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Focal adhesions (FAs) are specialized sites where intracellular
cytoskeleton elements connect to the extracellular matrix and
thereby control cell motility. FA assembly depends on various
scaffold proteins, including the G protein– coupled receptor
kinase-interacting protein 1 (GIT1), paxillin, and liprin-�.
Although liprin-� and paxillin are known to competitively
interact with GIT1, the molecular basis governing these interac-
tions remains elusive. To uncover the underlying mechanisms of
how GIT1 is involved in FA assembly by alternatively binding to
liprin-� and paxillin, here we solved the crystal structures of
GIT1 in complex with liprin-� and paxillin at 1.8 and 2.6 Å
resolutions, respectively. These structures revealed that the
paxillin-binding domain (PBD) of GIT1 employs distinct bind-
ing modes to recognize a single �-helix of liprin-� and the LD4
motif of paxillin. Structure-based design of protein variants pro-
duced two binding-deficient GIT1 variants; specifically, these
variants lost the ability to interact with liprin-� only or with
both liprin-� and paxillin. Expressing the GIT1 variants in
COS7 cells, we discovered that the two PBD-meditated interac-
tions play different roles in either recruiting GIT1 to FA or facil-
itating FA assembly. Additionally, we demonstrate that, unlike
for the known binding mode of the FAT domain to LD motifs,
the PBD of GIT1 uses different surface patches to achieve high
selectivity in LD motif recognition. In summary, our results have
uncovered the mechanisms by which GIT1’s PBD recognizes
cognate paxillin and liprin-� structures, information we antici-
pate will be useful for future investigations of GIT1–protein
interactions in cells.

Focal adhesions (FAs)4 are protein-rich, highly specified sub-
cellular structures in mediating the connection between cell
and extracellular matrix, which are essential in various cellular
processes, including cell spreading, migration, cancer invasion,
and neuronal growth (1–4). These processes are closely associ-
ated with FA dynamics, which are regulated by FA-associated
adaptor and scaffold proteins (5–8). Among these FA-associ-
ated proteins, G protein– coupled receptor kinase–interacting
proteins, GIT1 and GIT2 serve as GTPase-activating proteins
(GAPs) for ADP-ribosylation factors (Arfs) to affect the assem-
bly of integrin adhesion complexes to FAs (9, 10).

The GIT proteins share a conserved domain architecture,
which from N terminus to C terminus includes an Arf-GAP
domain, three ankyrin repeats, a Spa homology domain, a
coiled-coil region, and a paxillin-binding domain (PBD) (Fig.
1A). GITs are involved in regulating FA dynamics by interacting
with many FA proteins (11, 12). Among these interactions, the
bindings of liprin-�, paxillin, and HIC5, a paxillin-like protein,
to GIT1 are mediated by the PBD, folded as a four-helix bundle
(13–17). A similar fold is also found in focal adhesion kinase
(FAK), termed the FAK-targeting (FAT) domain. Previous
structural studies indicated that the FAT-like domains, includ-
ing PBD, employ a similar way to recognize leucine-aspartic
acid (LD) motifs, short helical interacting motifs (18 –20).

The liprin-� family is composed of four highly conserved
members (liprin-�1/2/3/4) in mammals; each contains the
N-terminal coiled-coils and the three C-terminal sterile � motif
repeats (21, 22) (Fig. 1A). As the synaptic scaffold, liprin-� was
identified as the GIT1-binding partner in neurons to mediate
AMPA receptor targeting (14). In addition to the well-known
roles of liprin-� in neurons, emerging evidence has indicated
that liprin-� plays an important role in nonneuronal cells by
mediating the FA turnover during integrin-mediated migration
(23, 24).

Paxillin acts as a scaffold to recruit different proteins in FAs
via its five LD motifs and four LIM (Lin11, Isl-1, and Mec-3)
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domains (18) (Fig. 1A). By connecting integrin to F-actin and
other FA-associated proteins, paxillin plays a critical role in
assembly and disassembly of FAs (25). Paxillin was suggested to
recruit GIT1 to FA by the binding of the LD4 motif of paxillin to
the PBD of GIT1, as the deletion of the LD4 motif or the PBD
resulted in the disruption of localization of GIT1 to FA (16, 26,
27).

Although the PBD is crucial for the subcellular localization
and function of GIT1, the molecular mechanisms underlying
the PBD-mediated interactions remain elusive. A recent study
indicated that the bindings of liprin-� and paxillin to GIT1 are
mutually exclusive (13). However, without detailed interaction
information, it would be difficult to understand how these com-
petitive interactions are coordinated and regulated in FA.

Here, we determined crystal structures of GIT1_PBD in
complex with a single �-helix (SAH) of liprin-�2 and the LD4
motif of paxillin. Although liprin-�2_SAH and paxillin_LD4
associate with the same binding groove on GIT1_PBD, surpris-
ingly, these two helical peptides adopt binding orientations
reversed to each other. Cellular analysis using the designed
GIT1 mutations indicated that the GIT1/paxillin interaction
controls the GIT1’s localization to FA and the GIT1/liprin-�
interaction promotes FA assembly. The structure of the
GIT1_PBD/paxillin_LD4 complex reveals a novel LD recogni-
tion mode that involves a new surface patch on GIT1_PBD in

addition to the canonical LD binding surface found in the FAT
domain of FAK.

Results

Both liprin-� and paxillin bind with GIT1_PBD via a single
�-helix

To understand the assembly mechanism of GIT1, liprin-�,
and paxillin, we investigated the binding of GIT1 to liprin-� and
paxillin, which is mediated by the paxillin-binding domain of
GIT1 (GIT1_PBD). To narrow down the minimal PBD-binding
region in liprin-�2, various fragments were expressed in Esch-
erichia coli and purified with high quality (Fig. 1A). As indicated
by an isothermal titration calorimetry (ITC)-based assay, a
small fragment containing residues 642– 671 in liprin-�2 inter-
acts with GIT1_PBD with a binding affinity of �3 �M (Fig. 1D).
Neither an extension at the N-terminal nor at the C-terminal
part of the fragment could significantly increase the binding
affinity (Fig. S1A), suggesting that the 30-residue fragment con-
tains essential and sufficient elements for the binding of lip-
rin-�2 to GIT1_PBD. Although this fragment was predicted as
a coiled-coil (14), the molecular weight of the fragment mea-
sured by multiangle static light scattering matches the theoret-
ical molecular weight of its monomeric state (Fig. 1C and Fig.
S1B). Combining the CD spectrum of the fragment (Fig. S1C),
we concluded that the fragment folds as a single �-helix. There-

Figure 1. Biochemical characterization of the GIT1/liprin-� and GIT1/paxillin interactions. A, cartoon diagrams of domain organizations for GIT1, paxillin,
and liprin-�. The color-coding of the regions is applied throughout the entire paper except as otherwise indicated. B, sequence alignment of five LD motifs in
paxillin and the SAH sequence in liprin-�2 showing the consensus sequence in the LD core region. The unique FK sequence found in the LD4 motif is
highlighted by a purple box. C, the molecular weight of liprin-�2_SAH was measured using analytical gel filtration chromatography– coupled multi-angle static
light scattering. The theoretical molecular mass of monomeric Trx-tagged liprin-�2_SAH is 18.2 kDa. D and E, ITC-based measurement of the bindings of
GIT1_PBD to liprin-�2_SAH (D) and paxillin_LD4 (E), respectively. The thermodynamic parameters of the ITC titrations as shown in this and following figures are
summarized in Table S1.
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fore, the fragment in liprin-�2 was named hereafter as SAH.
Similar to liprin-�2_SAH, the LD4 motif of paxillin (pax-
illin_LD4), also a single �-helix, interacts with GIT1_PBD with
a binding affinity of �4 �M (Fig. 1E), consistent with the previ-
ous reports (15, 16).

Overall structures of GIT1_PBD in complex with liprin-�2_SAH
and paxillin_LD4

As the bindings of liprin-� and paxillin to GIT1_PBD are
mutually exclusive (13) and liprin-� contains a LD-like motif in
the SAH region (Fig. 1B), do liprin-� and paxillin share a similar
LD-binding model, interacting with GIT1? To address this
question, we aimed to solve the complex structures of
GIT1_PBD/liprin-�2_SAH and GIT1_PBD/paxillin_LD4 by
using X-ray crystallography. Gel filtration analysis showed that
GIT1_PBD forms a stable complex with either liprin-�2_SAH
or paxillin_LD4 in solution (Fig. S2, A and B). Crystallization
trails for the two complex samples yielded high-quality crystals.
The crystal structures of the two complexes, GIT1_PBD/liprin-
�2_SAH and GIT1_PBD/paxillin_LD4, were successfully
determined at 1.8 and 2.6 Å resolutions, respectively, by using
the molecular replacement method (Table 1). Most residues of
liprin-�2_SAH (29 of the 30 total residues) and paxillin_LD4
(21 of the 24 total residues) in these two structures were clearly
assigned (Fig. 2, A and B). As a FAT-like domain, GIT1_PBD
adopts the four-helix-bundle conformation. The overall struc-
tures of GIT1_PBD in the two complexes are essentially same as
its apo-form structure (overall root mean square deviations of
0.9 and 1.0 Å, respectively), indicating that GIT1_PBD does not
undergo conformational change upon target binding. Consis-
tent with our biochemical analysis, both liprin-�2_SAH and
paxillin_LD4 form single helices to interact with GIT1_PBD on
the same surface composed of the first helix (H1) and the last

helix (H4) (Fig. 2, C and D), well explaining the competitive
binding of liprin-� and paxillin to GIT1_PBD (13).

Paxillin_LD4 interacts with GIT1_PBD using the similar LD-
binding mode for FAT-like domains, in which the LD4 helix is
parallel to the H1 helix (19, 28 –30) (Fig. 2D and Fig. S3). How-
ever, to our surprise, despite containing an LD-like motif, lip-
rin-�2_SAH binds to GIT1_PBD with the reverse orientation,
in which the SAH helix is antiparallel to the H1 helix (Fig. 2C).
Although the interacting orientations are different for the two
PBD-binding peptides, both liprin-�2_SAH and paxillin_LD4
use their hydrophobic sides in their amphipathic helices to
tightly pack with the H1/H4 groove of GIT1_PBD through
hydrophobic interactions, which are further strengthened by
hydrogen bondings (Fig. 2, E and F). In support of our findings,
previous structural studies reported that hydrophobic interac-
tions involving the GIT1_PBD/paxillin_LD4 interaction are
critical for complex formation (15, 16). Additionally, Asp-267
in paxillin_LD4 forms a salt bridge with Lys-758 in GIT1_PBD
(Fig. 2F), which is a characteristic interaction in the LD-binding
mode (15, 16, 20). Sequence analysis further shows that the
interface residues in GIT1, liprin-�2, and paxillin are highly
conserved across species (Fig. 2, G–I), suggesting that the two
different GIT1-binding modes observed for liprin-�2_SAH and
paxillin_LD4 are likely to be shared by other members of the
liprin-� family and HIC-5, respectively.

Structural comparison of the LD4 and SAH-binding modes of
GIT1_PBD

As the bindings of liprin-�2_SAH and paxillin_LD4 to
GIT1_PBD are mainly mediated by hydrophobic interactions
(Fig. 2, E and F), we carefully analyzed the interfaces by com-
paring the buried hydrophobic residues of the two bound pep-
tides. In the LD4 peptide, Leu-266LD4, Leu-269LD4, and Leu-

Table 1
Statistics of data collection and model refinement
Numbers in parentheses represent the value for the highest-resolution shell.

Data collection
Data set GIT1_PBD/liprin-�2_SAH GIT1_PBD/paxillin_LD4
Space group P212121 I4
Unit cell parameters

a, b, c (Å) 88.2, 38.6, 99.1 128.8, 128.8, 47.6
�, �, � (degrees) 90, 90, 90 90, 90, 90

Resolution range (Å) 50–1.8 (1.83–1.8) 50–2.6 (2.64–2.6)
No. of unique reflections 32,467 (1606) 12,341 (621)
Redundancy 5.3 (5.6) 6.7 (7.0)
I/� 25.5 (2.0) 35.1 (1.5)
Completeness (%) 99.2 (100) 99.9 (100)
Rmerge (%)a 9.8 (84.2) 5.4 (98.6)

Structure refinement
Resolution (Å) 50–1.8 (1.85–1.8) 50–2.6 (2.86–2.6)
Rcryst/Rfree (%)b 22.7 (32.5)/26.7 (33.4) 19.4 (25.8)/22.6 (30.1)
Root mean square deviations

Bonds (Å) 0.003 0.002
Angles (degrees) 0.6 0.5

Average B factor 39.4 131.0
No. of atoms

Protein 2438 2070
Ligand/ion 3 0
Water molecules 141 0

Ramachandran plot
Favored regions (%) 99.7 98.9
Allowed regions (%) 0.3 1.1
Outliner (%) 0 0

a Rmerge � ��Ii � Im�/�Ii, where Ii is the intensity of the measured reflection and Im is the mean intensity of all symmetry-related reflections.
b R cryst � ��Fo� � �Fc�/��Fo�, where Fo and Fc are observed and calculated structure factors. Rfree � �T�Fo� � �Fc�/�T�Fo�, where T is a test data set of about 5% of the total

reflections randomly chosen and set aside prior to refinement.
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273LD4, the conserved leucine residues in the LD core (Fig. 1B),
interact with the hydrophobic groove formed by the H1 and H4
helices of GIT1_PBD, which is a general LD-binding feature
identified in other FAT-like domains (Fig. S3). Interestingly,
by aligning the two peptide-bound GIT1_PBD structures
together, we found that the side chains of Ile-660SAH, Leu-
657SAH, and Leu-653SAH in the SAH peptide could be over-
lapped precisely with those of the three leucine residues in the
LD4 peptide (Fig. 3A), despite the different helical orientations
between the two peptides. Likewise, the reversed amino acid

sequence of the SAH peptide can be aligned to the LD4
sequence with the hydrophobic residues matched (Fig. 3B).
This suggests the central roles of these hydrophobic residues in
the binding of liprin-�2_SAH and paxillin_LD4 to GIT1_PBD.

In addition to the three overlapped residues, a few C-termi-
nal residues of both of the two peptides significantly contribute
to the intermolecular hydrophobic interactions. As shown in
Fig. 3A, Ile-664SAH and Ile-667SAH in the SAH peptide interact
with the upper part of the H1/H4 groove, formed by the N
terminus of H1 and the C terminus of H4, whereas the bulky

Figure 2. The crystal structures of GIT1_PBD in complex with liprin-�2_SAH and paxillin_LD4. A and B, Fo � Fc omit maps (contoured at 2.5�) of the bound
SAH (A) and LD4 (B) peptides. The maps are shown with the final model of the corresponding complex superimposed. C and D, ribbon representations of the
overall structures of the GIT1_PBD/liprin-�2_SAH (C) and GIT1_PBD/paxillin-LD4 (D) complexes. E and F, the atomic details of the GIT1_PBD/liprin-�2_SAH (E)
and GIT1_PBD/paxillin-LD4 (F) interfaces. Hydrogen bonds and salt bridges are indicated by dashed lines. G, sequence alignment of the GIT family members
from different species. Residues involved in SAH-specific, LD4-specific, and overlapped binding are marked with green, purple, and black triangles, respectively.
The species are indicated as follows: human (h), rat (r), Xenopus tropicalis (x), for Danio rerio (z), Gallus gallus (c), and Caenorhabditis elegans (ce). The secondary
structural elements are indicated above the alignment. H, sequence alignment of four liprin-� isoforms in humans and SYD2 in C. elegans. Residues involved in
the GIT1_PBD/liprin-�_SAH interaction are marked with green circles. I, sequence alignment of paxillins and HIC-5s. Residues involved in the GIT1_PBD/paxillin-
LD4 interaction are marked with purple circles.
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side chain of Phe-276LD4 in the LD4 peptide occupies the
H1/H4 groove in the lower part. In contrast, the corresponding
positions of Ile-664SAH and Ile-667SAH in the LD4 peptide (Ala-
262LD4 and Ala-259LD4) and of Phe-276LD4 in the SAH peptide
(Ala-650SAH) are all alanine residues (Fig. 3, A and B), of which
small side chains barely touch the H1/H4 groove, thereby con-
tributing little to the bindings of either paxillin_LD4 or liprin-
�2_SAH to GIT1_PBD. Thus, replacing Ala-650SAH with a phe-
nylalanine in the SAH peptide may artificially create an
additional PBD-binding site by mimicking the binding of Phe-
276LD4 to GIT1_PBD. In line with this hypothesis, the A650F
mutation of liprin-�2_SAH largely enhances the binding (Fig.
S4). Based on the above analysis, we conclude that GIT1_PBD
can specifically recognize liprin-�2_SAH and paxillin_LD4
by combinatorial usage of different surface patches in the
H1/H4 groove, in which the upper and lower parts of the
groove provide the binding specificities for the SAH and LD4
peptides, respectively, whereas the middle part of the groove
creates the common binding surface for both of the two pep-
tides (Fig. 3A).

The binding mode differences between paxillin_LD4 and lip-
rin-�2_SAH allow us to design GIT1 mutations, A754Q and
I655Q, for disruption of specific target interactions with
GIT1_PBD. The A754Q mutation largely decreases the hydro-
phobicity of the overlapped binding surface and imposes steric
hindrance for interactions, thereby disrupting the bindings
of GIT1_PBD to both liprin-�2_SAH and paxillin_LD4. By
contrast, as Ile-655 locates on the SAH-binding surface on
GIT1_PBD, the I655Q mutation presumably prevents
GIT1_PBD from binding to liprin-�2_SAH while it retains the
ability of GIT1_PBD to bind with paxillin_LD4. Fully consistent
with our design, neither liprin-�2_SAH nor paxillin_LD4
shows detectable binding to the A754Q mutant, whereas the
I655Q mutant interacts with paxillin_LD4 but not liprin-
�2_SAH, as indicated by ITC-based measurements (Fig. 3C)
and analytical gel filtration analysis (Fig. S2, C–F).

Paxillin and liprin-� play distinct roles in GIT1-mediated FA
dynamics

As the core component of FA, paxillin is indispensable for FA
assembly (25, 31). Considering the localization of GIT1 and
liprin-� to FA for controlling FA dynamics (23, 24, 32, 33), the
competitive bindings of liprin-� and paxillin to GIT1 raise a
question of how GIT1 coordinates with liprin-� and paxillin to
fulfill their functions in FA. To approach this question, the sub-
cellular localization of GIT1 was analyzed by overexpressing
the GFP-tagged GIT1 in COS7 cells. The GFP tag was fused to
the C terminus of GIT1 to avoid a potential inhibitive effect of
N-terminal fused GFP on GIT1’s activity (11, 34). As reported
previously (16), GIT1-GFP is localized to paxillin-positive FA,
whereas GFP alone shows a diffused distribution in cells (Fig.
4A). Consistent with our structural and biochemical analy-
sis, the I665Q mutant of GIT1 remains largely co-localiza-
tion with paxillin in FA, suggesting that liprin-� is unlikely to
play an important role in the FA localization of GIT1. Unlike
the I665Q mutant, the A754Q mutant of GIT1, presumably
abolishing its binding to paxillin, completely lost its localiza-
tion to FA (Fig. 4A). These observations indicate that paxillin

is required for recruiting GIT1 to FA via the PBD-mediated
interaction.

Next, we measured the potential changes of FA in the GIT1-
overexpressed COS7 cells by quantification of areas for
matured FAs (Fig. 4, B–D). Compared with cells transfected
with GFP alone, cells transfected with GIT1-GFP have enlarged
FA area, suggesting that the recruitment of GIT1 to FA by pax-
illin promotes FA assembly. Consistently, as the A754Q mutant
of GIT1 fails to localize to FA, neither FA area nor FA number
in cells expressing this mutant shows significant changes com-
pared with cells expressing GFP alone. However, GIT1 carrying
the liprin-� binding– deficient mutation, I665Q, although
remaining localized to FA, shows severely decreased FA num-
bers in COS7 cells (Fig. 4C), indicating the critical roles of lip-
rin-� in regulating FA dynamics. Because the averaged FA area
was reduced in cells expressing the I665Q mutant (Fig. 4D), it is
likely that the I665Q mutation impairs the GIT1-promoted FA
assembly. Taken together, the above cellular data revealed the
distinct roles of GIT1 in the two competitive interactions, in
which GIT1 is recruited to FA by binding to paxillin and pro-
motes FA assembly by binding to liprin-�.

Considering the similar binding affinities of GIT1/liprin-�
and GIT1/paxillin (Fig. 1, D and E), it would be interesting to
know how these two competitive interactions are switched
from each other. Protein phosphorylation is a common mech-
anism in regulation of protein–protein interactions (35, 36). By
analyzing the GIT1_PBD sequence, we found that Thr-765,
located on the SAH-specific binding surface (Fig. 3A), is a
potential phosphorylation site (Fig. 5A). It is likely that the phos-
phorylation of Thr-765 specifically blocks the binding of GIT1
to liprin-� by introducing a highly negatively charged phospho-
ryl group to the hydrophobic interface. Indeed, mutating Thr-
765 to a negatively charged glutamate, mimicking its phosphor-
ylated state, almost eliminates the GIT1_PBD/liprin-�2_SAH
interaction while maintaining the binding of GIT1_PBD to pax-
illin_LD4 (Fig. 5, B and C). We further tested the effects of this
phosphorylation-mimicking mutation on the FA dynamics.
Consistent with our biochemical analysis, the Thr-765 muta-
tion does not affect the localization of GIT1 to FA (Fig. 5D), but
it significantly decreases the FA numbers and areas of matured
FAs (Fig. 5, E–G), presumably due to the disruption of the
GIT1/liprin-� interaction. Thus, the Thr-765 phosphorylation
of GIT1 may act as a switch to regulate the two PBD-mediated
interactions in vivo.

The unique LD motif recognition mechanism revealed by the
GIT1_PBD/paxillin_LD4 complex structure

The typical binding of the helical LD motif to the FAT
domains is mainly determined by the characteristic sequence of
LDXLXXXL (where X denotes any residue of the 20 common
amino acids) (Fig. 1B). Upon binding to FAT domains, the
three leucine residues buried in the H1/H4 groove and the
aspartate residue form a salt bridge with a highly conserved
lysine in the FAT domains (20). Such interactions are also
observed in the GIT1_PBD/paxillin_LD4 complex structure
(Fig. 2F). However, unlike the FAT domains in FAK and PYK,
which interact with the LD2 and LD4 motifs of paxillin in the
same fashion (Fig. S3), GIT1_PBD shows a much higher bind-
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ing selectivity to LD4 than to LD2 (15) (Fig. S5). It has been
largely unclear where the selectivity comes from, as the core
regions of LD2 and LD4 are nearly identical.

To decode the LD recognition mechanism by GIT1_PBD, the
GIT1_PBD/LD4 structure was overlapped with the FAK_FAT/
LD4 structure. Compared with the short helix of FAK_FAT-
bound LD4, the GIT1_PBD bound LD4 forms a longer helix, in
which the C-terminal flanking residues of the LD core are also
involved in the helix formation and attach to the H1/H4 groove
with a closer distance (Fig. 6A). The helix extension is mainly
stabilized by the interaction of Phe-276LD4 and Lys-277LD4 with
GIT1_PBD via hydrophobic interaction and hydrogen bonding
(Fig. 2F). The involvement of the LD core flanking sequence in
the binding was not found in other FAT/LD structures (Fig. S3).
Therefore, we ask why FAK_FAT cannot interact with the LD
core flanking sequence. Detailed analysis showed that the Phe-
276LD4–packing site, formed by the C-terminal part of H1 and
the N-terminal part of H4 in GIT1_PBD, is distorted in
FAK_FAT by replacing the last turn of the H1 helix in
GIT1_PBD with a short loop (Fig. 6B). Such a conformational
distortion in FAK_FAT prevents Phe-276LD4 from binding to
FAK_FAT.

Consistent with our structural findings, the binding of
GIT1_PBD to the LD4 motif is either abolished by deleting the
LD4 C-terminal sequence (residues 276 –283) or largely dimin-
ished by mutating Phe-276LD4 and Lys-277LD4 to the corre-
sponding residues (a valine and a glutamine) in the LD2 motif
(Fig. 6C), confirming the essential role of Phe-276LD4 in the
GIT1_PBD/paxillin_LD4 interaction. Even the replacement of
Phe-276LD4 with a smaller hydrophobic residue may interfere
with the interaction. As Phe-276LD4 is not conserved in other
LD motifs of paxillin, it is very likely that the C-terminal
sequences of the LD motifs determine the binding selectivity
for GIT1_PBD. In contrast to GIT1_PBD, FAK_FAT lacks an
appropriate pocket to hook Phe-276LD4. Indeed, the binding of
FAK_FAT to the LD4 motif is only mildly decreased by the
deletion mutation (Fig. 6D), indicating that the LD core flank-
ing sequence contributes little to the selectivity for FAK_FAT.

Discussion

FA dynamics are crucial in regulating various cellular pro-
cesses (5, 7, 8). The involvement of GIT1, liprin-�, and paxillin
in FA dynamics has been studied extensively (9, 24, 32, 37, 38).
Due to the lack of structural information, the molecular mech-
anism of the coordinated bindings of GIT1 to liprin-� and pax-
illin has been largely unknown. In this study, we solved the
crystal structures of GIT1_PBD in complex with the short PBD-
binding sequences in liprin-� and paxillin, respectively, reveal-
ing that GIT1_PBD utilizes the H1/H4 groove to recognize its
targets by different modes. These high-resolution structures
allow us to design specific binding-deficient mutations of GIT1,
providing an amenable way to differentiate the cellular effects

of these two competitive interactions. Considering the impor-
tance of GIT1 and liprin-� in neuronal development (14, 33,
39 – 42), our study provides structural information for future
investigations of the GIT1/liprin-� interaction in neurons.

Given the presence of both paxillin and liprin-� in FAs, it
remains puzzling how GIT1 switches the binding from liprin-�
to paxillin or vice versa. Because phosphorylation plays an
important role in regulation of GIT1’s function (43, 44), it is
possible that phosphorylated GIT1 selectively blocks one of the
two bindings. In support of this hypothesis, we identified Thr-
765 in GIT1_PBD as a potential phosphorylation site, and the
phosphorylation-mimicking mutation T765E disrupts the
binding of GIT1 to liprin-� but not paxillin. Such phosphory-
lation may control GIT1 to alternatively interact with the two
PBD-mediated interactions. Notably, many protein–protein
interactions in FAs are mediated by LD motifs. For example,
GIT1_PBD interacts with some LD motifs of paxillin, HIC5,
and leupaxin (16, 17), whereas paxillin_LD4 binds with FAK
(45), PYK2 (28), and parvin (46, 47). All of these interactions
need to be coordinated to control the focal adhesion dynamics.
Thus, it is possible that the potential phosphorylation of Thr-
765 may also regulate the binding of GIT1 to other FA proteins.

The previous studies (15, 19, 28 –30) have indicated that the
LD core sequence determines the binding of LD motifs to FAT-
like domains (Fig. S3). Nevertheless, the GIT1_PBD/pax-
illin_LD4 structure, for the first time, reveals that the sequence
flanking the LD core contributes significantly to the FAT-like
domain/LD interaction (Fig. 6). Although the LD core
sequences of different LD motifs are highly similar, their flank-
ing sequences vary a lot (Fig. 1B). Considering that different
FAT-like domains show certain selectivity to bind with differ-
ent LD motifs (29, 30, 45, 49), it is tempting to think that the
flanking sequences may participate in the bindings of other
FAT-like domains. Therefore, by demonstrating that a FAT-
like domain can develop an additional surface to recognize the
sequences near the LD core region in LD motifs, this study
provides a plausible mechanism for the selective binding of dif-
ferent LD motifs. Despite the weak binding of LD2 to GIT1 (Fig.
S5), the multisite binding of paxillin to GIT1 through LD2 and
LD4 may enhance the recruitment of GIT1 to FAs.

Although the SAH sequence of liprin-� contains the LD-like
motif, surprisingly, it binds with GIT1_PBD using a different
mode by adopting the reverse binding orientation (Fig. 3, A and
B). By aligning the LD-like sequence of SAH to LD4, we found
that the corresponding positions of 276FK277

LD4 that play a crit-
ical role in the binding of the LD4 motif to GIT1_PBD are
replaced by “IQ” in SAH (Fig. 1B), implying that even if SAH
bound with GIT1_PBD using the LD4 orientation, the binding
affinity would be much lower than in the reverse orientation.
Our observation of the reverse binding orientation of the LD-
like motif indicates that other FAT-like domain may also rec-

Figure 3. The different binding modes of liprin-�2_SAH and paxillin-LD4 to GIT1_PBD. A, the superposition of the two complex structures revealing the
different binding modes of GIT1_PBD. The hydrophobic residues of the LD4 and SAH peptide that are involved in the SAH-specific, LD4-specific, and over-
lapped interactions with the H1/H4 groove of GIT1_PBD are shown as a stick model and indicated by green, purple, and black arrows, respectively, in the left
panel. The corresponding interacting residues of GIT1_PBD are indicated by purple, green, and black circles in the right panel. The residues that were analyzed
by mutagenesis in this study are labeled with one-letter codes and position numbers. B, pairwise sequence alignment of the LD4 motif and the reversed
sequence of the SAH peptide. C, ITC curves of the bindings of two GIT1_PBD mutants to liprin-�2_SAH and paxillin_LD4.
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ognize the different LD-like motif using different binding
modes. In support of this possibility, CD4 was found to interact
with FAK_FAT by a reverse orientation (50), despite the fact
that the poor quality of the electron density of the binding helix
provides few hints to determine which amino acid sequence(s)
determines the binding orientation.

Materials and methods

Expression constructs and site-directed mutagenesis

DNA encoding sequences of rat GIT1_PBD (residues 639 –
770), human liprin-�2_SAH (residues 642– 671), human pax-
illin_LD2 (residues 140 –161), and LD4 (residues 252–283) was
subcloned into a modified pET-32a vector with an N-terminal
thioredoxin (Trx)-His6 tag. Human FAK_FAT (residues 915–
1052) was subcloned into modified pET-28a vector with an
N-terminal His6 tag. The GFP-tagged full-length GIT1 con-
structs for cellular assays were PCR-amplified using plasmids as
template and cloned into mammalian expression vectors con-
taining GFP. All point mutations were created using a site-di-
rected mutagenesis kit and confirmed by DNA sequencing.

Protein expression and purification

All of the proteins were expressed in BL21(DE3) E. coli cells
at 16 °C with 0.2 mM isopropyl 1-thio-�-D-galactopyranoside
induced in LB medium. The protein samples were purified
using nickel-affinity chromatography followed by size-exclu-
sion chromatography. For isothermal titration calorimetry and
analytical gel filtration chromatography, the protein samples
contained an N-terminal tag. For crystallization, the N-termi-
nal Trx-His6 tag was cleaved by HRV 3C protease and then
separated by size-exclusion chromatography.

Crystallization and data collection

The complex samples were prepared by mixing GIT1_PBD
with either liprin-�2_SAH or paxillin_LD4 and were further
purified by size-exclusion chromatography. The complexes
were concentrated to �30 mg/ml. Crystals were obtained by
the sitting-drop vapor-diffusion method at 16 °C. To set up a
sitting drop, 1 �l of concentrated protein solution was mixed
with 1 �l of crystallization solution with 0.2 M potassium
iodide, 0.1 M MES, pH 6.5, and 25% (w/v) PEG 4000 (for the
GIT1_PBD/liprin-�2_SAH complex) or with 0.1 M HEPES, pH
7.5 and 30% (w/v) PEG 1000 (for the GIT1_PBD/paxillin_LD4
complex). Crystals with better qualities were obtained by
removing six N-terminal flexible residues in GIT1-PBD and
eight N-terminal flexible residues in paxillin_LD4. Before X-ray
diffraction experiments, crystals were soaked in the crystalliza-
tion solutions containing additional 20% (v/v) PEG 400 or 30%
(w/v) PEG 1000 for cryoprotection. Diffraction data were col-
lected at the Shanghai Synchrotron Radiation Facility beam-
lines BL17U1 and BL19U1. Data were processed and scaled
using HKL3000 software.

Structure determination and analysis

The initial phase of the complex structure was determined by
molecular replacement in PHASER (51) using the apo-struc-
ture of GIT1_PDB (PDB code 2JX0) as the search model. The
liprin-SAH or paxillin-LD4 peptide was further built into the
corresponding model. The model was refined in PHENIX (52).
COOT was used for model rebuilding and adjustments (53). In
the final stage, an additional TLS refinement was performed in
PHENIX. The model quality was checked by MolProbity (54).
The final refinement statistics are listed in Table 1. All structure
figures were prepared by using PyMOL (Schroedinger, LLC,
New York). The phosphorylation site prediction was per-
formed on the NetPhos 3.1 server (http://www.cbs.dtu.dk/
services/NetPhos/)5 (48).

ITC analysis

ITC experiments were carried out on a VP-ITC Microcal
calorimeter (Malvern) at 25 °C. All proteins were dissolved in
50 mM Tris buffer containing 100 mM NaCl, 1 mM EDTA, 2 mM

DTT at pH 7.5. Each titration point typically consists of inject-
ing 10-�l aliquots of the GIT1_PBD, its mutants, or FAK_FAT
at concentration of 400 �M into the solution of containing lip-
rin-SAH, paxillin-LD2/4, or their mutants at a concentration of
40 �M. A time interval of 150 s between two titration points was
used to ensure the complete equilibrium of each titration reac-
tion. The titration data were analyzed using the program Origin
version 7.0 and fitted by a one-site binding model.

Analytical gel filtration chromatography

Analytical gel filtration chromatography was carried out on
an ÄKTA pure system (GE Healthcare). Protein samples at a
concentration of 50 �M were loaded onto a Superdex 200
Increase 10/300 GL column (GE Healthcare), equilibrated with
50 mM Tris-HCl buffer, pH 7.5, containing 100 mM NaCl, 1 mM

EDTA, and 2 mM DTT.

Multi-angle light-scattering analysis

A miniDAWN TREOS (Wyatt Technology Corp.) coupled
with an ÄKTA pure system (GE Healthcare) was used for molar
mass measurement. The procedure follows the protocol used
for analytical gel filtration analysis.

Cell culture, transfection, and fluorescence imaging

COS7 cells were cultured in Dulbecco’s modified Eagle’s
medium (Corning, 10-013-CVR) supplemented with 10% fetal
bovine serum (Pan Biotech) and 50 units/ml penicillin and
streptomycin. Transfections of either WT or mutant GIT1/
EGFP-expressing plasmids were performed with polyethylene-
imine-25,000 (Polyscience) according to the manufacturer’s

5 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.

Figure 4. The cellular effects of the paxillin and liprin-� binding deficient mutations in GIT1. A, cell imaging of exogenous expressed GFP and GFP-tagged
GIT1 and its variants. The C-terminal tagged GIT1 constructs were transiently expressed in COS7 cells grown on coverslips. FAs were indicated by endogenous
paxillin. Scale bar, 10 �m. B–D, paxillin-labeled FA areas and numbers were measured using the cell-imaging data. Paxillin-positive puncta at cell edge were
excluded in quantifications. An average of 18 cells transfected with GFP only, GIT1 WT, and mutants as indicated were analyzed with total FA area per cell (B),
the total FA numbers per cell (C), and average area per FA per cell (D). Error bars, S.D. The unpaired Student’s t test analysis was used to define a statistically
significant difference (*, p � 0.05; **, p � 0.01; ***, p � 0.001; ns, not significant).
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Figure 5. The potential phosphorylation regulation of the binding of GIT1_PBD to liprin-�. A, prediction of phosphorylation sites in the H1/H4 groove of
GIT1_PBD. Predicted phosphorylation potential value of each serine, threonine, and tyrosine in the sequence is indicated as a bar. The regions of the H1 and H4
helices are indicated. B and C, ITC-based measurements of the affinities for the bindings of the phosphorylation-mimicking mutant T765E of GIT1_PBD to
liprin-�2_SAH (B) and paxillin_LD4 (C). D, cell imaging of exogenous expressed GFP-tagged GIT1 T765E mutation in COS7 cells. E–G, FA areas and numbers were
analyzed using the same method as described in the legend to Fig. 4.

Figure 6. Structural comparison of the GIT1-PBD/LD4 complex with the FAK-FAT/LD4 complex. A, structural alignment of the LD4 bound GIT1_PBD and
FAK_FAT (PBD code 1OW7). B, the structural determinant of the binding of Phe-276LD4 to the H1/H4 groove of GIT1_PBD. Compared with FAK_FAT, the H1 helix
of GIT1-PBD has an additional helical turn, highlighted by a dashed circle, to form the hydrophobic surface patch serving for the recognition of Phe-276LD4 upon
LD4 binding. The bulky side chain of Phe-276LD4 is indicated as sticks and meshes. C, ITC titrations of GIT1_PBD to paxillin_LD4 and its mutations. D, ITC titrations
of FAK_FAT to paxillin_LD4 and its mutation.
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instructions. One day after transfection, the cells were
trypsinized, replated on �20 �g/ml fibronectin (Millipore)-
coated coverslips, and cultured for 1 h. After fixation with 4%
paraformaldehyde, the cells were stained with anti-paxillin (BD
Biosciences) followed by Alexa 594 – conjugated anti-mouse
IgG Ab (Invitrogen) and observed under a Nikon A1R confocal
microscope. Images were analyzed using ImageJ software
(National Institutes of Health).

CD spectroscopy

CD spectra were recorded using a Chirascan spectrometer
(Applied Photophysics, Leatherhead, UK). The buffer used
contained 20 mM Na2HPO4/KH2PO4 (pH 7.0), 50 mM NaCl.
Protein sample was concentrated to 50 �M and loaded into a
quartz cell with a 1-mm path length. The measurement was
performed every 1 nm with a 0.5-s time per point and averaged
from four repeated scans.
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