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Strong associations between HLA alleles and infectious
and autoimmune diseases are well established. Although
obesity is also associated with these diseases, the re-
lationship between HLA and obesity has not been sys-
tematically investigated in a large cohort. In the current
study, we analyzed the association of HLA alleles with BMI
using data from 1.3 million healthy adult donors from
the Chinese Marrow Donor Program (CMDP). We found
23 HLA alleles, including 12 low-resolution and 11 high-
resolution alleles, were significantly associated with BMI
after correction for multiple testing. Alleles associated with
high BMI were enriched in haplotypes that were common
in both Chinese and European populations, whereas the
alleles associated with low BMI were enriched in haplo-
types common only in Asians. Alleles B*07, DRB1*07,
DRB1*12, and C*03:02 provided the strongest associat-
ions with BMI (P = 6.89 x 1077°,1.32 x 1079, 1.52 x 1079,
and 4.45 x 1078, respectively), where B*07 and DRB1*07
also had evidence for sex-specific effects (Pheterogeneity =
0.0067 and 0.00058, respectively). These results, which
identify associations between alleles of HLA-B, DRB1, and

C with BMI in Chinese young adults, implicate a novel-
biological connection between HLA alleles and obesity.

Being overweight (BMI of 25-29.9 kg/m®) or obese
(BMI =30 kg/m2) is well known to be a risk factor for several
chronic diseases, including type 2 diabetes (T2D), cardio-
vascular disease, hypertension, and cancer. Because BMI is
heritable, many groups have sought to identify its genetic
determinants. Genome-wide association studies (GWAS)
in individuals of European and Asian descent have identi-
fied >100 loci that associate with BMI or an obesity-related
measure (1-6). However, commonly used GWAS platforms
do not accurately capture genotypic variation within the
HLA region due to its sequence complexity. In contrast,
focused analyses of the HLA region have identified several
alleles that have notable effects on disease susceptibility,
including infectious diseases, autoimmune diseases, cancer,
schizophrenia, and T2D (7-11). Despite obesity being a major
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risk factor for several of these diseases, no large-scale
study published to date has interrogated the HLA region to
determine whether HLA alleles associate with BMI. Among
the few studies that have investigated HLA in relation to
obesity in small cohorts, the results have been inconsistent
(12-15).

The HLA region, also known as the MHC, encompasses
~3.6 Mb on chromosome 6p21.3 and includes five classic
transplantation HLA genes: HLA-A, HLA-C, HLA-B, HLA-
DRBI1, and HLA-DQBI. There are two classes of MHC
proteins, MHC class I (HLA-A, -B, and -C), which present
peptides from inside the cell to T cells (endogenous
antigens), and MHC dass II (HLA-DP, -DM, -DOA, -DOB,
-DQ, and -DR), which present antigens from outside of the
cell (exogenous antigens) (16). HLA alleles affect the response
to many infectious and autoimmune diseases due to their
essential role in activation of both natural killer cells
and T cells (17,18). Response to pathogens, such as human
and nonhuman viruses, scrapie agents, bacteria, and gut
microflora, has been reported to cause or exacerbate obesity
in various experimental models (19). For example, the gut
microbiota has been linked to multiple human diseases,
including obesity (20,21), and human adenoviruses (Ad)
36, Ad-37, and Ad-5 have been shown to stimulate
enzymes and transcription factors that cause accu-
mulation of triglycerides and affect the differentiation
of preadipocytes into mature adipocytes (22,23). There-
fore, the diversity in HLA alleles may differentially alter the
gut microbiota as well as differentially affect response to
pathogens or infection, which in turn could have a subtle
effect on obesity.

To determine whether a relationship exists between HLA
alleles and BMI, we used the statistical power of data obtained
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from 1.3 million healthy donors aged 18-50 years. Data were
derived from the Data Bank of Chinese Hematopoietic
Stem Cell Donors, also known as the Chinese Marrow
Donor Program (CMDP), which has information on low-
resolution and high-resolution HLA genotypes and an-
thropometric measures on >1.8 million donors through
31 branch registries.

RESEARCH DESIGN AND METHODS

Study Participants and Data Collection

The CMDP began in the year 2001 and is operated under the
guidance of the Red Cross Society of China. Through this
program, anthropometric data on >1.8 million donors
from 31 branch registries have been collected. These
branches cover the major geographic areas of all 31
provinces, autonomous regions, and municipalities in
mainland China (24).

In the current study, basic information on the donor (age,
sex, ethnicity/race) and anthropometric measures (weight,
height) of 1,816,443 subjects with unique CMDP identifi-
cation numbers (from dates 2 October 2001 to 2 October 2014)
were obtained from the CMDP. Excluded were individuals with
missing data on weight, height, age, or sex (n = 600,352) and
individuals who were outliers for body weight (>216 kg
or <30.8 kg) or height (>194.1 cm or <132.2 cm), as
defined by the Survey on the Status of Nutrition and Health
of the Chinese People conducted in 2002 (25) (n = 11,871).
Also excluded were individuals aged <18 years or >50 years
(n = 12,338) because relatively few individuals were in these
age-groups in this database. All individuals examined from
2001 to 2003 (n = 23,847) were further excluded because of
the small sample size and uneven distribution across different
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provinces. After these exclusions, data for 1,377,047 adults
were available for analysis.

Individuals from the different provinces were grouped
into seven geographical regions and analyzed separately. The
seven regions are as follows: 1) Northeast China (Heilong-
jiang, Jilin, and Liaoning); 2) North China (Beijing, Tianjin,
Hebei, Shanxi, and Inner Mongolia); 3) Northwest China
(Xinjiang, Qinghai, Gansu, Ningxia, and Shaanxi); 4) East China
(Shanghai, Shandong, Jiangsu, Anhui, Zhejiang, Jiangxi, and
Fujian); 5) Central China (Henan, Hubei, Hunan); 6) South
China (Guangdong, Guangxi, Hainan); and 7) Southwest
China (Chongging, Tibet, Yunnan, Sichuan, Guizhou). The
locations of the seven geographical regions and the sample
size from each region are shown in Fig. 1A and B. Taiwan,
Hong Kong, and Macau were not included in this study.

The Institutional Review Board of the First Affiliated
Hospital within Nanjing Medical University and the CMDP
Ethics Review Board approved the study protocol.
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Central 196,898 113,659 83,239
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All Regions 1,377,047 755,551 621.496

Figure 1—Seven geographical regions in China map (A) and sample
size from each region (B). Individuals from the different provinces were
grouped into seven geographical regions and analyzed separately. The
seven regions are as follows: 7) Northeast China (Heilongjiang, Jilin, and
Liaoning); 2) North China (Beijing, Tianjin, Hebei, Shanxi, and Inner
Mongolia); 3) Northwest China (Xinjiang, Qinghai, Gansu, Ningxia, and
Shaanxi); 4) East China (Shanghai, Shandong, Jiangsu, Anhui, Zhejiang,
Jiangxi, and Fujian); 5) Central China (Henan, Hubei, Hunan); 6) South
China (Guangdong, Guangxi, Hainan); and 7) Southwest China
(Chongging, Tibet, Yunnan, Sichuan, Guizhou). Taiwan, Hong Kong,
and Macau were not included in this study.
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Study Outcome Definitions

Anthropometric measurements were made by trained techni-
clans in mobile examination centers at each of the 31 CMDP
branch registries. Height (cm) and weight (kg) were measured
using metal weighing scales with height rods. Subjects were
required to stand straight on the instrument, barefoot, and at
ease. BMI was calculated as weight in kilograms divided by
height in meters squared and rounded to the nearest tenth.
Birth date and sex were obtained from the individual’s
identification card, and age was calculated using the sampling

date and birth date.

HLA Genotyping

HLA typing was performed at 31 CMDP-accredited HLA
typing laboratories. HLA typing was done by serological
methods from 2001 to 2005. In 2005, high-resolution
HLA genotyping was performed using three methods: PCR-
reverse sequence-specific oligonucleotide probes method
(26), Sanger sequencing-based typing, and next-generation
high-throughput sequence-based typing (27). HLA data,
including HLA-A, -B, -C, -DRB1, and -DQB1, were submitted
to the CMDP database annually by each HLA typing
laboratory. HLA high-resolution genotypes are given
a four-digit code representing protein level assignment,
and HLA low-resolution genotypes are given a two-digit
code.

Statistical Analysis
For each HLA locus, multiple alleles were expanded as multiple
biallelic markers for each testing allele by custom python
scripts (https://github.com/zhenyisong/guo.project). Homo-
zygotes for the testing allele (T/T), heterozygotes (T/0), and
homozygotes for the other allele combined (O/O) were coded
as a continuous numeric variable for genotype (2, 1, and
0 copies of the testing allele). Association analysis with BMI
was performed using multiple linear regression with adjust-
ment for age, sex, residential province, and sampling year in
each of the seven geographical regions separately, and then
meta-analyzed using the inverse variance method, which is
based on B values or the odds ratio (OR) and SE from each
geographical region. Cochran’s Q statistics were used to
assess consistency of effect and to quantify heterogeneity
among the seven regions. The regression analysis and meta-
analysis were performed in Golden Helix SNP & Variation
Suite 8.1 software (Bozeman, MT). A Bonferroni multiple
testing correction was used to account for the number of
common low-resolution or high-resolution HLA alleles.

Multiple linear regression, as described above, was repeated for
men and women separately with correction for age, residential
province, and sampling year in each of the seven geograph-
ical regions separately. A meta-analysis was performed to
combine a sex-differentiated test of association and a test of
heterogeneity in allelic effects between men and women
implemented in GWAMA (Genome-Wide Association Meta-
Analysis) software (28).

The variance explained by a single HLA allele was
calculated by 2 X MAF X (1 — MAF) X [32, where MAF
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is the minor allele frequency, and B is the HLA allele effect
estimate, assuming an additive model, computed by meta-
analysis (29,30).

Multilocus haplotypes were constructed, and their fre-
quencies were calculated using the expectation-maximization
algorithm based on a subset of the samples in this study
using the Arlequin software (31).

The estimated allele frequencies in Chinese from the
current study were compared with the corresponding allele
frequencies of Europeans obtained from the Allele Frequency
Net Database (http://www.allelefrequencies.net/). The allele
count calculated from frequency and total number of the
samples was used for x” or the Fisher exact test. Testing the
difference in the proportions of alleles associated with high
BMI between alleles that have significantly higher allele
frequencies in European and those in Chinese was performed
by the Fisher extract test. The significance level of variable
difference used a value of P < 0.05.

RESULTS

Characteristics of the Participants
A total of 1,377,047 subjects (755,551 men and 621,496
women) aged 18-50 years were included in the association
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analysis for BMI. The age distribution for men and women
was asymmetric due to an overrepresentation of younger
people who typically participate in the CMDP. The mean age
of subjects included in the final analysis was 27.2 for men
and 25.6 years for women (Supplementary Fig. 1).

Association Between HLA Alleles and BMI

Approximately 99% of the individuals had low-resolution
HLA genotypic data, where 125 different alleles were
detected, and ~67% of the individuals had both low- and
high-resolution HLA genotypic data, where 1,455 different
alleles were detected (allele frequencies reported in Supple-
mentary Table 1). To preserve statistical power and reduce the
multiple testing burden, we initially focused on 72 low-
resolution alleles (57% of total) with a minor allele frequency
>0.001 and performed a multiple linear regression analysis
for BMI with adjustment for appropriate covariates in each
geographical region separately. We then performed a meta-
analysis for the seven geographical regions. Significance
for the low-resolution alleles was defined as a P value of
=0.0006 (0.05/72) based on a stringent Bonferroni correc-
tion, which assumes 72 independent tests, although linkage
disequilibrium (LD) within the HLA region has been well
documented. We then performed multiple linear regression

Table 1—Meta-analysis results of 23 HLA alleles that associated with BMI in CMDP

Allele Gene Frequency P value B = SE Explained variance (%)
A02 HLA-A 0.306 4.07E-04 0.015 = 0.004 0.010
B*07 HLA-B 0.030 6.89E-10 0.071 = 0.011 0.029
B*08 HLA-B 0.009 1.53E-04 0.079 + 0.021 0.011
B*13 HLA-B 0.110 4.37E-04 0.022 + 0.006 0.009
B*46 HLA-B 0.100 1.10E-06 0.042 = 0.009 0.032
B*58 HLA-B 0.057 3.75E-05 0.086 + 0.021 0.080
c07 HLA-C 0.176 5.09E-04 0.038 = 0.011 0.042
DRB1*03 HLA-DRB1 0.048 1.06E-07 0.048 =+ 0.009 0.021
DRB1*04 HLA-DRB1 0.113 6.15E-06 0.028 =+ 0.006 0.016
DRB1*07 HLA-DRB1 0.093 1.32E-08 0.041 = 0.007 0.028
DRB1*09 HLA-DRB1 0.145 9.76E-05 0.024 + 0.006 0.014
DRB1*12 HLA-DRB1 0.121 1.52E-09 0.047 = 0.008 0.047
A*02:01 HLA-A 0.125 3.75E-06 0.035 = 0.007 0.027
B*07:02 HLA-B 0.022 1.12E-07 0.089 =+ 0.017 0.034
B*27:04 HLA-B 0.010 4.15E-05 0.113 + 0.028 0.025
B*40:01 HLA-B 0.099 5.78E-05 0.038 =+ 0.009 0.026
C*01:03 HLA-C 0.006 1.00E-04 0.182 = 0.047 0.042
C*03:02 HLA-C 0.059 4.45E-08 0.085 = 0.016 0.081
DQB1*03:02 HLA-DQB1 0.057 1.94E-04 0.066 + 0.018 0.047
DQB1*06:02 HLA-DQB1 0.076 9.55E-06 0.122 + 0.028 0.210
DRB1*03:01 HLA-DRB1 0.048 1.11E-05 0.049 = 0.011 0.022
DRB1*07:01 HLA-DRB1 0.093 6.49E-06 0.040 = 0.009 0.027
DRB1*12:02 HLA-DRB1 0.082 5.13E-05 0.047 + 0.012 0.033

Bold font indicates the HLA alleles with the strongest associations (P < 5.0 X 10~8). Significance is defined as P = 0.0006 (0.05/72) for low-
resolution alleles and P =< 0.0003 (0.05/163) for high-resolution HLA alleles based on a stringent Bonferroni correction. Explained variance (%)
was estimated based on the effect sizes (8) and allele frequencies in CMDP. B = SE is the regression slope and its SE.
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analysis and meta-analysis for BMI on the 163 high-resolution
alleles (11% of total) with a minor allele frequency >0.001.
Significance for the high resolution alleles was defined as
a P value of =0.0003 (0.05/163).

Meta-analysis of the results from the seven geographical
regions showed that 12 low-resolution alleles (A*02, B*07,
B*08, B*13, B*46, B*58, C*07, DRB1*03, DRB1*04, DRB1*07,
DRB1*09, and DRB1*12) and 11 high-resolution alleles
(A*02:01, B*07:02, B*27:04, B*40:01, C*01:03, C*03:02,
DQB1*03:02, DQB1*06:02, DRB1*03:01, DRB1*07:01, and
DRB1*12:02) were significantly associated with BMI (Table
1). Performance of a genotype pairwise correlation analysis
among these alleles identified strong correlations (> > 0.3)
between high-resolution alleles (A*02:01, B*07:02, DRB1*03:01,
DRB1*07:01, and DRB1*12:02) and their respective low
resolution alleles (A*02, B*07, DRB1*03, DRB1*07, and
DRB1*12) (Fig. 5A and Supplementary Table 4), suggesting
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these high-resolution alleles are almost identical to their
respective low-resolution alleles. Therefore, 19 unique HLA
alleles were found to be associated BMI.

Three low-resolution alleles and one high-resolution allele
had the strongest evidence for association with BMI (P <
5% 1079 (Fig. 2). These alleles are B*07 (P = 6.89 X 10719
from the HLA-B locus, C*03:02 (P = 4.45 X 10~ ®) from the
HLA-Clocus, and DRB1*07 (P = 1.32 X 10 ®) and DRB1*12
(P =1.52 X 10~ ) from the HLA-DRBI locus. Heterogeneity
in the direction of the effect was not detected among the
different geographical regions (heterogeneity P > 0.05) (forest
plots shown in Fig. 3). These alleles were also assessed for
their assodiation with categories of BMI, namely, overweight
(BMI 25.0-30.0 kg/mz; n = ~236,000 case subjects and
~850,000 control subjects) and obese (BMI =30 kg/mz; n=
~40,000 case subjects and ~850,000 control subjects)
(Supplementary Table 3). Notably, B*07, DRB1*07, and
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Figure 2— Scatter plots of association results of low-resolution (A) and high-resolution (B) HLA alleles with BMI in CMDP. The —logo P values were
plotted against their positions in each gene. HLA alleles associated with higher BMI are indicated by circles and HLA alleles associated with lower
BMI are indicated by diamonds. The HLA alleles with the strongest association (P < 0.00000005) are labeled with their allele name. The horizontal
dashed line represents the threshold for the statistical significance after Bonferroni correction (P = 0.0006 for low-resolution allele and P = 0.0003

for high-resolution alleles).
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Figure 3—Meta-analysis forest plots for HLA-B*07 (4), HLA-C*03:02 (B), HLA-DRB1*07 (C), and HLA-DRB1*12 (D), HLA alleles with the strongest
associations with BMI in Chinese adults. Plots show the study-specific association estimates (8) and 95% CI for the seven geographical regions
presented as bars. The scale is the 8 value. The association estimate and Cl for the meta-analysis combining the seven geographical regions is
shown as a diamond. Pheterous iS the P value for heterogeneity among seven regions.

C*03:02, which had strong evidence for association with BMI
as a quantitative trait, also associated with overweight (P =
7.80 X 107>, 4.70 X 10" 12, and 2.08 X 10>, respectively)
and obesity (P = 4.79 X 10™% 0.03, and 4.05 X 1073,
respectively) (Supplementary Table 2).

Sex-Stratified Analyses

We performed sex-specific meta-analyses to test for an
association of each allele with BMI in men and women
separately, which identified nominal evidence for heteroge-
neity (P < 0.05) for the DRB1*07 and B*07 alleles. The sex-
specific effects of DRB1*07 (Pheterogencity = 0.00058) met
Bonferroni significance (significance requires Pheterogeneity =
0.002; 0.05/23 alleles tested), where the association was

much stronger in men (§ = 0.066, P = 1.54 %1079 than in
women (B = 0.018, P = 0.056) (Fig. 4). The association
between B*07 and BMI was also stronger in men (8 = 0.099,
P =150 X10~®) than in women (B = 0.039, P = 0.009),
although the evidence for heterogeneity for this allele was
statistically nominal (Ppeterogeneity = 0-0067).

Comparison of HLA Allele Frequencies in Chinese and
Europeans

Among the 19 unique HLA alleles that associated with BMI
in our Chinese cohort, 18 had significantly different allele
frequencies between Chinese and European populations (x?
or Fisher exact test, P < 0.05). Of the eight HLA alleles with
higher frequency in Europeans, five associated with a higher
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Figure 4—HLA alleles that associate with BMI in a sex-dependent manner. Each of the seven geographic study-specific association estimates (3;
represented by a circle) and SE (represented by a vertical line) are shown in males and females separately for B*07 (A) and DRB1*07 (B). The meta-
analysis mean and SE (represented by the horizontal lines) for all seven studies was calculated using the GWAMA software. Pheterogeneity iS the

P value for heterogeneity between male and female.

BMI (A*02:01, B*08, B*07:02, DRB1*07:01, and DQB1*06:02)
and three associated with lower BMI (DRB1*04, DRB1*03:01,
and DQB1*03:02) in our study of the Chinese cohort. Of the
10 HLA alleles with higher frequency in Chinese, 4 associated
with a high BMI (B*13, C*01:03, C*07, and DRB1*12:02) and
6 associated with a lower BMI (B*27:04, B*58, B*46, B*40:01,
C*03:02, and DRB1*09:01). Tests of the difference in the
proportions of alleles associated with high BMI between
alleles that have significantly higher allele frequencies in
Caucasians (n = 8) and those in Chinese (n = 10) show no
statistical significance (P > 0.05). Interestingly, six (A*02:01,
DQB1*06:02, DRB1*07:01, B*07:02, B*08, and C*07) of nine
alleles associated with a higher BMI have an allele frequency
>0.10 in Caucasians, whereas six (B*27:04, C*03:02, B*58,
B*46, DRB1*09:01, and B*40:01) of nine alleles associated
with lower BMI have an allele frequency <0.10 in Caucasians
(Fig. 5B).

Assignment of BMI-Associated Alleles to Common
Haplotypes
The extremely high LD within the HLA region can confound
genetic association studies. Therefore, haplotypes were con-
structed based on 169,995 volunteers, which represents
a subset of the samples in this study (27). The BMI-associated
alleles were mapped onto 105 five-locus haplotypes with allele
frequencies >0.001. For the BMI-associated low-resolution
alleles, we used 7° to identify high-resolution alleles (B*46:01,
B*58:01, and DRB1*04:03), which could be used to represent
them.

Among alleles associated with high BMI, B*13:02 and
DRB1*07:01 are strongly correlated (#* = 0.31) and were
observed in multiple common haplotypes “CH” that contain

C*06:02-B*13:02-DRB1*07:01-DQB1*02:02 (Fig. 5C). These
haplotypes are common in both Chinese and European
populations (32). The A*02:01 allele was observed on haplotype
“CH” (A*02:01-C*06:02-B*13:02-DRB1*07:01-DQB1*02:02)
and also on other haplotypes containing C*07:02, DRB1*12:02,
or DQB1*06:02. The three alleles C*07:02, B*07:02, and
DQB1*06:02 were frequently carried on the same haplo-
types. Most often, these are preceded by A*03:01 or A*24:02
(Fig. 50).

Among alleles associated with lower BMI, B*46:01 corre-
lated with DRB1*09:01 (> = 0.028) and B*58:01 correlated
with DRB1*03:01 (** = 0.051). These alleles have been
observed on two common four-locus haplotypes (“‘AH”),
C*03:02-B*58:01-DRB1*03:01-DQB1*02:01 and C*01:02-
B*46:01-DRB1*09:01-DQB1*03:03, which have higher fre-
quencies in Asians compared with Africans or Caucasians

(Fig. 5C) (32).

DISCUSSION

In this study, we examined 72 low-resolution HLA alleles and
163 high-resolution HLA alleles in 1.3 million individuals
who had been HLA typed as part of the CMDP repository.
We identified 19 unique HLA alleles that associated
with BMI after correction for multiple testing. However,
the effect size of these alleles (B is defined as change
in kg/m?” per allele) ranged from —0.024 to —0.11 for
alleles associated with low BMI and from 0.01 to 0.12
for alleles associated with high BMI. These effects
are smaller than those reported in prior GWAS of
Caucasians (4) (Bs ranged from 0.06 to 0.39 kg/rn2 per
allele); therefore, the variance explained by a single HLA
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Figure 5—BMl-associated HLA alleles and haplotype. A: Pairwise correlation matrix heat map of BMI-associated HLA alleles. The heat map grid
represents the square of the Pearson correlation coefficient (). Three high-resolution alleles (DRB1*03:01, DRB1*07:01, and DRB1*09:01) are
nearly perfectly correlated (2 > 0.99) with their respective low-resolution alleles (DRB1*03, DRB1*07, and DRB1*09). In addition, B*07:02 is strongly
correlated with B*07 (* = 0.73), and A*02:01 is strongly correlated with A*02 ( = 0.32). Among alleles associated with higher BMI, DRB1*07:01 and
B*13:02 are strongly correlated (> = 0.31). Among alleles associated with lower BMI, B*46:01 is correlated with DRB1*09:01 ( = 0.028), and
B*58:01 is correlated with DRB1*03:01 (% = 0.051). B: Allele frequency between European and Chinese. The allele frequencies in Europeans were
derived from the Allele Frequency Net Database (http://www.allelefrequencies.net/), and the frequencies in Chinese are from the current study.
Eighteen had significantly different allele frequencies between Chinese and European populations (x? or Fisher exact test P < 0.05). HLA alleles
highlighted in red are the alleles associated with higher BMI, and the HLA alleles highlighted in blue are the alleles associated with lower BMI. The
alleles around the diagonal line y = x are similar in frequency between European and Chinese. The blue horizontal dashed line represents the allele
frequency of 0.1 in Europeans. Six (A*02:01, DQB1*06:02, DRB1*07:01, B*07:02, B“08, and C*07) of nine alleles associated with a higher BMI have
an allele frequency >0.10 in Caucasians, whereas six (B*27:04, C*03:02, B*58, B*46, DRB1*09:01, and B*40:01) of nine alleles associated with
lower BMI have an allele frequency <0.10 in Caucasians. There is no significant difference in the proportions of alleles associated with high BMI
between alleles that have significantly higher allele frequencies in Caucasian and those in Chinese (Fisher exact test P > 0.05). C: Assignment of
BMl-associated HLA alleles into five locus haplotypes. Blue box: alleles associated with lower BMI; red box: alleles associated with high BMI. The
first row contains the gene name, A = HLA-A, C = HLA-C, B = HLA-B, DRB1 = HLA-DRB1, DQB1 = HLA-DQB1. Each row contains one common
haplotype with at least two alleles associated with lower or higher BMI. The last column (Freq. [%q]) is the haplotype frequency reported in the
Chinese population. Most of the 19 BMI-associated alleles mapped onto one of these common haplotypes and several alleles mapped to multiple
haplotypes. Three alleles associated with high BMI (A*02:01, B*13:02, and DRB1*07:01) are in a four-locus haplotype (CH: C*06:02-B*13:02-
DRB1*07:01-DQB1*02:02), two alleles associated with high BMI (B*07:02 and DQB1*06:02) are in the five-locus haplotype (DR2: A*03:01-C*07:02-
B*07:02-DRB1*15:01-DQB1*06:02). Both of these haplotypes are common in Chinese and European populations. The latter is also called ancestral
DR2 haplotype. A four-locus haplotype (AH) C*03:02-B*58:01-DRB1*03:01-DQB1*02:01 contains two alleles associated with lower BMI and has
a higher frequency in Asians than Africans or Caucasians. Most of the haplotypes contained more than one risk or protective allele, suggesting high
LD among these alleles.
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allele in our study of Chinese is very small (ranging from
0.009 to 0.21%).

The HLA alleles with the strongest evidence for associ-
ation with BMI were B*07, DRB1*07, DRB1*12, and C*03:02,
where B*07, DRB1*07, and DRB1*12 were associated with
higher BMI, and C*03:02 was associated with lower BML
Several of these alleles have been previously implicated in
response to viral infection. For example, HLA-DRB1*07 has
been associated with viral persistence in both hepatitis C and
B virus infection (33-35) and hepatitis B vaccine failure
(36-39). Chronic infection with hepatitis C or B virus is the
most common risk factor for hepatocellular carcinoma. HLA-
B*07 has been associated with increased risk of cervical
cancer (40-42), which is often caused by human papillo-
mavirus. Two of the HLA alleles, B*07 and DRB1*07, had
evidence for a sex-specific effect on BMI in our study. Sex
specificity in response to viral infection has been reported,
where males mount more vigorous immune and behavioral
responses to influenza viral infection than females (43).

Prior studies in mice and humans have also suggested an
impact of dassic HLA alleles on the gut microbiota composition
(44-46), and the role of the gut microbiota on obesity is an
area of current investigation. Therefore, further studies are
needed to investigate the role of HLA-B*07, -DRB1*07,
and -C*03:02 on gut microbiota in Chinese populations.
Infectious pathogens are arguably among the strongest
selective forces that act on human populations (47).

During migrations of modern humans, immune response
genes, in particular the HLA system, have been under strong
selective pressure to respond and adapt to pathogens. Many
pathogens have been reported to cause or exacerbate obesity
in animals by damaging the central nervous system (48).
In our haplotype analysis, we found that three risk
alleles are carried in the haplotype A*02:01-C*06:02-
B*13:02-DRB1*07:01-DQB1*02:02, and three risk alleles
are carried in the haplotype of A*03:01-C*07:02-B*07:02-
DRB1*15:01-DQB1*06:02. These haplotypes are both common
in Chinese and European populations. The later hap-
lotype is the “ancestral DR2” haplotype, which is considered
to be the longest of the widely distributed ancestral
haplotypes (49). These common haplotypes, which could
increase survival by providing immune and/or stored energy
advantage, are thought to have occurred around the time of
the “out of Africa” and expansion into Europe migration
(50,51). Four HLA alleles, which we found were protective
of obesity, are carried on the most common haplotypes in
Asians. These haplotypes are much less common in Africans
and Caucasians (52) and therefore are likely to have occurred
after the “out of Africa” migration, allowing Asians to gain
resistance for “new” pathogens in Asia (53,54).

Future studies are needed to investigate the role of these
BMlI-associated HLA alleles on T2D. The prevalence of T2D
in China has escalated during the past two decades. In 2010,
the prevalence of T2D was comparable in China and the U.S.
(both ~11.3%), yet among the Chinese population, T2D
occurred at a significantly lower BMI (mean BMI 23 kg/m?)
compared with the U.S. population (mean BMI 28.7 kg/m?)
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(55). A prior study of individuals living in southern China,
a region that is experiencing the world’s fastest economic
development, reported that increases in BMI and overall
obesity have been leveling off, while increases in waist
circumference and abdominal obesity have continued to rise
(56). Waist crcumference has been proven to be a better
predictor of T2D than BMI among the Chinese adult population
(57). Therefore, the increased prevalence of T2D in China
may possibly be due to increases in abdominal obesity,
even though HLA alleles predictive of lower BMI are
more common in this population. In addition, the small
effect sizes of HLA alleles on BMI suggest that the effect of
HLA-protective alleles on T2D is minimal. Thus, environmental
factors, gene-gene, and gene-environmental interaction likely
also play important roles.

Our study has three major strengths. First, to our knowl-
edge, this study is the largest genetic assodation study for BMI
in the world, affording >80% power to detect variants with
an allele frequency of 0.001. Second, HLA genotypes were
not imputed (58,59), but rather directly typed. Third,
phenotypic data were all derived from a single source.

A weakness of our study is that it only identifies
associations, and the strong LD across the HLA region
makes it difficult to define the exact location of etiological
variants. For example, TNFA, which encodes tumor necrosis
factor-a (TNF-a) is among the 200 genes in the HLA locus.
TNF-« is a key regulator of the inflammatory response and
can cause necrosis of tumors (60). Dysregulation of TNF-a
production has been implicated in a variety of human
diseases such as obesity, T2D, autoimmune diseases, and
cancers (61-63). Therefore, variation in the TNFA gene or
other genes in this locus could possibly account for some of
the association between HLA and obesity observed in our
study.

In summary, the results of this study suggest that
specific HLA alleles are associated with higher or lower
BMI in human populations and that these alleles may
cause alterations in obesity risk through their roles in
immune responses.
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