can accurately reproduce 

segmental dynamics of the atomistic system even at the non-equilibrium glassy state.

3.2. Energy-Renormalization Covering the Entire Range of Glass Formation.

Strikingly, our analyses confirm our hypothesis that the form of α(T) can be approximated 

by a sigmoidal function, where it attains constant values in the glassy and Arrhenius regimes 

with αg > αA, and transitions smoothly between these states to compensate for the 

difference in the AA and CG segmental relaxation dynamics. Figure 5 summarizes this 

concept by illustrating the complete temperature dependent renormalization function α(T) 
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that scales εii
0 (estimated from the IBM) to match dynamics in the entire range of glass 

formation:

α(T) = αA − αg Φ + αg (7)

where αg and αA refer to α values in the glassy and Arrhenius regimes, respectively; Φ is 

the two-state crossover function taking the form Φ = 1/[1 + exp(−k(T − TT)], where k is a 

parameter related to the temperature breadth of the transition, and TT (≈ 475 K) describes 

the crossover point of this sigmoidal function from the Arrhenius to glassy regimes.

We note that we have also performed a similar rescaling procedure for the other LJ 

parameter, σ, the length-scale parameter of the molecular interaction. This quantity is an 

important molecular parameter that influences the thermodynamics of the fluid. Since σ is 

also directly related to the density, this quantity can readily be renormalized to bring the AA 

and CG densities into alignment. In particular, the corresponding temperature 

renormalization factor β(T) is derived by demanding the AA density at different 

temperatures to be consistent with the CG model (see Figure S3 in the Supporting 

Information). We find that the derived β(T) takes the linear form β(T) = aT + b, where a and 

b are constants, leading to an excellent agreement between AA and CG densities over a wide 

temperature range as shown in Figure 6. While our main focus is on the renormalization of 

the cohesive interaction strength parameter ε due to its primary influence on the fluid 

dynamics, σ and density are clearly important factors in influencing the dynamics of the 

glass-forming systems. 67–69 The functional forms and parameters of α(T) and β(T) are 

summarized in Table S2 in the Supporting Information. With the derived α(T) and β(T), we 

find that we can successfully preserve the density and recover both the shorter time (i.e., 

DWF) and longer time dynamics (i.e., diffusivity and segmental relaxation). This is also 

demonstrated by the quantitative agreement of the MSD of chain segments between AA and 

CG models (inset in Figure 5). Therefore, our renormalization approach corrects all the 

usual shortcomings of state-point derived CG models (i.e., faster dynamics, softer 

mechanical response and a lack of temperature transferability).

4. DISCUSSION

As mentioned above, the sigmoidal variation of α(T) can be understood from the alteration 

of z(T), the collective motion (CRR) size in the AG theory and its generalization form, GET. 

The GET predicts that z(T) for flexible polymer grows upon cooling and saturates to a finite 

value in the low-T glassy regime, where we interpret the saturation of α(T) to reflect this 

effect.47,48 Many features of the AG theory and GET have been confirmed by recent 

molecular dynamics studies of GF liquids.36 On the basis of this simulation evidence, a 

“string” model of glass formation has been recently proposed,61 which quantifies z(T) in 

terms of the average polymerization index of cooperative string-like clusters of rearranging 

particles. The GET is consistent with these predictions and further predicts a sigmoidal 

variation of z(T) with temperature, which has since been verified in various GF system. We 

note, however, that z(T) should not be equated to α(T), which is instead a measure of how 
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much coarse-graining alters the configurational entropy sc of the fluid and the consequences 

of these changes on collective motion in the cooled liquid.33,36,59

The sigmoidal nature of α(T) in our work provides supporting evidence that the activation 

energies of polymers should exhibit saturation upon reaching the glassy limit,70 a finding 

consistent with the string model of cooperative motion, as well as the GET of flexible 

polymers. On the basis of these findings, the next step would be to directly characterize the 

string lengths and sc of the AA and CG models, respectively, to precisely quantify the 

differences in ΔG(T) in cooled regimes, and provide a direct way to determine α(T), which 

we plan to study in our future work. Moreover, it might be also possible to calculate α(T) 

analytically from the GET based on the findings that sc(T) is greatly altered by the cohesive 

interaction.48

In addition, the CG model via energy-renormalization allows for the prediction of the 

characteristic temperatures of glass formation (TA, Tl, Tg, T0). This is done by comparing 

key ratios of the AA and CG characteristic temperatures, and considering the GET 

predictions for a polymer with flexible backbones and stiff side chains (F−S),47 which are all 

listed in Table S3 in the Supporting Information. As expected, the calibrated CG model has 

nearly identical characteristic temperature ratios as the AA model. The GET prediction 

follows a similar trend, but has slightly lower magnitudes, which could be attributed to the 

idealization of monomeric structure in the GET.47 The two characteristic temperatures Tg 

and TA, which mark the transition points from the glassy regime to the non-Arrhenius 

regime, and the non-Arrhenius regime to the Arrhenius regime, respectively, are identified in 

Figure 5. There is a good correlation between these temperatures and the onset of plateaus in 

α(T). We also note that TT, which is the empirical transition point in our α(T) function, 

resides between TA and Tg, which confirms that the degree of the temperaturedependent 

renormalization needed for the cohesive interaction parameter is related to the dynamics of 

glass formation. The scaling functional form of α(T) and its correlation with the 

characteristic temperatures identified through our study could be further utilized to quickly 

estimate the cohesive interaction strength with fewer state-point calculations.

With this method in mind, we hypothesize that we may develop general CG models for 

different classes of GF materials. For instance, we may hypothesize that a more fragile GF 

material should exhibit a larger α, as it will likely have a larger CRR size,71 and thus a larger 

temperature-dependent activation energy upon cooling. By the same logic, a less fragile GF 

material would exhibit a smaller α, and eventually flatten out for a completely Arrhenius 

glass-former (i.e., extremely “strong” GF liquid). Second, we can expect that increasing 

degree of coarse-graining λ (i.e., the number atoms per CG bead) should naturally cause 

greater loss in configurational entropy and therefore accelerate chain dynamics.72 This effect 

should become enhanced toward lower temperatures where the deviation between AA and 

CG configurational entropies grows more rapidly for high λ, and thus we can anticipate α to 

be directly related to λ. Understanding and validating these effects in future work will be 

important in establishing more comprehensive CG modeling approaches for a wide range of 

GF materials − not only polymers, but also biopolymers, metallic glasses, and small 

molecule liquids that exhibit cooperative dynamics upon amorphous solidification.
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There are a few other future topics that are worth exploring to improve our CG methodology. 

First, while the CG model is able to recover atomistic dynamics and thermodynamic 

properties, such as density, over an impressive range of temperature, this comes at the cost of 

accurately reproducing the local structure of the atomistic chains (i.e., RDF). As shown in 

Figure S4 in the Supporting Information, our CG model only captures qualitative 

characteristics of the AA RDF (e.g. the first peak location in the RDF). The magnitude of 

the first peak is consistently higher for the CG model, which is perturbed by the shift of the 

nonbonded potential. Similar observations have also been reported in the past,15,40 although 

we note that our CG modeling method seems to yield RDFs that are more consistent with 

AA data than prior efforts that aimed to reproduce dynamics through similar means. 

Accordingly, capturing structure, dynamics, and transferability within a single CG model 

remains an elusive goal, warranting further investigations. It would also be interesting to 

explore the effect of imposing a temperature-dependent frictional and dissipative factors in 

methods such as DPD,25 based on the idealizations of Mori and Zwanzig.18 Since those 

frictional terms are functionally performing a similar role in modulating the dynamics of the 

system, we may expect that the state-point dependent scaling of frictional terms result in a 

similar outcome to the findings of the present work, although the ability to replicate 

dynamics in the glassy regime relevant to polymer applications via such methods remains an 

open question. While our proposed energy-renormalization approach is based on a classic 

molecular dynamics rather than a Langevin type molecular dynamics, combining our 

approach with a Langevin treatment might provide an alternative route toward establishing 

an efficient CG modeling framework that captures both dynamic and thermodynamic 

properties in the CG model. This would also be an interesting topic for a future study.

5. CONCLUSION

We have established an energy-renormalization scheme for achieving temperature 

transferable CG modeling of polymer materials. In light of the AG theory of glass formation, 

we show that renormalizing the cohesive interaction strength and effective interaction 

length-scale parameters under coarsegraining as a function of temperature allows for the 

“correction” of many of the usual shortcomings of state-point derived CG models (i.e., faster 

dynamics, softer mechanical response and a lack of temperature transferability). Strikingly, 

we find that the derived energy-renormalization factor α(T) in the cohesive interaction 

replicates the sigmoidal functional form of the activation free energy, as predicted by the 

GET and the recent string model. These findings shed light on not only developing effective 

temperature transferable models for GF systems, but also on the fundamental effects of 

reduced-order modeling and its impact on GF dynamics as predicted by GF theories. As our 

work essentially entails the direct validation of theoretical predictions of GF phenomena as 

functions of molecular parameters, we expect our approach to be general for GF systems 

beyond polymeric materials, and to stimulate many future studies on developing state-point 

transferable computational models for the rational design of materials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Coarse-grained model of PS, showing the mapping from (left) all-atomistic (AA) model 

to (right) coarse-grained (CG) model. (Middle) For each repeat unit, backbone type “A” CG 

bead is centered on the alkyl carbon bonded to phenyl ring. Side-group type “B” CG bead is 

located at the center of mass of the phenyl ring. (b) Divergence of temperature dependent 

relative activation energy ΔG/Δμ for the AA and CG systems (with CG potential derived 

from the inversed Boltzmann method (IBM) by preserving the AA RDF). The solid and 

dashed lines illustrate the sigmoidal variation of the activation energy at higher and lower 

temperatures expected from the GET and AG theory.
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Figure 2. 
(a) Self-diffusion coefficients D for AA (solid line) and CG (open symbols) models with 

varying α parameters in the high temperature regime. (b) Comparison of D vs. T for AA and 

CG models. (Inset) Activation energy of diffusion ΔE as a function of α, which is 

determined from the Arrhenius fits for each data set in the high temperature regime. The 

horizontal line shows the ΔE of the AA system.
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Figure 3. 
(a) Segmental relaxation time τseg for AA (dashed lines) and CG (open symbols) models as 

a function of α. The solid lines are used to show the trend. (b) τseg as a function of 

temperature for the CG model. The solid curves show the VFT fit of the data for AA model. 

The dashed slope shows the Arrhenius fit of τseg at high temperatures. The vertical dotted 

line indicates TA. Logarithmic derivative of the mean-squared displacement 

∂ ln r2(t) / ∂[ln(t)] as a function of ln(t) for (c) AA and (d) CG models. The dashed lines 

highlight the localization temperature Tl, representing the onset of caged particle motion. 

The color legend for different temperatures in (c) is also applied for CG model result in (d). 

The schematic image in (c) illustrates the transition from particle “caging” dynamics to 

diffusion dynamics as temperature increases.
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Figure 4. 
(a) Shear stress vs. strain curves for the AA model (dotted line) and CG models (solid lines) 

with varying α at T = 250 K. (Inset) Comparison of shear modulus G at lower temperatures 

(i.e., nonequilibrium glassy regime) for AA and CG models. (b) Shear modulus G against 

inversed DWF (1/⟨u2⟩) 2 for the AA (filled symbols) and CG model (open symbols) at lower 

temperatures.
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Figure 5. 
Temperature-dependent energy-renormalization factor α(T) for the CG model. The α(T) is 

obtained by matching the self-diffusion coefficient D, the segmental relaxation time τseg 

and the shear modulus G of AA model spanning over different temperature regimes (i.e., the 

Arrhenius, non-Arrhenius, and glassy regimes). (Inset) Comparison of segmental mean-

squared displacement vs. time for AA (dashed lines) and CG (open symbols) models at 

representative temperatures ranging from 100 K to 800 K.
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Figure 6. 
Comparison of the density ρ as a function of temperature for the AA and CG models. The 

AA ρ is preserved by the CG model through the renormalization factor β(T) for the length-

scale parameter σ in the nonbonded cohesive interaction. (Inset) Temperature dependent 

renormalization factor β(T) for the CG model.
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