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Abstract

Next generation sequencing protocols such as RNA-seq have made the
genome-wide characterization of the transcriptome a crucial part of many
research projects in biology. Analyses of the resulting data provide key
information on gene expression and in certain cases on exon or isoform usage.
The emergence of transcript quantification software such as Salmon has
enabled researchers to efficiently estimate isoform and gene expressions
across the genome while tremendously reducing the necessary computational
power. Although overall gene expression estimations were shown to be
accurate, isoform expression quantifications appear to be a more challenging
task. Low expression levels and uneven or insufficient coverage were reported
as potential explanations for inconsistent estimates. Here, through the example
of the ketohexokinase (Khk) gene in mouse, we demonstrate that the use of an
incorrect gene annotation can also result in erroneous isoform quantification
results. Manual correction of the input Khk gene model provided a much more
accurate estimation of relative Khk isoform expression when compared to
quantitative PCR (qgPCR measurements). In particular, removal of an
unexpressed retained intron and a proper adjustment of the 5’ and 3’
untranslated regions both had a strong impact on the correction of erroneous
estimates. Finally, we observed a better concordance in isoform quantification
between datasets and sequencing strategies when relying on the newly
generated Khk annotations. These results highlight the importance of accurate
gene models and annotations for correct isoform quantification and reassert the
need for orthogonal methods of estimation of isoform expression to confirm
important findings.
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EEIEE‘J Amendments from Version 1

In this new version of the article, we show that adjusting Khk
GENCODE UTR annotations prior to removing Khk.R! did not
suffice to correct biases in Khk.RI expression estimates. We also
verified that this modification alone was improving agreements
between datasets and sequencing strategies but not to the levels
observed when the Khk.Rl transcript is removed. Figure 3 and
Figure 4 have been updated to reflect these new results.

In addition, we used StringTie as an example of orthogonal
quantification strategy to show that the observed biases were
consistent across at least two different methods. These findings
are reported in Extended Data, Figure 10.

As modifying annotations can have a strong effect on gene-
level abundance estimates, we assessed the impact of isoform
annotation modifications on the overall Khk expression levels.
We provide evidence that none of the changes brought to the
Khk annotation had a major impact on gene-level abundance
estimates (see new Extended Data, Figure 7).

We also discuss the potential impact of the choice of transcript
reference databases in the discussion.

Finally, to improve the readability and coherence of the
manuscript, we have clarified how expected Khk isoform
expression levels were determined and have updated misleading
phrasing in the result and introduction sections.

See referee reports

Introduction

Accurate measurement of mRNA expression levels is a crucial
component in many modern biological studies. Common and
standardized techniques such as reverse transcription real-time
quantitative PCR (RT-qPCR) have remained limited in through-
put, only allowing measurements for a handful of genes at a time.
The emergence of Next Generation Sequencing (NGS) based
protocols such as RNA-seq has overcome this limitation and
enabled researchers to profile mRNA expression at the genome
wide level'~. While such experiments are now routinely per-
formed, the subsequent bioinformatics analysis and data inter-
pretation still pose computational challenges. As sequencing
reads are currently much shorter (usually 100bp — 150bp) than
most isoforms, tailored approaches are necessary to study
complex events such as splicing or isoform usage switch. In
addition, low number of replicates per condition together with
a high dynamic range in expression levels across the genome
require appropriate statistical frameworks**.

One common approach to analyse RNA-seq datasets consists
in identifying significant changes in expression levels between
two or more experimental conditions using gene-level counts’.
Such counts are usually obtained from the alignment of sequenc-
ing reads to a reference genome or transcriptome when available,
and a subsequent counting step during which reads are assigned
to annotated genes based on their mapping locations. In the
absence of a large number of biological replicates, the following
statistical analysis usually requires a reliable estimation of count
dispersions for each gene**. Statistical tools such as edgeR°,
DESeq2* or limma’ offer a panel of solutions to this problem
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and have been shown to perform equally well in settings
where few biological replicates are available'’. Neverthe-
less, despite such progress in differential gene expression
(DGE) analysis, investigating changes of splice variants and
the methods for their quantification continue to be an active
field of research. Being able to accurately measure such changes
is all the more crucial since they are connected to various biologi-
cal processes and pathologies and may be used as biomarkers and

therapy targets''.

Indeed, although early approaches have followed a frame-
work similar to gene level studies and used exon level counts
to implement differential exon usage analysis™'*", results from
such studies often remain difficult to interpret given the complex-
ity of mammalian transcriptional units. In addition, the recent
development of alignment-free transcript quantification methods
has provided the possibility to efficiently and rapidly quantify
each individual transcript'>~"”. Such approaches are indeed com-
putationally much less demanding and faster than alignment-
based methods'”. Moreover, they have been shown to overcome
the difficulty of handling multi-mapped reads, which can create
biased results in count-based analysis’’. Although transcript quan-
tification estimates may be used to improve gene-level inference
in DGE”!, testing for changes in isoform usage between condi-
tions remains a challenging task with most approaches focusing
on junction and exon read counts rather than transcript quantifi-
cations themselves. DESeq2-tximport®!, sleuth”” and DRIMSeq*’
do make use of such quantifications, with sleuth incorporat-
ing estimates of inferential variances obtained during the
quantification step. In contrast, DRIMSeq relies on a Dirichlet-
multinomial model to estimate relative transcript usage and tests
for differential transcript usage.

Regardless of the method used, several studies have now
reported limitations and pitfalls associated with transcript
abundance estimations’”*. Systematic errors in estimation
may stem from sample-specific GC content biases”, which
should be accounted for when comparing conditions. In addi-
tion, a systematic assessment of quantification performance on
simulated datasets also revealed a weaker accuracy in tran-
script abundance estimates when compared to gene abundance
estimates”’. To explain such discrepancies, it has been suggested
that certain transcript abundances cannot be reliably estimated
from the data, in particular in cases where coverage is lacking
in genomic regions allowing a distinction between transcripts”'.
To our knowledge, no systematic evaluation of the impact
of the presence of low coverage on such key regions has been con-
ducted and detailed reports of such examples in real datasets are
still missing.

Additionally, quantification tools rely on an input reference
transcriptome to compute quantifications with the exception of
Cufflinks'’, casper”® and FlipFlop”’, which may be used to assem-
ble de-novo transcripts. These tools are therefore limited to cur-
rent gene models made available in databases such as Ensembl or
RefSeq and it is unclear whether these models properly recapitu-
late the actual complexity of transcriptional units. An assessment

of the impact of erroneous or incomplete annotations on transcript
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quantifications is still missing. Additionally, meticulous exami-
nation of the concordance between transcript quantification and
mRNA isoforms measured using gene-tailored experimental
methods has not been undertaken.

In this study, we focus on the murine ketohexokinase (Khk)
gene to better understand and evaluate the impact of genomic
annotation on transcript quantifications. Khk, also known as
fructokinase, is the first rate-limiting enzyme in the fructose
metabolic pathway and catalyzes the conversion of fructose
and ATP to fructose-1-phosphate (F1P) and ADP, respectively.
Previous studies have shown that this gene predominantly
expresses two usually exclusive isoforms, KhkA and KhkC that
are generated via the specific excision of exon 3C and 3A,
respectively” (Figure 1A). With a greater affinity for fructose”,
KhkC is thought to be responsible for the functional role of
this gene in metabolism, in particular in liver where it is highly
expressed”. Epidemiological and animal studies implicate
overconsumption of fructose in the development of nonal-
coholic fatty liver disease. While the physiological substrate
of KhkA is unknown, several studies have highlighted the impor-
tance of Khk isoforms choice in the development of clear cell
renal cell carcinoma (ccRCC), hepatocellular carcinoma (HCC)”',
and pathological cardiac hypertrophy>. Given the clear impor-
tance of Khk isoforms expression in several disease settings, it is
therefore crucial to accurately quantify these variants in order to
understand relevant biological mechanisms.

30,922 mb 30.924 mb 30.926 mb 30.928 mb 30.93 mb
5 30.923 mb 30.925 mb 30.927 mb 30.929 mb 30.931 mb
2
gthc
(3 5
S Khk.Skip
8
KhkA.C
o
e
. KhkA
[0
Khk.RI
€ 3000 ' i 3
=
3 .
S 1000
el
(0]
& 3007 s
g i [ i
s 100 . ] H
S 2 i ] !
' []
30 ¢
3 g
I S F s & @g,’w,&'}@é”f?o s § &
CFPLS F P F I I S5 &8 &€
LS e RS £ Y& S °¢ @ o &
& & $ $ 2
L
«O
Tissue

F1000Research 2019, 7:1956 Last updated: 26 APR 2019

33,34

By re-processing publicly available RNA-seq data’**, we confirm
that Khk isoforms are differentially expressed in various mouse
tissues. Using DRIMSeq proportion estimations, we show that
quantification of these isoforms as output by Salmon is biased
by the presence of an annotated retained intron that is expressed
at very low levels. We also highlight the importance of cor-
rect 3’ and 5 UTR annotation to improve transcript quantifica-
tion estimates and validate our computational findings by RT-
gPCR. Finally, through the comparison of various datasets,
we illustrate the importance of using correct annotations to avoid
the emergence of discrepancies between library preparation
protocols and datasets.

Results

Khk isoforms expression is tissue-specific

In order to assess tissue-specific expression patterns of Khk in
mouse, we downloaded RNA-seq data generated from 14 dif-
ferent mouse tissues™. The availability of 4 biological replicates
(2 males and 2 females) per tissue enabled us to conduct a
differential gene expression analysis using standard, gene-
count based analytical workflows. As previously described in
gene specific studies”, we identified a strong tissue specific
expression of Khk (adjusted p-value of O from DESeq2),
with significantly higher expression levels in the liver,
small intestine and kidney when compared to other tissues
(Figure 1B Underlying data: Table 1). Interestingly, gender did
not impact the overall Khk expression levels. These results were
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Figure 1. Murine Khk expression and splicing patterns are tissue dependent. A — Khk gene model provided by the Ensembl and
GENCODE. Genomic coordinates are indicated on the top ribbon. Usual isoform names are indicated. Murine Khk is thought to express
4 main protein coding isoforms (KhkA, KhkC and ENSMUST00000201571.3 and ENSMUST00000031053.14 termed Khk.Skip and
KhkA.C for this study) and one isoform with a retained intron (Khk.Rl). B — Normalized Khk expression levels across mouse tissues
(data from Li et al.,, 2017%°) using gene count tables as input. The liver, kidney and small intestine are clearly expressing Khk mRNA at
higher levels compared with other tissues. C — Relative exon coverage of the Khk gene. Normalized exon counts are indicated in the
central panel, while normalized gene expression counts are plotted to the right. Exons coloured in black were called as differentially
used across all considered tissues (adjusted p value < 0.001). KhkC and KhkA expression are mutually exclusive in each tissue, with
KhkC strongly expressed in liver and kidney while KhkA is expressed in heart, lung, and spleen.
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all confirmed using the gene level estimates based on Salmon
quantifications (Extended Data Figure 1A and B). In particu-
lar, patterns of Khk expression across tissues were highly con-
cordant between count-based and Salmon estimates. We also
sought to evaluate changes in relative exon usage for this gene
using JunctionSeq'’, including both exon and junction counts
in our analysis. Therefore, we selected five tissues (liver,
spleen, lung, heart, kidney) with known variations in Khk iso-
form usage’~** and different levels of overall expression.
We clearly identified a preferential inclusion of exon 3C (Ensembl
ID ENSMUSEO00000186455) in liver and kidney, as previously
described, while exon 3A (Ensembl ID ENSMUSE00001361691)
is preferentially retained in heart, spleen and lung (p value
< 0.001) (Figure 1C). This trend was also reflected in junc-
tions spanning these exons (Underlying data: Table 2). Varia-
tions in 5° UTR were also observed, most likely resulting from
alternative transcription start site usage in liver and kidney.
In summary, using traditional count-based methods, we con-
firmed the tissue-specificity of Khk expression and identified exons
preferentially retained in some tissues.
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An annotated, unexpressed retained intron biases Khk
isoform quantification

As count-based methods might not always reflect the full
complexity of splicing patterns and isoform diversity, we sought
to quantify relative proportions of Khk isoforms in each tis-
sue to fully capture the complexity of its expression patterns.
The GENCODE annotation together with the Salmon” quan-
tifier were used to obtain these estimations (Underlying data:
Table 3). Interestingly, the quantification results showed that the
annotated retained intron (Khk.RI) accounts for more than 15% of
expressed isoforms in 8 tissues (Figure 2A). This trend was
consistently observed in DRIMSeq* proportion estimates
(Figure 2A; Underlying data: Table 3) and the raw TPM (tran-
scripts per million) values output by Salmon (Extended data:
Figure 2). Nevertheless, examination of the coverage tracks gen-
erated from the alignment of the reads to the reference genome
showed hardly any detectable expression of the transcript
(Figure 2B; Extended data: Figure 3). This observation was also sup-
ported by the differential exon usage analysis which clearly revealed
very low expression levels for the only Khk.RI-specific exonic

- ll.IIII__
I 10
075 Isoform 2 5 .
o
5 BMor 5
T o050 Knkskip & 1%
g M «nkc s
o B «hka @ o
M «rkac g
025 120
I I 3
80
60
40
0.00 g 20
0
o 'S N o & ) > PN e 9D 1
s & & S L F e B> 5 & fo ¥ o S 100
TEX §E T T FISTEFLEI S5 $ 2
S S ¢ <O ¢ S ¥ &0
& & @ § N 40
§ 20
% 0
Group
C 50
< 40
z cDNA ©
o Khk-A/C knockout é e
1S > c
15} t Q2 < 58 2 ig
c c £ o c <@ =
@ . . Q08 > 5 .o 30
O Heart Kidney Liver Lung SpleenT ¥ I O 0 20
10
0
. } KhkC
~—
1500 bp — c ‘ Khk.Skip
1000 bp = 5 \ :
= 5 \
500 bp = 5 | KhkA.C
— c
p— = |
200 bp < | KhkA
100 bp Khk.RI

Figure 2. Khk.RI expression levels are overestimated using Salmon quantifications. A — Estimated relative Khk isoform expression
across all tissues in mouse. Proportions were output by DRIMseq using Salmon quantification as an input. B - RNA-seq coverage tracks and
sashimi plots highlighting the absence of Khk.RI expression in thymus, spleen and bone marrow samples. Data obtained from all biological
replicates were merged prior to plotting. C — Products derived from semiquantitative RT-PCR analysis on cDNAs prepared from total RNA of
different mouse organs using the primers specific for Khk.RI. Genomic DNA isolated from the liver was used as positive and RNA isolated
from organs of Khk-A/C knockout mice as negative control. (n = 5 and products from two representative mice are shown).
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region, E012 (Figure 1C; Extended data: Figure 4A). To experi-
mentally confirm the absence of Khk.RI expression, we designed
PCR primers amplifying fragments specific to this transcript (see
Extended data: Figure 4B; Extended data: Table 1 for a list of prim-
ers used in the study) and used RT-qPCR and semiquantitative
RT-PCR to measure its expression levels. Khk.RI could hardly be
detected using this sensitive method (Extended data: Figure 4C
and 4D) and comparison with the expression levels in a
Khk-A/C” mouse model showed that it is hardly expressed in heart,
kidney, liver, lung and spleen, whereas a product could be ampli-
fied using genomic DNA as template (Figure 2C). This experi-
mental validation further demonstrates that the contribution of
Khk.RI to the overall Khk expression level was overestimated
during the quantification step. Taken together, these results
suggest that the presence of non-expressed transcripts in the
“raw” gene annotation may result in erroneous detection by
a transcript quantification software.

Manual update of the Khk transcript annotations improved
quantification results

Since the current genomic annotation did not reflect Khk
isoform expression and introduced biases in quantifications,
we manually removed the Khk.RI transcript (Ensembl ID ENS-
MUSTO00000200978.1) prior to the quantification step. Despite
this adjustment, inspection of the junction reads, coverage
tracks, and normalised exon and junction counts derived from
QoRTs (Figure 1C) revealed discrepancies between quanti-
fication estimates and results derived from alignment-based
methods (Figure 3A and 3B; Extended Data: Figure 5). These quan-
tification estimates also did not reflect the observations made by
previous reports focusing on the characterisation of Khk expres-
sion patterns”. An example of such discrepancy may be found
examining the heart coverage tracks: while it is quite clear that the
KhkC-specific exon 3C (Ensembl ID ENSMUSE00000186455)
is hardly captured in comparison with exon 3A (Ensembl ID
ENSMUSEO00001361691), quantification estimates yielded a score
of 39.9% and 16.7% for KhkC and KhkA, respectively (Under-
lying data: Table 3). Similarly, KhkC estimates were inflated
in lung and spleen (14.9% and 18.6% to be compared with the
absence of coverage of exon 3C), as were Khk.Skip estimates
(32%) in liver (Underlying data: Table 3). Since such quanti-
fications are relying on the reference transcripts provided dur-
ing the indexing step'”, we reasoned that incorrect transcript
models might be the cause of the observed discrepancies and
therefore compared coverage tracks, normalised exon counts
and isoform models. We identified annotated differences in 3’
end annotations between all isoforms which were not reflected
on our coverage tracks (Figure 1C and Figure 3B). As Khk iso-
forms can be identified unambiguously based on the exclusion
patterns of the exons 3A and 3C and regardless of differences
in UTRs, we could investigate the impact of these UTR vari-
ations on transcript quantifications. We therefore manually
updated Khk isoform annotations to provide an identical 3’ end
to all isoforms (Underlying data: File 1 and 2) and re-estimated
isoform proportions (Figure 3A, second panel). Despite this
adjustment, inspection of the proportion estimates still revealed
erroneous estimations of isoform expression in particular in the
case of liver where KhkA was detected in levels similar to KhkC.

F1000Research 2019, 7:1956 Last updated: 26 APR 2019

Further examination of the results revealed that, while some dif-
ferences in 5° end coverage in the dataset were concordant with
the current gene annotation, they were not always reflected
in the gene model (Figure 1C and Figure 3A, heart, lung and
spleen 5° UTR coverage). Following a similar approach to the
one described earlier for 3° UTRs, we finally manually modified
Khk isoforms to provide an identical 5’ and 3’ end to all listed
isoforms (Underlying data: File 3). Transcript quantification per-
formed using this updated annotation yielded more concordant
results when compared to coverage tracks and in light of pre-
vious reports, in particular for tissues such as liver”, small
intestine®, heart™, spleen and lung (Figure 3A and 3B; Extended
data: Figure 5). Interestingly, a substantial fraction of isoforms
detected in kidney were still attributed to the Khk.Skip isoform
while both junction count analysis and single gene studies reported
a prevalence of KhkC*. Additionally, we computed the relative
Khk isoform usage using a new annotation with identical 5° and 3’
end for all isoforms except Khk.RI which was retained as such in
the gene model (Figure 3A). This modification was not sufficient
to remove Khk.RI estimation biases, with the retained intron
predicted to erroneously account for 20% of the overall gene
expression in bone marrow or spleen. We therefore confirmed the
impact and importance of both Khk.RI and UTRs annotations on
Khk isoform expression estimates.

To confirm the biological relevance of our newly estimated pro-
portions, we designed primer pairs to specifically target Khk
isoforms (see Extended data: Figure 6A and 6B; Extended data:
Table 1) and evaluated their relative expression using RT-qPCR.
The expression of total Khk was ~60-fold higher in liver and kid-
ney compared to heart, lung, and spleen (Figure 3C), confirm-
ing previously described findings®. While we did not manage to
achieve a reliable quantitative evaluation of Khk.Skip and KhkA.
C expression alone, we accurately measured the expression of
(KhkC + KhkA.C) and (KhkA + KhkA.C) in five mouse tissues
and normalized it to the total Khk expression (Figure 3C and 3D).
We thereby confirmed a strong prevalence of (KhkA + KhkA.C)
expression in heart while (KhkC + KhkA.C) accounted for most of
the expression measured in kidney and liver (Figure 3D).
Therefore, we concluded that KhkA.C levels of expression
were much lower than KhkA and KhkC in these three tissues
and that the proportion estimates derived from our adjusted
genomic  annotation reflected the RT-qPCR  measure-
ments. The isoform measurements in lung and spleen
highlighted low levels of KhkA, KhkC and KhkA.C com-
pared to total Khk expression, strongly suggesting the preva-
lence of Khk.Skip expression, as observed on coverage tracks
(Figure 3B) and in the proportion estimates derived from the
updated genomic annotation (Figure 3A).

Finally, we evaluated whether the changes brought to the
Khk transcript annotations affected the estimations of over-
all Khk expression levels. Gene level estimates obtained
using quantifications based on 3 of the modified annotations
were strongly correlated (Pearson, r > 0.99) with estimates
derived from the raw GENCODE annotation (Extended data:
Figure 7A). In addition, the high tissue specificity of Khk
expression was observed in all cases, with identical expression
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Figure 3. Khk isoform quantification estimates are improved after manual adjustment of the genomic annotation. A - Estimated relative
Khk isoform expression across all tissues in mouse, using four different genomic annotations: a raw annotation after removal of the Khk.R/
transcript, an annotation without Khk.R/ and with adjusted 3’ UTR, an annotation without Khk.R/ and adjusted 3’ and 5’ UTR, and an annotation
with adjusted 3" and 5’ UTR for all transcripts except Khk.RI. The choice of annotation greatly impacts the quantification results. B — RNA-seq
coverage track and sashimi plots illustrating the predominance of different isoforms in spleen, lung, liver, heart, and kidney. C — RT-qPCR
analysis of total Khk expression in different mouse organs. Values are expressed as fold-change compared to the expression levels obtained
for the heart, which was arbitrarily defined as 1. S-actin was used as the invariant reference gene. Data are mean + SD (n = 5). D - RT-gPCR
analysis of total Khk, KhkA + Khk.A.C, and KhkC + KhkA.C expression in different mouse organs. Values are expressed as fold-change
compared to the expression levels obtained for total Khk, which was arbitrarily defined as 1. Data are mean + SD (n = 5).

patterns between annotations (Figure 1A, Extended data:

Figure 7B).

Altogether, these findings demonstrate that UTRs and more
generally 5’ and 3’ end annotation may greatly influence
transcript quantification results. The resulting biases lead to
the identification of isoforms that can hardly be detected in
biological samples, therefore highlighting the importance of
inspecting results for any given gene of interest.

Erroneous genomic annotation of Khk increases

discrepancies between sequencing strategies and datasets
We next investigated whether such discrepancies could be
observed when using different sequencing library strategies.
To do so, we artificially created a single-end dataset by remov-
ing one read for each tissue sample. We also created a short-
read dataset by trimming the remaining reads to only retain
the first 50bp. In both cases, we aligned reads to the reference
genome and independently quantified transcript expressions using
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Salmon as previously described. Regardless of the sequencing
strategy considered, we observed a similar overestimation of
the Khk.RI fraction as well as discrepancies between propor-
tion estimates and junction counts (Extended data: Figure 8A
and 8B). Both differences were corrected using the aforemen-
tioned manually curated annotations. We then compared pro-
portion estimates between datasets for each annotation. Quite
strikingly, we noted a much better agreement in transcript esti-
mates using our manually modified annotation (Figure 4A-D).
While the use of the “raw” annotation only resulted in a 0.56
correlation (Pearson) between estimates from the paired-end
and 50bp single-end libraries, the use of an updated annota-
tion resulted in a 0.97 correlation between both platforms.
This trend was also observed between paired-end and single-
end and between single-end and 50bp single-end respectively
(Extended data: Figure 9A-F). To further evaluate the impact of
annotations on estimate concordance across datasets, we
downloaded RNA-seq data from another study profiling mRNA
expression across 13 tissues*. We quantified isoform usage for
each tissue and compared those estimates with the ones from the
50bp single-end dataset from Li er al. 2017* in order to avoid
biases due to differences in read length. In total, § tissues could
be compared between both studies. Quite strikingly, the agreement
between both datasets was not high (Pearson correlation 0.72)
when considering fractions derived using the original annotation
(Figure 4E). While the removal of Khk.RI without an adjust-
ment of the UTR did further hinder reproducibility between both
datasets (Figure 4F), we observed a much stronger consist-
ency of proportion estimates after UTR adjustment (Figure 4H,
Pearson correlation 0.73). However, the highest consistency
between datasets was reached when using the fully updated
annotation (Figure 4G, Pearson correlation 0.91). These results
therefore further underscore the importance of appropriate
annotations during transcript isoform quantifications. The use
of erroneous gene models may further increase discrepancies
between sequencing libraries and datasets as exemplified in the
case of the Khk gene.

Discussion

Gene and transcript quantifications are essential steps in many
genomic studies where the characterization of gene expres-
sion patterns is of biological relevance. The recent devel-
opment of quasi-mapping methods such as Salmon” has
drastically improved the computational speed of these quanti-
fications steps while relying on reduced computational power.
However, unlike more traditional and alignment-based methods,
they strongly rely on the provided genomic annotation. Through
the example of Khk gene expression in mouse, we describe
the importance of using a properly curated annotation to avoid
biases and erroneous isoform proportion estimates. We show
that the inclusion of an annotated, yet not detected retained
intron (Khk.RI) was sufficient to wrongly predict isoform usage
in several tissues. We also found that differences in 5° and 3’
end annotations may result in inaccurate transcript quantifica-
tions. Manual adjustment of such differences resulted in a better
agreement between isoform proportion estimates, cover-
age tracks inspections, junction counts and qPCR results in at
least 3 tissues. Both the removal of Khk.RI and UTR adjust-
ments were necessary to reach this concordance between
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profiling methods. Finally, comparison of these estimates across
different datasets and sequencing library strategies revealed
that the use of a corrected annotation strongly improves
the reproducibility of estimations between each dataset.

The use of gene or exon level counts to assess differences in
gene expression or exon usage between conditions has been
described as a robust method by several independent studies®.
Recent reports’' have also emphasized the reliability of gene-level
quantification estimates and their biological relevance. It was
therefore reassuring to observe a very good agreement between
both methods when assessing the tissue specificity of Khk expres-
sion in this dataset. Identification of higher levels of expres-
sion in liver, small intestine and kidneys reflects previously
described findings™. We thereby provide further evidence of the
reliability of gene quantification, albeit at the single gene level.
Additionally, the variations observed in expression levels across
tissues together with the previously reported alternative splic-
ing events make Khk an ideal gene to study performance of
bioinformatics tools.

We identified strong discrepancies between proportion esti-
mates and coverage tracks when quantifying Khk isoforms
while relying on the original GENCODE/Ensembl annota-
tion. In particular, the annotated retained intron Khk.RI (ENS-
MUSTO00000200978.1) was identified as a predominantly
expressed isoform in several tissues while hardly any read
could be mapped to the genomic region specific to this isoform.
RT-qPCR validations confirmed the extremely low levels of
Khk.RI in 5 mouse tissues. Previous work relying mostly on
simulated data showed that in the case of lowly expressed genes,
transcript-level estimates lack accuracy’’. However, through
the instance of Khk, we provide a concrete example of a strong
overestimation in transcript quantification and show that this is not
limited to tissues with very low expression of the corresponding
gene.

Differential exon usage analysis clearly revealed, as expected,
a preferential usage of either exon 3A (Ensembl ID ENS-
MUSE00001361691) or 3 C (Ensembl ID ENSMUSE00000186455)
in various tissues”. The discovery of a potential change in 5’
transcription start site, while not previously described for Khk,
further underscores the importance of alternative start and termi-
nation sites in transcript isoform diversification in mammals’.
Interestingly, inspection of the usage of other exons revealed
that these new start sites are most likely specific to the retention
of exon 3A or 3C, therefore suggesting that the determina-
tion of the isoform choice for Khk could be achieved solely by
considering junction and exon counts in this region.

This idiosyncrasy was further confirmed by the various iso-
form proportion estimations performed using updated anno-
tations of the Khk gene. Estimations reflected experimental
measurements, junction counts and coverage tracks only when
both 5° and 3’ end annotations were harmonized across all
annotated isoforms. Importantly, when using the naive GEN-
CODE annotation, Salmon and DRIMseq failed to reliably
quantify isoform proportions. It is also important to note that the
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Figure 4. Manual adjustment of the Khk gene model improves the concordance between estimates across sequencing library
strategies and datasets. A — Comparison of relative Khk isoforms expression estimates between the full length paired-end dataset from Li
et al. 2017%° and the short read, single-end dataset. The estimates were generated using the naive Ensembl annotation. B — Comparison
of relative Khk isoforms expression estimates between the full length paired-end dataset from Li et al., 2017°° and the short read, single-
end dataset. The estimates were generated using the modified Ensembl annotation where the Khk.R/ transcript has been removed.
C - Comparison of relative Khk isoforms expression estimates between the full length paired-end dataset from Li et al., 2017 and the
short read, single-end dataset. The estimates were generated using the modified Ensembl annotation where the Khk.RI transcript
has been removed and the 5" and 3’ UTR of other transcripts were all adjusted. D - Comparison of relative Khk isoforms expression
estimates between the full length paired-end dataset from Li et al, 2017*° and the short read, single-end dataset. The estimates were
generated using the modified Ensembl annotation where the 5" and 3’ UTR of all transcripts except Khk.Rl were all adjusted. E — Comparison
of relative Khk isoforms expression estimates between the Li et al, 2017°° dataset and the Soéllner et al., 2017% dataset, using single-
end, short (50bp) reads in each case. The estimates were generated using the naive Ensembl annotation. F — Comparison of relative Khk
isoforms expression estimates between the Li et al, 2017% dataset and the Soliner et al. 2017** dataset, using single-end, short
(50bp) reads in each case. The estimates were generated using the modified Ensembl annotation where the Khk.R!I transcript has been
removed. G — Comparison of relative Khk isoforms expression estimates between the Li et al., 2017% dataset and the Séliner et al. dataset,
using single-end, short (50bp) reads in each case. The estimates were generated using the modified Ensembl annotation where the
Khk.RI transcript has been removed and the 5" and 3’ UTR of other transcripts were all adjusted. H - Comparison of relative Khk isoforms
expression estimates between the Li et al,, 2017 dataset and the Séliner et al. dataset, using single-end, short (50bp) reads in each
case. The estimates were generated using the modified Ensembl annotation where the 5" and 3’ UTR of all transcripts except Khk.Rl
were all adjusted.
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curated RefSeq Khk gene model differs from GENCODE as it is
missing Khk.RI, Khk.Skip and the 3’ and 5° UTRs of all curated
transcripts are identical. While this would be a close configuration
to the optimal annotation presented in this study, but the absence
of Khk.Skip in the gene model would result in erroneous quanti-
fications as well. Such misestimations are likely to be observed
in other genes for which current annotations are either limited
or inaccurately reflect experimental measurements. However,
systematic harmonisation of all UTRs across annotated transcripts
might not be a general approach, especially in cases when such
differences are reflecting tissue-specific expression patterns’’.

During the preparation of this manuscript, a preprint from Sone-
son et al. reported a similar observation and proposed the crea-
tion of a new index to flag such problematic genes®. While
the current manuscript strongly emphasizes the role of 3’
UTRs in the emergence of estimation biases, we could pin-
point at least one example where 5 UTRs play a similar role
in the issue. The use of the JCC (Junction Coverage Compat-
ibility) score introduced by Soneson et al. will be greatly use-
ful to prevent misinterpretation of transcriptomics studies in
the future but will tie quantifications to the results of computa-
tionally demanding alignment methods®. Improvement of cur-
rent genomic annotations might ultimately offer an alternative
as they will allow for the sole use of fast quantification
algorithms. This might partially be achieved using transcript cat-
alogues obtained from large scale studies such as CHESS* even
though Soneson er al*® reported very little to no improvement
in their JCC scores using these new annotations.

Using an additional dataset from Soéllner et al., 2017** and in-
silico single-end and short single-end datasets from Li, B et
al. 2017%, we showed that such updated annotations have
the potential to reduce discrepancies between methods and
experiments. While this is only exemplified at the level of the
Khk gene, it is very likely that other instances will emerge as
new metrics such as JCC will enable scientists to flag prob-
lematic genes. The main results of this study exclusively focus
on the use of Salmon as a quantification software and DRIM-
Seq to estimate relative proportions, in particular as recent
reports have suggested that most quantification pipelines might
perform similarly”. To complement our main findings, we esti-
mated transcripts abundance in the Li er al., 2017 dataset using
StringTie*, as an example of a tool relying on the construction
of a splicing graph to quantify isoforms. When using the GEN-
CODE annotation as a guide for quantification, we found that
StringTie overestimated the Khk.RI expression in a fashion similar
to Salmon. This is in concordance with the report from Soneson
et al.**. In addition, we used StringTie without any supporting
annotation to enable transcript assembly from the alignments.
Inspection of the resulting newly assembled transcripts showed
that Khk.RI could not be detected (Extended Data, Figure 10).
Nevertheless, KhkA.C was also not identified in the dataset while
junction counts clearly indicate that it could be detected in a
handful of tissues, albeit with low expression levels. We there-
fore suggest that the issue reported here in the case of Salmon
might be commonly found across quantification softwares,
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and it will be interesting to assess whether similar biases may
arise with more tools. Results from Soneson er al. strongly
indicate that this is the case, at least for a group of human genes™.

Finally, the results presented in our study will provide a valu-
able resource to the scientific community investigating the role
of fructose metabolism and Khk in mammals. As each Khk iso-
form might harbor different functions, the complete mapping
of their usage across tissues will help further pinpoint their role
in different biological contexts. Our analysis was conducted on
mouse tissues but further exploration of the results presented in
Reyes et al. 20177 also showed that exons 3A and 3C of KHK
are selectively included in human tissues, across individuals.
Refining our understanding of these expression patterns in
human will be critical in particular as the KHK protein prod-
uct has already been identified as a promising target in the
treatment of non-alcoholic steato-hepatitis (NASH)*. This
study provides important background information to improve
the results of the transcriptomic work that might therefore be
necessary in the future.

Methods

Mice

C57BL/6J were obtained from The Jackson Laboratory, while
KhkA/C” mice, which are of C57BL/6 background and are
lacking both ketohexokinase-A and ketohexokinase-C, were
obtained from R. Johnson (University of Colorado) and used as
negative control. All mice were housed in a pathogen-free facil-
ity at the ETH Phenomics Center (EPIC) under standard con-
ditions (12 h light and 12 h dark cycle) with free access to food
and water. 3 female and 2 male C57BL/6]J mice and 2 male
Knhk-A/C” mice were euthanized with CO, at the age of 6 weeks
and heart, kidney, liver, lung, and spleen were subsequently
removed and shock-frozen in liquid nitrogen. The mice did not
suffer during the euthanasia with CO,; the mice were placed
into a chamber that contained room air and then CO, was
gradually introduced with no more than 6 psi to displace at least
20% of the chamber volume per minute. All protocols for ani-
mal use and experiments were reviewed and approved by the
Veterinary Office of Zurich (Switzerland).

Evaluation of Khk isoform expression in vivo

Total RNA from CS57BL/6J and KhkA/C” mice was prepared
from frozen tissues with RNeasy Mini Kit (QIAGEN, Hilden,
Germany) and treated with DNase I to remove traces of DNA.
First-strand complementary DNA (cDNA) was synthesized
with random hexamer primers using the High-Capacity cDNA
Reverse Transcription Kit (Cat. No. 4368813; Applied Bio-
systems). Quantitative reverse transcription PCR (RT-qPCR)
was performed on a Roche LightCycler 480 in duplicates using
10 ng ¢cDNA and the 2x KAPA SYBR FAST qPCR Master Mix
LC480 (Sigma). Thermal cycling was carried out with a 5 min
denaturation step at 95 °C, followed by 45 three-step cycles:
10 sec at 95 °C, 10 sec at 60 °C, and 10 sec at 72 °C. Finally,
melt curve analysis was carried out to confirm the specific ampli-
fication of a target gene and absence of primer dimers. Relative
mRNA amount was calculated using the comparative threshold
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cycle (C,) method. B -actin was used as the invariant reference
gene. The PCR amplification efficiency of RT-qPCR primer
sets was determined with serial dilutions of liver cDNAs and
was similar for all primer sets. Semiquantitative RT-PCR was
performed using Phusion High-Fidelity DNA Polymerase (New
England Biolabs) and the following 3-step amplification proto-
col: 30 sec at 98 °C (denaturation), 30 cycles of 10 sec at 98 °C,
30 sec at 63 °C, and 40 sec at 72 °C, and a final elongation step
for 5 min at 72 °C. PCR products were evaluated after
gel-electrophoresis. Primer sequences are listed in Extended data:
Table 1.

Modification of Khk transcript annotation

A fasta file containing all manually modified Khk transcripts was
created. All exonic sequences used to modify the gene model
were downloaded from the Ensembl website. A fasta file contain-
ing nucleotide sequences of all transcripts from the GENCODE
M14 annotation was loaded into R using the Biostrings v 2.46.0
package. All original Khk transcripts were removed from the
DNAStringSet object and the updated transcripts were then
added. The resulting annotation was written to a fasta file to
generate Salmon indexes (see following sections for more details).

RNA-seq data processing and alignment

Fastq files from Li er al., 2017* and Sollner et al., 2017** were
downloaded from SRA using the sra-tools software v2.7.0%. As
they only provided two replicates (instead of 4), we excluded
the testis and ovary samples from Li er al., 2017%. Additionally,
due to very low library complexities, we also excluded the pan-
creatic samples from Sollner et al., 2017*. Reads were aligned
to the M14_GRCm38.p5 reference genome using STAR 2.4.2a*
together with the GENCODE M14 annotation (STAR was
run with default parameters). The search for novel junctions was
allowed during the mapping step. Gene, exon and junction
level read counts were generated using the QoRTs software
v1.2.42* after excluding reads with multiple alignments (MAPK
score less than 255). All workflows were orchestrated using
Snakemake v 3.13.3".

Transcript quantifications

Salmon 0.9.1" and StringTie 1.3.3b* were used for transcript
quantifications. In the case of Salmon, indexes were built from
each fasta files using the default quasi-mapping mode and a k-
mer of length 31 as recommended in the software documen-
tation. Transcript isoforms were quantified using the default
VEBM algorithm. Library types were inferred by the software.
Sequence and GC bias corrections were performed during each
quantification (--seqBias and —gcBias options) and 100 bootstraps
were run to estimate the variance of abundance estimates.

In order to quantify transcripts using StringTie, alignments to
the reference genome were first re-generated as described in the
“RNA-seq data processing and alignment” section with the
additional STAR flag “--outSAMstrandField intronMotif”. Quan-
tifications were then performed with and without the GEN-
CODE annotation used as a guide (-G option in StringTie). All
other parameters were set to default values. Newly assembled
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transcripts were then merged using the transcript merge mode
(--merge) with default parameters.

Differential gene expression

Gene count tables were loaded into R (v 3.4.1) as a DESeq2*
object to conduct differential gene expression analysis. For
the purpose of differential gene expression analysis, we only
retained features labelled as “gene” in the GENCODE anno-
tation and of type protein_coding, antisense, sense_intronic,
3prime_overlapping_ncRNA, sense_overlapping or non_cod-
ing in order to exclude transcription products requiring specific
library preparations to be accurately measured. Genes with very
low counts were excluded from downstream analysis: the thresh-
old was set at 50 mapped reads across all samples, corresponding
to less than one read per sample on average. Estimated size fac-
tors were used to correct for differences in library size. Fol-
lowing the standard DESeq2 workflow®, changes in gene
expression were modelled using a variable accounting for dif-
ferences in tissue of origin for each sample. A Likelihood
Ratio Test (“LRT” option in DESeq2) was performed to com-
pare this model to a reduced model consisting of only an
intercept. Results were extracted with the DESeq2 results
function and multiple testing correction was performed using
the Benjamini Hochberg procedure*’.

Differential exon and junction usage

Exon and junction count tables from QoRTs were loaded in R
(v 3.4.1) using the JunctionSeq (v 1.8.0) package'*. Changes in
exon usage were modelled using the tissue of origin as a main
variable. Size factors and dispersions were estimated using
default parameters (options “byGenes” and “advanced” respec-
tively, see the JunctionSeq vignette for more details). Dispersion
function fits, test for differential usage and estimation of effect
sizes were also run using default parameters. Final test results
were extracted using the writeCompleteResults function.
Feature-level p values were adjusted using the Benjamini
Hochberg procedure’’. Only features with an adjusted p-value
below 0.05 were retained.

Estimation of relative isoform proportions

Transcript isoform quantifications from Salmon were loaded into
R (v 3.5.1) using the tximport package’’. Relative isoform pro-
portions and differential transcript usage were then modelled
using a Dirichlet-multinomial model as described in Nowicka et
al., 2016* and implemented in the DRIMSeq package (v 1.6.0).
Model precisions were estimated by the dmPrecision func-
tion run with default parameters, except for the search
grid ranges which were set to -15 and 15. For each sample, fea-
ture proportions were then computed using the dmFit function
(default parameters).

Data visualization

Genomic annotations and coverage tracks were plotted using
the Gviz package (v 1.22.3)*. Data from all available biological
replicates were pooled together prior to plotting each track.
Results from differential exon and junction usage were visualized
using JunctionSeq. Other plots were generated with the ggplot2
package.
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Data availability

Underlying data

Fastq files from Li ef al., 2017* are available from: https://www.
ncbi.nlm.nih.gov/bioproject/?term=PRINA375882

Fastq files from Sollner et al., 2017** are available from: https:/
www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6081/

Scripts used to generate the analysis presented in this paper
are freely and publicly available on Github: https://github.com/
chbtchris/Khk_quantifications (Archived scripts: http://doi.org/
10.5281/zenodo.2583233%).

All underlying data are available at: https://doi.org/10.17605/OSF.
[O/NMKFA™. Data are available under the terms of the Crea-
tive Commons Zero “No rights reserved” data waiver (CCO 1.0
Public domain dedication). Files available are as follows:

e Table 1: Normalized Khk counts for each sample (and
therefore tissue) considered.

e Table 2: Normalized counts for each exonic regions and
tissue group output by JunctionSeq.

¢ Table 3: Relative Khk isoform expression across all tissues
using the different genomic annotations.

e Table 4: Relative Khk isoform expression across all
tissues using the GENCODE annotation and StringTie as a
quantification software.

* File 1: Fasta file containing the sequences of Khk transcript
isoforms downloaded from GENCODE.

e File 2: Fasta file containing the sequences of Khk tran-
script isoforms after removal of the Khk.RI isoform and
adjustment of the 3” UTR for all remaining transcripts.

e File 3: Fasta file containing the sequences of Khk
transcript isoforms after removal of the Khk.RI isoform and
adjustment of the 5’ and 3° UTR for all remaining
transcripts.

e File 4: Fasta file containing the sequences of Khk
transcript isoforms after adjustment of the 5° and 3 UTR
for all remaining transcripts except Khk.RI.

Extended data

All extended data are available at: https://doi.org/10.17605/
OSFIO/NMKFA™. Data are available under the terms of the
Creative Commons Zero “No rights reserved” data waiver
(CCO 1.0 Public domain dedication). Files available are as
follows:

e Table 1: List of gPCR primers used in this study

e Figure 1: A - Normalized Khk expression levels across
tissues in mouse (data from Li et al. 2017%) using
transcript abundance estimates from Salmon as input.
Similar to observations made using raw counts, the liver,
kidney and small intestine are clearly expressing Khk
mRNA at higher levels compared to other tissues. B — Com-
parison of gene expression estimates using count tables and
transcript abundance estimates.

F1000Research 2019, 7:1956 Last updated: 26 APR 2019

Figure 2: Transcript Per Million (TPM) values for each
annotated isoform of the Khk gene as returned by Salmon.
The naive Ensembl annotation was used to estimate the
abundances.

Figure 3: RNA-seq coverage tracks and sashimi plots
highlighting the absence of Khk.RI expression in all
the tissues investigated in this study. Data obtained
from all biological replicates were merged prior to plot-
ting.

Figure 4: A — Normalized fractions of reads mapped
to all exonic region overlapping the Khk.RI transcript.
E12, which is the only Khk.RI specific region, clearly
show a reduced coverage when compared to other
regions. Exonic regions were determined using the
JunctionSeq package and their associated genomic coor-
dinates are available in Underlying Data, Table 2. B
— Schematic representing the location of Khk.RI specific
primer targets. C — Amplification plots of RT-qPCR analy-
sis of Khk.RI expression in different mouse organs (n = 5
mice). Note that the Ct or threshold cycle value at which
the fluorescence generated within a reaction crosses the
threshold, a numerical value assigned for each run reflect-
ing a statistically significant point above the calculated
baseline, is very high (> 40) and can be considered as
noise. D — Melt curves from RT-qPCR analysis of Khk.RI
expression in different mouse organs.

Figure 5: RNA-seq coverage track and sashimi plots
illustrating the predominance of different isoforms in
each tissue inspected in this study. Data obtained from
all biological replicates were merged prior to plotting.

Figure 6: A - Schematic representing the loca-
tion of Khk.A, KhkC, KhkA.C and total Khk specific
primer targets. B — Amplification plots of RT-qPCR
analysis of total Khk, KhkC, and KhkA expression in
different mouse organs (n = 5 mice). C — Melt curves
from RT-qPCR analysis of total Khk, KhkC, and KhkA
expression in different mouse organs.

Figure 7: A - Normalized Khk expression levels across
mouse tissues (data from Li et al, 2017*) using the
transcript abundance estimates from Salmon using four
annotations used in the study: a naive annotation after
removal of the Khk.RI transcript, an annotation without
Khk.RI and with adjusted 3° UTR, an annotation with-
out Khk.RI and adjusted 3’ and 5° UTR, and an anno-
tation with adjusted 3” and 5 UTR for all transcripts
except Khk.RI. B — Comparison of the normalized Khk
expression levels obtained using four different annota-
tions used in the study: a naive annotation after removal
of the Khk.RI transcript, an annotation without Khk.
RI and with adjusted 3° UTR, an annotation without
Khk.RI and adjusted 3’ and 5’ UTR, and an annotation with
adjusted 3’ and 5’ UTR for all transcripts except Khk.RI. All
reported coefficients are Pearson correlations.

Figure 8: A - Estimated relative Khk isoform expres-
sion across all tissues in mouse, using the single-end
dataset created from Li et al., 2017%. Three different
genomic annotations were considered: a naive annotation,
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a naive annotation after removal of the Khk.RI transcript,
and an annotation without Khk.RI and with adjusted 3’
and 5 UTR. The choice of annotation greatly impacts
the quantification results. B - Estimated relative Khk iso-
form expression across all tissues in mouse, using the
S50bp single-end dataset created from Li er al., 2017%.
Three different genomic annotations were considered:
a naive annotation, a naive annotation after removal
of the Khk.RI transcript, and an annotation without Khk.RI
and with adjusted 3’ and 5° UTR. The choice of annotation
greatly impacts the quantification results.

e Figure 9: A — Comparison of relative Khk isoforms
expression estimates between the full length paired-end
dataset from Li et al., 2017% and the full length, single-
end dataset. The estimates were generated using the naive
Ensembl annotation. B — Comparison of relative Khk
isoforms expression estimates between the full length
paired-end dataset from Li et al., 2017* and the full length,
single-end dataset. The estimates were generated using
the modified Ensembl annotation where the Khk.RI tran-
script has been removed. C — Comparison of relative Khk
isoforms expression estimates between the full length
paired-end dataset from Li et al., 2017* and the full length,
single-end dataset. The estimates were generated using
the modified Ensembl annotation where the Khk.RI tran-
script has been removed and the 5’ and 3 UTR of other
transcripts were all adjusted. D — Comparison of relative
Khk isoforms expression estimates between the full length
single-end dataset generated from Li et al., 2017* and the
short read, single-end dataset. The estimates were generated
using the naive Ensembl annotation. E — Comparison of
relative Khk isoforms expression estimates between the full
length single-end dataset generated from Li et al., 2017%
and the short read, single-end dataset. The estimates were
generated using the modified Ensembl annotation where
the Khk.RI transcript has been removed. F — Comparison
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of relative Khk isoforms expression estimates between
the full length single-end dataset generated from
Li et al., 2017* and the short read, single-end data-
set. The estimates were generated using the modified
Ensembl annotations where the Khk.RI transcript has been
removed and the 5* and 3’ UTR of other transcripts were
adjusted.

e Figure 10: A - Estimated relative Khk isoform expres-
sion across all tissues in mouse using StringTie as a
quantification software and the naive GENCODE anno-
tation. B — Comparison of the Khk gene model provided
by GENCODE and the newly assembled transcripts from
StringTie. Transcripts assembled by StringTie are colored
in red (transcript id 25257.1, 25257.2, 25257.3). No
transcript could be associated to Khk.RI or Khk.Skip
using the StringTie approach.
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UTRs were modified to be the same for all isoforms (first 3’ and then 5’) which means that new
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isoforms are added to the gene model and some were removed. The removal of a transcript
strongly affecting results is arguably more problematic for transcript quantification

methods because we would often expect the set of isoforms to contain unexpressed isoforms in a
specific dataset. The other issue (an incomplete gene model) is already known to be problematic .
However, | was not sure whether the UTR issue could potentially make the Khk.Rl isoform issue
worse. Therefore, | think it would be helpful to check whether Khk.RI inclusion remains problematic
after making the UTR changes to the other isoforms. If adding an unexpressed isoform to the gene
model can cause such an issue then this is a problem even when the gene model is correct. Also,
there is a statement later on that “the removal of Khk.RI did further hinder reproducibility between
both datasets” which seems to contradict the idea that removing this isoform is a good idea. | think
this sentence is also a bit unclear and could do with some more explanation.

2. The modifications to the gene model in the end involves creating a new set of isoforms by
combining existing exons and UTRs in a new configuration. Algorithms exist to do this in a
data-driven way, e.g. the FlipFlop algorithm is designed to learn a set of isoforms from data by
searching over all exon combinations using sparse inference on a splicing graph. Another example
is StringTie and there may be later ones I'm not aware of. | think it would be useful to attempt to
apply an algorithm of this type to this dataset to see how it would perform as this may provide a
computational way to do something similar to what has been done manually in this example.
Alternatively, these methods may fail and that would also be of interest.

Minor comments:

1. Page 3 - “the recent development of alignment-free....has provided the possibility to quantify each
individual transcript”. Methods that predate Salmon were already available for transcript
quantification e.g. RSEM, eXpress, bitseq etc. | don't think we should confuse the speed-up
introduced in Salmon and Kallisto with the transcript-level inference model introduced by RSEM
and | think RSEM could have been used in this paper with similar conclusions.

2. It would be good to know whether gene expression estimates based on the different gene models
are performing differently, i.e. estimating gene expression by summing up isoform expression
rather than counting. This has been discussed in the literature 2 and this issue could be explored
in this dataset.

Typos:
Page 7 - “on estimate concordance” should be estimated.
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I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Christophe Chabbert, ETH, Switzerland

We thank all the reviewers for their insightful comments and suggestions which have helped
improve the quality of the manuscript. The main changes are summarized in the “Amendments
from Version 1” section describing the new version of the manuscript. We will address the specific
comments in this section.

Major Point 1

We have subjected the gene model annotation to two rounds of modifications to assess the impact
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of Khk.RI and UTRs on relative Khk isoform expression estimates. To assess the importance of the
order in which these modifications happen, we have generated an additional annotation where
Khk.Rl is retained and all other Khk annotated transcripts have identical 5’ and 3’ UTRs. This
annotation was used to estimate Khk isoform proportions in the Li et al (using the paired end and
50bp single-end data) and the Sollner et al datasets. We observed that implementing this new UTR
model was not sufficient to remove the Khk.R/ estimation bias in the paired-end data (updated
Figure 3A). This bias was still particularly important in the bone marrow and spleen datasets where
Khk.RI was estimated to account for more that 20% of the overall gene expression.

Comparison of the estimates between the paired-end dataset and the 50bp dataset derived from Li
et al showed that this modification was however more beneficial than the removal of Khk.RI
(Pearson correlation of 0.86 as opposed to 0.79 when Khk.Rl is removed). Nevertheless, the best
agreement between both libraries was still obtained after removal of Khk.RI and extension of the
UTRs (Pearson correlation of 0.97).

Finally, comparison of the estimates of the Li et al and Sollner et al datasets revealed that the
extension of the UTRs (Pearson correlation of 0.73) was more beneficial than Khk.RI removal
(Pearson correlation of 0.46) but provided hardly any improvement over the naive GENCODE
annotations (Pearson correlation of 0.73). The complete set of modifications including Khk.R!
removal and homogenization of the UTR was required to reach higher concordance between both
datasets (Pearson correlation 0.91).

Overall, these observations suggest that both modifications are indeed needed to improve Khk
transcript quantification results in the datasets considered in this study.

We have updated main Figure 3, main Figure 4 and the underlying data table 3 to report these
findings. The result and discussion section of the article have also been modified accordingly:

“Additionally, we computed the relative Khk isoform usage using a new annotation with identical 5’
and 3’ end for all isoforms except Khk.RI which was retained as such in the gene model (Figure
3A). This modification was not sufficient to remove Khk.Rl estimation biases, with the retained
intron predicted to erroneously account for 20% of the overall gene expression in bone marrow or
spleen. We therefore confirmed the impact and importance of both Khk.RI and UTRs annotations
on isoform expression estimates for that gene.”

“Both the removal of Khk.RI and UTR adjustments were necessary to reach this concordance
between profiling methods.”

Finally, we have modified the mentioned statement to emphasise the importance of performing
both modifications on the concordance between estimates:

“While the removal of Khk.RI without an adjustment of the UTR did further hinder reproducibility
between both datasets, we observed a much stronger consistency of proportion estimates when
using the manually updated annotation”

Major Point 2

Following this recommendation, we used StringTie as a complementary method to estimate
transcript abundance across all tissues, with and without the reference annotation from
GENCODE. Estimations output using the reference annotation still showed that the Khk.RI isoform
still accounts for at least 15% of expressed isoform in 9 tissues. The results are presented in the
Extended data, Figure 10A and the quantification results stored in the underlying data table 4. We
also obtained StringTie quantifications without using a supporting genomic annotation, thereby
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allowing for the assembly of transcript by relying only on the current dataset. After merging the
discovered transcript, we examined the resulting annotation for the Khk gene and compared it with
the current GENCODE gene model (Extended data, Figure 10B). Quite interestingly, no
corresponding Khk.RI isoform could be detected but Khk.A, Khk.C and Khk.Skip were all
identified, albeit with UTR regions differing from the GENCODE annotation. No KhkA.C isoform
could be detected while junction counts and coverage tracks indicate that it is expressed in low
levels in certain tissues (liver or small intestine for example).

Taken together, these results suggest that, when relying on current annotations, StringTie is
subject to similar biases as Salmon (in accordance with the observations made in Soneson et al)
when it comes to the erroneous detection of the Khk.RI unexpressed transcript. When relying on
transcript assembly, StringTie does provide different UTRs from the GENCODE annotation but
fails to detect the KhkAxC isoform. As it is beyond the scope of this study to deliver a
computational solution to what was achieved manually and at the single gene level, we have
reported our observations but will not evaluate the feasibility of the scalability of an improved
StringTie approach to tackle this problem.

We have modified the discussion section of the article as follows:

“To complement our main findings, we estimated transcripts abundance in the Li et al dataset
using StringTie, as an example of tool relying on the construction of a splicing graph to quantify
isoforms. When using the GENCODE annotation as a guide for quantification, we found that
StringTie overestimated the Khk.RI expression in a fashion similar to Salmon. This is in
concordance with the report from Soneson et al®. In addition, we used StringTie without any
supporting annotation to enable transcript assembly from the alignments. Inspection of the
resulting newly assembled transcripts showed that Khk.RI could not be detected (Extended Data,
Figure 10). Nevertheless, KhkA.C was also not identified in the dataset while junction counts
clearly indicate that it could be detected in a handful of tissues, albeit with low expression levels.
We therefore suggest that the issue reported here in the case of Salmon might be commonly found
across quantification software, and it will be interesting to assess whether similar biases may arise
with more tools. Results from Soneson et al. strongly indicate that this is the case, at least for a
group of human genes 39 .”

The method section has also been updated to document the parameters and settings used for the
StringTie quantifications:

“In order to quantify transcript using stringTie, alignments to the reference genome were first
re-generated as described in the “RNA-seq data processing and alignment” section with the
additional STAR flag “~-outSAMstrandField intronMotif”. Quantifications were then performed with
and without the GENCODE annotation used as a guide (-G option in stringTie). All other
parameters were set to default values. Newly assembled transcripts were then merged using the
transcript merge mode (--merge) with default parameters.”

Minor Point 1

This is true and we have updated this section of the introduction to make sure this distinction is
made clear. The section is now written as follows:

“In addition, the recent development of alignment-free transcript quantification methods has
provided the possibility to efficiently and rapidly quantify each individual transcript 1>~ 19 Such
approaches are indeed computationally much less demanding and faster than alignment-based
methods 15 . Moreover, they have been shown to overcome the difficulty of handling multi-mapped
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reads, which can create biased results in count-based analysis 21"

Minor Point 2

This is a good suggestion and following this recommendation and the major point 1 raised by
Patrick Kimes, we have used tximport to obtain gene level estimates based on Salmon transcript
quantifications from 3 of the modified annotations and the original GENCODE annotation. The
results are now presented in the Extended Data, Figure 7. We found the gene level estimates to be
consistent across all annotations and tissues and the patterns of expression across tissues to be
conserved. In particular, Khk was found to be mostly expressed in liver, kidney and small intestine
and that its expression was strongly tissue specific (adjusted p-value of 0 using the LRM from
DESeq2 as described in the first version of the article). We have consequently added the following
paragraph in the result section:

“Finally, we evaluated whether the changes brought to the Khk transcript annotations affected the
estimations of overall Khk expression levels. Gene level estimates obtained using quantifications
based on the 3 modified annotations were strongly correlated (Pearson, r > 0.99) with estimates
derived from the naive GENCODE annotation (Extended data: Figure 7A). In addition, the high
tissue specificity of Khk expression was observed in all cases, with expression patterns identical
between annotations (Figure 1A, Extended data: Figure 7B).”

Competing Interests: CDC is a full time employee of Roche
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Chabbert and colleagues did intricate work to measure how erroneous gene annotations without careful
curation can lead to errors in gene expression analysis. This is a recurring problem in analysis of gene
expression that has recently started to be addressed. In this work, they used a mouse gene
(ketohexokinase) as a model to analyze publicly available data employing current alignment-free
approaches to transcript quantification. The authors bring a real problem to the table and presents a good
alternative as to how to proceed before analysis. Thanks for the deep study on how isoform annotations
can affect gene expression quantification.

Comments -
® |nFigure 2, is it possible to show the same coverage tracks and assayed tissues (2B vs 2C)? What
does the R1 isoform look like in the spleen? Do the authors have any theories about why the
software is misusing the retained intron information during quantification?
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®  Why might correcting 3’ UTRs fix the problem? Would manually curating the 3’ UTR for each
isoform make a difference? Same question for the 5" UTR. A lot of times, the difference in isoforms
is in transcription start sites, which have been observed to relate to downstream transcript
processing events including splicing and poly-A site selection.

® Do the authors have any theories about how to generalize this approach for studies about many
genes?

®  How do the annotations for Khk change between databases? Would a unified annotation set using
data from beyond Ensembl improve isoform quantification?
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We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

Christophe Chabbert, ETH, Switzerland

We thank all the reviewers for their insightful comments and suggestions which have helped
improve the quality of the manuscript. The main changes are summarized in the “Amendments
from Version 1” section describing the new version of the manuscript. We will address the specific
comments in this section.

Point 1:

The coverage tracks for all available tissues are shown either in Figure 2 or in the Extended Data,
Figure 3 (accessible via this link - please make sure to expand the explorer tree on the left to make
all files visible).

In this study we focused on identifying an example of gene model configuration that might be
problematic. Although identifying which aspects of the quantification algorithms are causing this
issue is definitely of interest, this question is beyond the scope of this study. Nevertheless, we
invite the reviewers to consult the paper from Soneson et al as it provides additional insights into
this aspect and explores other parameters, such as the choice of quantification method. We are
hoping that the bioinformatics community will be able to identify the root cause of these biases.

Point 2:

This study focuses on providing an example of quantification bias and on highlighting some
aspects of a gene model that have a strong impact on this bias. Identifying the algorithmic cause of
the problem would be very interesting but is unfortunately beyond the scope of the work reported
here. In the example of Khk, we have shown in this paper that the use of homogenous 3’ UTRs and
5’ UTRs across transcripts has helped overcome the quantification issue. Additional work will be
required to determine whether that would be the case for all problematic genes and but this is also
not part of the current study.

As pointed out, some reports have indeed shown that changes in 5’ or 3’ end are an important
source of isoform diversity, which might complicate the interpretation of quantification results. As
we mentioned in the abstract and in the discussion, it will be important to always thoroughly
confirm such findings derived from transcript quantification studies. In addition, it is important to
note that standard RNA-seq protocols are usually not suited to identify such changes in 5’ or 3’ end
usage. Indeed, it is recommended to use protocols such as CAGE or 3'T-fill capture that can
unambiguously identify transcription start or end. Therefore, such cases should be handled with an
adequate experimental setting rather than standard RNA-seq strategies.

Point 3:

As previously commented in Points 1 and 2, our study did not aim at providing a generalized
method that identifies problematic genes such as Khk or to provide a universal solution to the
issue. The study from Soneson et al introduces the JCC index, which should be very helpful to
identify problematic genes. In addition, in order to reduce the risk of making erroneous conclusions
from large data analyses, we recommend confirming important findings using orthogonal methods
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(as stated in the abstract) such as count based approaches or well-targeted low throughput
experiments such as qPCR for example.

Point 4:

In mouse, Khk annotations differ between Ensembl and RefSeq (please see the RefSeq annotation
here, curated transcript NM_). When focusing on the curated transcripts, the most striking
differences with the GENCODE annotation are the lack of Khk.RI, Khk.Skip and identical 5’ and 3’
UTRs. This would therefore be an equivalent situation to the one presented in this paper but
without the Khk.Skip transcript available for quantification. This would therefore result in erroneous
predictions as well. To comment on this point, we have added the following statement in the
discussion section of the paper:

“It is also important to note that the curated RefSeq Khk gene model differs from the GENCODE as
it is missing Khk.RI, Khk.Skip and the 3’ and 5’ UTRs of all curated transcripts are identical. While
this would be a close configuration to the optimal annotation presented in this study, the absence
of Khk.Skip in the gene model would result in erroneous quantifications as well.”

While a consolidated annotation based on transcript model derived from large datasets might be
an appealing idea, recent results from Soneson et al showed that in practice, this did not improve
transcript estimate accuracy for problematic genes. We updated the discussion section of the
paper in order to elaborate on this matter:

‘Improvement of current genomic annotations might ultimately offer an alternative as they will allow
for the sole use of fast quantification algorithms. This might partially be achieved using transcript
catalogues obtained from large scale studies such as CHESS even though Soneson et al reported
very little to no improvement in their JCC scores using these new annotations.”

Competing Interests: CDC is a full time employee of Roche
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Using the example of murine ketohexokinase (Khk), the authors present an analysis of the limitations of a
current alignment-free approach (Salmon) to isoform-level quantification using RNA-seq data. In
particular, using publicly available data sets, primarily from the Mouse BodyMap project ', the authors
show that transcript quantification using Salmon is highly sensitive to the specified reference
transcriptome. These results are corroborated using gRT-PCR measurements of relative isoform
abundance across several mouse tissues included in the study.

The authors apply two approaches to modify the commonly used GENCODE annotations for Khk to
obtain improved estimates of isoform abundance using Salmon. First, the authors consider removing an
annotated transcript, Khk.RI, with low support in unique exonic regions. Second, the authors modify the
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original annotations by trimming all 5' and 3' differences between isoforms. The authors show that with
these two procedures, the resulting isoform estimates are more consistent across library protocols and
across experiments - comparing against data from a separate study of mouse tissues 2. The advantage of
removing weakly supported isoforms is in line with previous work which showed the benefits of prefiltering
isoforms for false discovery rate control in studies of differential transcript usage °.

The conclusion is the need for "manual curation" of transcript annotations to improve quantification by
current alignment-free approaches, and no general approaches are provided for improving all
annotations. This is fine, as providing general guidelines (aside from careful review of isoform
annotations) does not appear to be the purpose of this article.

Overall, the paper provides an interesting and detailed analysis of a single gene that complements the
growing literature on challenges in isoform-level quantification with RNA-seq. However, a few issues
should be addressed before the paper and the analysis can be considered complete. These issues and a
few other minor points are described below.

Major Issues

1. It appears that all gene-level analyses were carried out using gene count tables obtained using the
QoRTs software, presumably based on the original ("naive") GENCODE transcript annotations.
However, as one of the references cited by the authors points out 4, isoform-level quantification
provides improved estimates of gene expression over simple count-based approaches. | am
curious to see how the Salmon-based estimates (using tximport) of gene-level expression 1)
compare with the QoRTs count tables, and 2) change with modifications to the transcript
annotations. While the modified annotations appear to improve isoform-level estimates, it is also
important to verify that they do not reduce the accuracy of gene-level estimates. This would further
confirm the "reliability of gene expression”, as described by the authors.

2. Inthe analysis of Salmon-based isoform quantification results, the authors claim that "inspection of
the junction reads and coverage tracks revealed discrepancies between quantification estimates
and expected results for several tissues." How were the expected results determined? From the
text, this appears to be based on visual inspection of the coverage plots. However, per-base
coverage can be tricky to visually interpret due to biases in RNA-seq data, e.g. sequence specific
bias and fragment-level GC bias °. Ideally, the definition of "expected results" should be made
more concrete, e.g. using a metric such as the expected bias-corrected junction coverage as in
Soneson et al., (2018) © or quantification of exon coverage as in Figure 1C. Regardless, the
wording should be updated to more clearly state what constitutes "expected results" and how they
were determined.

3. While the authors claim that "differences in 5' and 3' end annotations between all isoforms ... were
not reflected on our coverage tracks," this does not appear to be true. In fact, there appears to be a
clear difference in TSS coverage between tissues (Figure 3B). Notably, differences in 5' coverage
appear to correspond to differences in coverage of the Khk.Skip splice junction (in agreement with
GENCODE annotations). Additionally, clear TSS coverage differences were also observed and
noted in the exon-level count analysis (Figure 1C), further supporting the presence and importance
of TSS differences. The problem appears to be a mis-annotation of the 5' start site for the KhkC
isoform (see Figure 1C where liver and kidney, two tissues with high KhkC preference according to
RT-gPCR analysis, show significantly lower coverage in alternate start sites E01-E03). In light of
these observations, the decision to completely trim all 5' and 3' differences seems rather extreme,
and referring to the trimmed annotations as a "correction” of the gene models may not be accurate.
Especially since such a trimming would result in the complete loss of the differential 5' behavior
discovered earlier in the manuscript. This is particularly important as others have shown that start
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and termination site differences are the primary sources of isoform differences across human
tissues /. More justification and careful discussion of the limitations of this general trimming
procedure are needed. Rather than a "correction”, this appears to be a particularly aggressive
modification that works in this setting because all isoforms differ by more than just the trimmed 5'
and 3' regions (and not because "differences were not reflected on our coverage tracks", as stated
in the text).

In modifying the GENCODE annotations, the authors use two steps. First, the removal of
unexpressed transcript annotations, and second, the trimming of 5' and 3' differences. Figure 4D-F
shows that simply removing the Khk.RlI isoform from the annotations actually reduces the
agreement between the two data sets, while additionally trimming 5' and 3' ends appears to greatly
improve agreement. Have the authors considered how estimates change by applying the 5' and 3'
trimming procedure without removing the Khk.RI transcript from the annotations? From the current
analysis, it is unclear how much removing Khk.RlI is improving the final result (with trimming),
because these changes are not additive.

While details are included for the Khk A/C-/- negative control mice, details on the non-control
mouse tissue samples used for RT-PCR and gRT-PCR analyses are missing. How were these
samples obtained and matched with the publicly available Mouse BodyMap RNA-seq data? This
should be described in the Methods section.

Minor Issues

1.

The authors claim that alignment-free transcript quantification methods have "provided the
possibility to quantify each individual transcript", and that "this task is often impossible to complete
using traditional count approaches." However, several methods for transcript quantification predate
alignment-free methods, including some referenced later in the same section (Cufflinks, casper,
FlipFlop), among others (RSEM, eXpress). It is also unclear what is meant by "often impossible."
The wording in this section should be clarified.

. ltis unclear what "one common approach" is referencing at the beginning of the second paragraph

describing differential gene expression (DGE) analysis. This is particularly jarring as the previous
paragraph ends with noting the challenges of studying "complex events such as splicing or isoform
usage switch". DGE analysis does not address these questions.

The authors claim that "DESeqg2-tximport and sleuth [incorporate] estimates of inferential variances
obtained during the quantification". While this is true of sleuth, | do not believe this is true of
DESeq2-tximport. If it is, an appropriate reference should be added (none of the currently cited
references describe this feature). Additionally, the reference linked to DESeq2-tximport (reference
22 in the article) ® describes benchmarking several DGE methods to scRNA-seq data, and is a
primary source for neither DESeq2 nor tximport. The more relevant reference would seem to be
(reference 20 in the article) “ which describes the tximport software package.

. Itis unclear what is being referred to by "these configurations", when claiming "no systematic

evaluation of the impact of these configurations has been conducted."

The figure referenced in ".. hardly any detectable expression of the transcript (Figure 2B ...", should
be "Figure 2C". It would also be helpful if the exon ID from the figure (E012) was also included in
the text for easier reference.

Description and axes of Figure 3C,D should be corrected to reflect the fact that KhkA and KhkC
estimates are actually (KhkA + KhkA.C) and (KhkC + KhkA.C) estimates, as described in the text.
In the Results section, "junctionSeq" should be stylized "JunctionSeq" for consistency.
Throughout, "Genecode" is probably meant to be "GENCODE" (or "Gencode").
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Christophe Chabbert, ETH, Switzerland

We thank all the reviewers for their insightful comments and suggestions which have helped
improve the quality of the manuscript. The main changes are summarized in the “Amendments
from Version 1” section describing the new version of the manuscript. We will address the specific
comments in this section.

Major Point 1

Thank you for making this suggestion. In order to address this point, we have used tximport to
compute Khk expression levels from salmon estimates generated using the naive and all modified
annotations (including the new one added to this version, see major comment 4). A comparison
between the naive annotation estimates and QoRTs counts is provided in the extended data,
Figure 1B. A comparison between estimates from all tested annotations is now presented in the
extended data, Figure 7 A and B. Examination of the tissue expression patterns of Khk (Panel A)
and the correlation between gene level estimates clearly show a very good agreement between all
annotations, thereby suggesting that the modifications have little impact on these estimates. We
also verified that the very high tissue specificity of Khk in every case (adjusted p-value of 0 with
DESeq2, following the similar analytical framework as described in the first version of the
manuscript).

In order to clarify this point, we have added the following statement in the result section:

“These results were all confirmed using the gene level estimates based on Salmon quantifications
(Extended Data Figure 1A and B). In particular, patterns of Khk expression across tissues were
highly concordant between count-based and Salmon estimates.”
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“Finally, we evaluated whether the changes brought to the Khk transcript annotations affected the
estimations of overall Khk expression levels. Gene level estimates obtained using quantifications
based on the 3 modified annotations were strongly correlated (Pearson, r > 0.99) with estimates
derived from the naive GENCODE annotation (Extended data: Figure 7A). In addition, the high
tissue specificity of Khk expression was observed in all cases, with identical expression patterns
between annotations (Figure 1A, Extended data: Figure 7B).”

Major Point 2

The expected results were determined using an inspection of the coverage tracks, the normalized
exon coverage results obtained QoRTs and DEXSeq and previous reports from single gene
studies. We have modified the wording in this section:

‘Despite this adjustment, inspection of the junction reads, coverage tracks, and normalised exon
and junction counts derived from QoRTs (Figure 1C) revealed discrepancies between
quantification estimates and results derived from alignment-based methods (Figure 3A and 3B).
These quantification estimates also did not reflect the observations made by previous reports
focusing on the characterisation of Khk expression patterns36. An example of such discrepancy
may be found examining the heart coverage tracks”

Major Point 3

Thank you for pointing to this lack of clarity in the manuscript. It is indeed not the objective of this
manuscript to suggest that a trimming or a standard homogenisation of the UTRs of all annotated
transcripts of a gene will improve quantification results. Such an update of the annotation is
possible because all Khk isoforms can be detected unambiguously just by considering the
exclusion or inclusion levels of exon 3A and 3C (as partially stated in the discussion section). We
have now made this clearer in the result section as well and explicitly mentioned this idiosyncrasy
of the Khk gene model. We have also expanded the discussion section to elaborate on the
limitations of this method for cases where UTRs are the main source of variability between
isoforms of the same gene.

Finally, we would like to emphasize that the term correction is never used in this result section. In
the title and abstract of this work, it refers primarily to the removal of the Khk.RI which is indeed a
correction as this transcript expression levels remain below the threshold of detectability in the
highly sensitive RT-gPCR assays.

The newly modified result section now reads as follows:

“Since such quantifications are relying on the reference transcripts provided during the indexing
step 1%, we reasoned that incorrect transcript models might be the cause of the observed
discrepancies and therefore compared coverage tracks, normalized exon counts and isoform
models. We identified annotated differences in 3’ end annotations between all isoforms which were
not reflected on our coverage tracks (Figure 1C and Figure 3B). As Khk isoforms can be identified
unambiguously based on the exclusion patterns of the exons 3A and 3C and regardless of
differences in UTRS, we could investigate the impact of these UTR variations on transcript
quantifications. We therefore manually updated Khk isoform annotations to provide an identical 3’
end to all isoforms (Underlying data: File 1 and 2) and re-estimated isoform proportions (Figure 3A,
middle panel). Despite this adjustment, inspection of the proportion estimates still revealed
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erroneous estimations of isoform expression in particular in the case of liver where KhkA was
detected in levels similar to KhkC. Further examination of the results revealed that, while some
differences in 5’ end coverage in the dataset were concordant with the current gene annotation,
they were not always reflected in the gene model (Figure 1C and Figure 3A, Heart, Lung and
Spleen 5’ UTR coverage). Following a similar approach to the one described earlier for 3’ UTRs,
we finally manually modified Khk isoforms to provide an identical 5° and 3’ end to all listed isoforms
(Underlying data: File 3).”

The updated discussion section reads as follows:

“However, systematic harmonization of all UTRs across annotated transcripts might not be a
general approach, especially in cases when such differences are reflecting tissue specific
expression patterns”

Major Point 4

To address this point, we have generated an additional annotation where Khk.Rl is retained while
all other Khk annotated transcripts have identical 5’ and 3’ UTRs. This annotation was used to
estimate Khk isoform proportions in the Li et al (using the paired end and 50bp single-end data)
and the Sdliner et al datasets. We observed that implementing this new UTR model was not
sufficient to remove the Khk.RI estimation bias in the paired-end data (updated Figure 3A). This
bias was still particularly important in the bone marrow and spleen datasets where Khk.RI was
estimated to account for more that 20% of the overall gene expression.

Comparison of the estimates between the paired-end dataset and the 50bp dataset derived from Li
et al showed that this modification was however more beneficial than the removal of Khk.RI
(Pearson correlation of 0.86 as opposed to 0.79 when Khk.Rl is removed). Nevertheless, the best
agreement between both libraries was still obtained after removal of Khk.RI and extension of the
UTRs (Pearson correlation of 0.97).

Finally, comparison of the estimates of the Li et al and Séliner et al datasets revealed that
extension of the UTRs (Pearson correlation of 0.73) was more beneficial than Khk.RI removal
(Pearson correlation of 0.46) but provided hardly any improvement over the naive GENCODE
annotations (Pearson correlation of 0.73). The complete set of modifications including Khk.R!
removal and homogenization of UTR was required to reach higher concordance between both
datasets (Pearson correlation 0.91).

Overall, these observations suggest that both modifications are indeed needed to improve Khk
transcript quantification results in the datasets considered in this study.

We have updated main Figure 3, main Figure 4 and the underlying data table 3 to report these
findings. The result and discussion section of the article have also been modified accordingly:

“Additionally, we computed the relative Khk isoform usage using a new annotation with identical 5’
and 3’ end for all isoforms except Khk.RI which was retained as such in the gene model (Figure
3A). This modification was not sufficient to remove Khk.RI estimation biases, with the retained
intron predicted to erroneously account for 20% of the overall gene expression in bone marrow or
spleen. We therefore confirmed the impact and importance of both Khk.RI and UTRs annotations
on isoform expression estimates for that gene.”

“Both the removal of Khk.RI and UTR adjustments were necessary to reach this concordance
between profiling methods.”
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Major Point 5

Il mice used in this study, C57BL/6J control and KhkA/C 7~ mice, were treated in a similar fashion
and tissue were harvested on the same day. Additionally, RNA extraction, cDNA synthesis and
gene expression analysis via RT-qPCR and semiquantitative RT-PCR were performed within the
same experimental run. Differences in mRNA expression for Khk and Khk isoforms were evaluated
via normalization to the internal reference gene B-actin for each sample. The wording in the
methods section of the article has been modified accordingly:

“C57BL/6J were obtained from The Jackson Laboratory while KhkA/C 7~ mice, which are of
C57BL/6 background and are lacking both ketohexokinase-A and ketohexokinase-C, were
obtained from R. Johnson (University of Colorado) and used as negative control. All mice were
housed in a pathogen-free facility at the ETH Phenomics Center (EPIC) under standard conditions
(12 h light and 12 h dark cycle) with free access to food and water.”

“Total RNA from C57BL/6J and KhkA/C”- mice was prepared from frozen tissues with RNeasy Mini
Kit (QIAGEN, Hilden, Germany) and treated with DNase | to remove traces of DNA.”

Minor Point 1
This sentence is indeed confusing and misleading and has therefore been removed from the
introduction.

Minor Point 2
We have modified the start of the second paragraph to make the statement clearer:

“One common approach to analyse RNA-seq datasets consists in identifying significant changes in
expression levels between two or more experimental conditions using gene-level counts”

Minor point 3

Indeed, DESeqg2-tximport cannot incorporate estimates of inferential variances. We have therefore
updated the statement and corrected the reference, which should be the publication describing the
tximport package.

Minor point 4
We have corrected the sentence to hopefully clarify its meaning:

“To our knowledge, no systematic evaluation of the impact of the presence of low coverage on
such key regions has been conducted and detailed reports of such examples in real datasets are
still missing.”

Minor point 5
We have updated the figure reference in the main text and referenced the exon E012.

Minor point 6, 7, 8
Thank you for taking the time to highlight these discrepancies. We have corrected the wording in
the Figure and the changed the “JunctionSeq” and “GENCODE” formatting in the main text.

Competing Interests: CDC is a full-time employee of Roche
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