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Abstract

Reductionist in vitro T cell assays have identified metabolic pathways critical for T cell function 

within the tumor microenvironment. We discuss the challenges of testing these concepts using in 
vivo tumor models.

Exciting new technologies and conceptual advancements have re-energized the study of the 

metabolic competition between tumors and the adaptive immune system (Chang et al., 2015; 

Ho et al., 2015; Sugiura and Rathmell, 2018). Despite these advancements, there remains 

little discussion in the literature on how investigators should model nutrient depletion in the 

tumor microenvironment when studying immune cell/tumor cell metabolic interactions and 

competition. How can we more accurately distinguish and dissociate nutrient deprivation’s 

effects on immune cells from other immunosuppressive components of the tumor 

microenvironment in vivo? Are T cells engineered with altered metabolic programming 

specifically overcoming a nutrient limitation or are they simply better tumor-specific T cells 

that function better in all nutrient environments? This essay will lay out some of the critical 

issues facing the field and hopefully spur the development of improved approaches for 

testing new immune therapies. We believe that greater mechanistic understanding of 

immunometabolism will fully harness the clinical potential of immune therapies.

Challenges T cells face in the solid tumor microenvironment

In vivo, tumors alter the abundance of dozens of metabolites in the interstitial fluid relative 

to healthy tissue (Kamphorst et al., 2015; Pavlova and Thompson, 2016). Most commonly 

solid tumor environments have been reported to be deprived of oxygen, glucose, glutamine, 

multiple amino acids (e.g. arginine, tryptophan) and is highly acidic (Fig 1A). Different 

tumors and even separate regions of the same tumor can host diverse nutrient environments 

and can experience intermittent blood flow and nutrient supply (DeBerardinis and Chandel, 

2016; Vaupel et al., 1987). An abundance of pro-angiogenic factors (like vascular 

endothelial growth factor-A) promote disturbed vasculature characterized by large and leaky 
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vessels, erratic branching, and irregular and slow blood flow which inhibits efficient nutrient 

delivery (Carmeliet, 2005; Lanitis et al., 2015). In addition metabolites can be altered by 

elevated expression of enzymes expressed by tumor cells or tumor-associated antigen-

presenting cells. For example, high expression of the enzyme indoleamine 2,3-dioxygenase 

in the tumor microenvironment can lead to local depletion of tryptophan and regulate T cell 

proliferation and induce apoptosis (Fallarino et al., 2002; Platten et al., 2012; Schafer et al., 

2016). Furthermore, the protein kinase, general control nonderepressible 2 (GCN2), also can 

sense amino acid deprivation in the tumor microenvironment and induce signaling that 

promotes T cell anergy (Munn et al., 2005), highlighting that signaling pathways induced by 

low levels of nutrients can be as damaging to the anti-tumor response as the lack of nutrients 

to support immune cell function and growth. T cells require glucose, glutamine, and 

mitochondrial pathways for activation, maximal proliferation and/or effector function (Cham 

and Gajewski, 2005; Macintyre et al., 2014; Procaccini et al., 2016; Ron-Harel et al., 2016; 

Sena et al., 2013). Aerobic glycolysis serves the increased biosynthetic demands of highly 

proliferating cells. Glycolytic intermediates can produce nucleotides, lipids, and amino acids 

necessary for cellular proliferation in both T cells and cancer cells (Vander Heiden et al., 

2009). Similar reliance on aerobic glycolysis between proliferating cancer cells and 

activated T cells intensifies a competition for limited nutrients within the tumor 

microenvironment (Frauwirth et al., 2002). Competition for glucose also plays a clear role in 

limiting effective anti-tumor responses in vivo (Chang et al., 2015; Ho et al., 2015). Aerobic 

glycolysis is required for maximal IFN-γ production by effector T cells though at least two 

independent mechanisms. The glycolytic enzyme glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) can inhibit translation of IFN-γ mRNA, while another study has 

demonstrated that the glycolytic enzyme, lactate dehydrogenase A (LDHA), promotes 

histone acetylation along the IFN-γ locus (Chang et al., 2013; Peng et al., 2016). Although 

some attempts to increase nutrient availability have been successful, we have little 

understanding how to make T cells more fit in a nutrient limiting environment (Chang et al., 

2015; Lanitis et al., 2015).

Due to dysfunctional vasculture and the high glycolytic rate of many tumor cells, the tumor 

microenvrionment is often acidic because of high lactate concentrations (Fig 1B). Both 

tumor and T cells rely on monocarboxylate transporters to secrete and uptake lactate 

generated from glycolysis and pyruvate. High lactate concentrations in the environment 

prevent T cells from efficiently transporting lactate out of the cell and increase intracellular 

acidity and inhibit functionality and NFAT activity (Brand et al., 2016; Fischer et al., 2007). 

Brand et al. demonstrated that melanoma tumor cells engineered to have low lactate 

dehydrogenase A (LDHA) activity, have greater immune infiltration and activity than tumor 

cells with normal LDHA expresion. LDHA is the glycolytic enzyme required for conversion 

of pyruvate to lactate. Furthermore the administration of the proton pump inhibitor, 

esomeprazole, can normalize tumor pH in vivo and when combined with immunotherapy 

can promote tumor clearance (Calcinotto et al., 2012). While glucose deprivation and high 

lactate concentrations inhibit anti-tumor responses, they also promote immunosuppressive T 

regulatory cell and macrophage polarization and function (Angelin et al., 2017; Colegio et 

al., 2014).

Ecker and Riley Page 2

Cell Metab. Author manuscript; available in PMC 2019 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As T cells become exposed to chronic antigen in the tumor microenvironment, they begin to 

terminally differentiate and become exhausted. As exhaustion becomes more severe, T cells 

increase expression of multiple inhibitory receptors, while simultaneously inhibiting 

costimulatory receptor expression (Fig 1C). Inhibitory receptors can inhibit co-stimulation 

and phosphorylation events downstream of T cell receptor (TCR) activation, and prevent 

activation signals (Akt and mTORC1) necessary for increasing surface expression of the 

major glucose transporter, Glut-1, in T cells (Jacobs et al., 2008; Parry et al., 2005; Siska et 

al., 2016). Without sufficient surface expression of Glut-1, the activated T cells are unable to 

properly upregulate glycolysis and have inhibited proliferation and effector function.

Upregulation of mitochondrial pathways (oxidative phosphorylation and one-carbon 

metabolism) are essential for proper T cell proliferation. (Chang et al., 2013; Procaccini et 

al., 2016; Ron-Harel et al., 2016; Ron-Harel et al., 2015). In addition mitochondria play 

roles beyond producing energy and biosynthesis, though epigenetic and signaling roles 

during T cell activation (Minocherhomji et al., 2012; Sena et al., 2013). Chronic antigen 

exposure affects metabolic pathways beyond glycolysis, by inhibiting mitochondrial 

functions (Fig 1D). Exhausted T cells in models of cancer or chronic virus infection often 

have defects in mitochondria number, size, and voltage potential and function (Bengsch et 

al., 2016; Scharping et al., 2016; Siska et al., 2017). One study has proposed that the tumor 

microenvironment downregulates mitochondrial biosynthesis by inhibiting expression of 

PPAR-gamma coactivator 1α (PGC1α), while another has suggested ROS induced damage 

may induce decreased mitochondrial mass (Scharping et al., 2016; Siska et al., 2017). 

Scharping et al. has successfully demonstrated that overexpression of PGC1α in tumor-

specific T cells is able to prevent downregulation of mitochondrial mass and enhance T cell 

functionality in the tumor microenvironment.

Tumor infiltrating lymphocytes are exposed to large amounts of reactive oxygen species 

(ROS, Fig 1E). ROS are highly chemically reactive and can damage cellular structures, and 

inhibit T cell activation. Production of ROS drastically increases in T cells exposed to 

hypoxia and is one of the major mechanisms of immune suppression by myeloid derived 

suppressor cells (Kusmartsev et al., 2004; Tafani et al., 2016). Myeloid derived suppressor 

cells are a heterogeneous immunosuppressive subset of cells overexpressed in patients and 

mice with cancer. While ROS are necessary for IL-2 production and proliferation by T cells, 

it remains unclear the quantities in which ROS will become harmful to T cells (Sena et al., 

2013). Exposure to oxidative stress by low doses of exogenous hydrogen peroxide are 

sufficient to inhibit T cell functionality and survival (Ligtenberg et al., 2016).

Challenges of applying immunometabolism findings to tumor models in 

vivo.

Given the metabolic challenges tumor-specific T cells face, there have been numerous 

attempts to mitigate these effects via pharmacological or genetic modifications to improve 

tumor-specific T cell therapy in vivo. However our interpretation of in vivo studies has been 

hindered by numerous technical and biological challenges.
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It is incredibly difficult to distinguish whether newly designed immune interventions 

targeting the metabolic challenges of solid tumors have generated T cells that operate better 

in nutrient depleted environments or simply have made a better T cell (that operates better in 

all environments). The key to distinguishing these possibilities are 1) identifying how a 

modification improves the anti-tumor response and 2) understanding how individual 

metabolic interactions lead to distinct functional outcomes. For example, enhancing 

mitochondrial fusion, increasing L-Arginine media concentrations, or inhibiting glycolytic 

metabolism while T cells are being expanded for adoptive cell therapy all enhance the 

therapeutic activity of the infused T cells (Buck et al., 2016; Geiger et al., 2016; Sukumar et 

al., 2013). All of these interventions alter T cell metabolism, but do they enable T cells to 

function better in the tumor microenvironment? It is challenging to envision a mechanism by 

which temporarily expanding T cells in low glucose empowers them to function better in the 

tumor microenvironment. Rather, previous studies demonstrate that T cells expanded in low 

glucose retain a less differentiated phenotype which enables improved engraftment of the 

expanded T cells which correlates with improved tumor control (Gattinoni et al., 2011). 

Expansion in the presence of higher levels of L-arginine also results in T cells that are less 

differentiated and more reliant on oxidative phosphorylation instead of glycolysis (Geiger et 

al., 2016). These cells have higher intracellular concentrations of L-arginine, which may 

make them resistant to low arginine levels in the tumor microenvironment. Likewise, T cells 

with enhanced mitochondrial fusion are less differentiated in culture and exhibit greater 

reliance on oxidative phosphorylation (Buck et al., 2016). Enhanced fusion may enhance 

mitochondrial function and combat mitophagy frequently observed during nutrient 

deprivation (Rambold et al., 2011). How do we determine to what extent differentiation or 

improved fitness in the tumor microenvironment results in improved tumor clearance? 

Furthermore, any attempts to modulate metabolism in the tumor microenvironment is likely 

going to cascade and affect many of the surrounding cells and may have cell-specific effects. 

For example, enhancing tumor glycolysis is sufficient to decrease available glucose for T 

cells, but may also create a better environment for tumor associated macrophages and T 

regulatory cells (Angelin et al., 2017; Chang et al., 2015; Netea-Maier et al., 2018). In 

addition, simply increasing T cell activity is sufficient to modulate metabolites in the serum 

of mice, and the effects of these changes on other cell types is not understood (Miyajima et 

al., 2017). Future studies must work to better distinguish mechanisms of metabolic immune 

interventions to provide mechanistic understanding of immunometabolism (Fig 2A).

Unlike standard epigenetic or transcriptional changes that often occur over several hours or 

days, many metabolic changes occur incredibly quickly in response to different 

environments. This may even be more pronounced in immune cells, because these cells 

readily circulate and traffic to diverse areas of the body, and thus must be able to adapt 

rapidly in diverse metabolic environments. While researchers can observe cell intrinsic 

differences of different T cell subsets in vitro, how much information is lost because of 

isolation and prolonged in vitro expansion (Dimeloe et al., 2016; Pan et al., 2017; Procaccini 

et al., 2016; van der Windt et al., 2012)? Quantification is further complicated during 

conventional in vitro extraction techniques because of metabolite loss, leakage, or decay 

(Chen et al., 2016; Van Gulik et al., 2012; Vuckovic et al., 2011; Yang et al., 2017). Thus, 

during commonly used isolation procedures and before any assay can be performed in vitro, 
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metabolic changes are occurring (Fig 2B). Alternative approaches such as utilizing isotopic 

tracers are highly compatible with in vivo models, can be easily administered, and may 

better recapitulate in vivo biology (Hensley et al., 2016; Sun et al., 2017).

Immune cells isolated for nutrient depletion studies should represent the cells that would 

traffic to sites of inflammation and nutrient depletion in the tumor microenvironment (Fig 

2C). Many in vitro T cell studies have examined nutrient depletion on total T cells isolated 

from the peripheral blood or spleens of humans or mice. However, naïve cells that often 

represent the majority of T cells in circulation or in the spleen do not travel to sites of 

inflammation where vasculature is often disturbed or injured (Klebanoff et al., 2006; Thome 

et al., 2014). Differentiated effector memory T cells or tissue resident memory T cells are 

the cells that reside in the environments that actually encounter nutrient depletion and have 

distinct responses to metabolic stress (Dimeloe et al., 2016; Ecker et al., 2018). These 

studies have suggested that effector memory T cells may prioritize effector functions over 

proliferation during nutrient limitation. More work is needed to titer nutrient availabilities to 

better delineate how they affect specific aspects of T cell function and proliferation in 

different T cell populations. Thus, many previous studies have lacked sufficient resolution to 

determine whether T cells in the blood mimic the same metabolic and adaptive features of T 

cells that reside in the tissue. Furthermore, there is on-going discussion on which cell 

populations represent the best control to tumor infiltrating lymphocytes (TILs). Are cells in 

the blood or spleen, effector memory T cells, or tissue-resident cells from the tissue of 

choice the best cells to compare to TILs? While tissue-resident cells are often thought of as 

the best control because they reside in the same niche and similar effector phenotype, their 

limited numbers and technically difficult isolation have hindered their wide-spread use.

There remain large gaps in understanding of immune cell localization within hypoxic or 

glucose depleted regions of tumors. Do we truly observe anti-tumor function and immune 

cell proliferation only in sites of nutrient availability? Do immune cells have higher rates of 

death in sites of nutrient depletion or do they simply traffic away from those sites? Which 

nutrients are the most essential for function in vivo? Regions of nutrient depletion can often 

be examined through florescent analogues like 2-NBDG for glucose distribution, staining 

with pimonidazole for regions experiencing hypoxia, or through distinct protein expression 

of hypoxic or nutrient depleted cells (Airley et al., 2001). These are well validated, and 

compatible with commonly used methods to identify immune cell localization and activity 

(Bennewith and Durand, 2004; He et al., 2008; Sukumar et al., 2013). Improvements in the 

resolution of mass spectrometry imaging techniques have also identified tissue-resident 

immune populations and metabolite gradients in tumors (Dilillo et al., 2017; Holzlechner et 

al., 2017). Additionally, sensitive reporter constructs could be useful to map the duration and 

regional location of nutrient limiting milieus. Elucidating the spatial organization of nutrient 

availability and immune populations will be crucial for greater insight of immune 

surveillance in the tumor microenvironment (Fig 2D).

The last decade of research has led to incredible findings and a growing interest in 

immunometabolism. Researchers have only just begun to understand how to translate the 

basic findings into in vivo tumor models and face many challenges. Future studies designed 
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to overcome these challenges will be essential for providing mechanistic understanding of in 
vivo immunometabolism and for translating these approaches into the clinical arena.
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Figure 1: Metabolic challenges T cells encounter in the solid tumor microenvironment.
A. Nutrient limitation and competition. Disturbed vasculature of solid tumors are often 

unable to provide nutrients critical for T cell activation. Activated T cells and proliferating 

tumor cells rely on aerobic glycolysis and compete for extracellular glucose. B. High 
extracellular lactate concentrations. Reliance on aerobic glycolysis by tumor cells 

promotes a large buildup of the waste product lactate in the extracellular milieu of solid 

tumors. High extracellular concentrations of lactate hinder T cell activation by inhibiting 

efficient secretion of lactic acid from the cytoplasm and acidifying intracellular pH. C. 
Hypoxia and MDSC-induced ROS. T cells in the solid tumor microenvironment are 

constantly exposed to reactive oxygen species, which are highly reactive and damage 

cellular structures. Hypoxia rapidly induces ROS production by T cells and myeloid derived 

suppressor cells frequently suppress effector T cells by secreting ROS. D. Decreased 
mitochondrial mass and function. Tumor specific T cells have defects in mitochondria 

biogenesis, size, cristae structure, voltage potential and function. E. Terminal 
differentiation and exhaustion. Chronic antigen exposure causes loss of co-stimulatory 

receptors while promoting inhibitory co-receptors that inhibit glycolytic metabolism and 

activation signaling.
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Figure 2: Challenges of applying immunometabolism findings to tumor models in vivo.
A. Many researchers have found ways to improve anti-tumor efficacy of adoptively 

transferred T cells through metabolic manipulation or genetic engineering. Too often though 

we lack the resolution to distinguish the mechanism by which enhanced tumor efficacy is 

reached. B. The speed by which cells metabolically adapt to changes in the extracellular 

environment during extraction procedures, and how quickly some metabolites can decay or 

be lost in commonly used isolation techniques hinder our understanding of in vivo biology. 

C. The most accessible cells in the blood or spleen (that are commonly used in metabolic 

studies of nutrient limitation) do not reflect the metabolic traits or adaptive properties of 

terminally differentiated cells found in most tumors. D. The field has not explored the spatial 

organization of nutrient depletion and immune cell infiltration in solid tumors.
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