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Abstract

Previous studies have not adequately considered the influence of adiposity and activity-related 

energy expenditure (AEE) on gut microbe diversity. We determined associations of gut microbiota 

diversity with measures of cardiorespiratory fitness while accounting for the potential effects of 

%body fat and free-living AEE. Cancer treatment uniquely triggers multiple physiologic shifts 

detrimental to overall health. Though previous research indicates a link between gut microbiota 

and cardiorespiratory fitness, it is unclear whether these findings are due to potential underlying 

effects %body fat or free-living activity energy expenditure (AEE). Microbe composition of fecal 

specimens from 37 breast cancer survivors were determined using 16S microbiome analyses. 

Individual-sample microbiota diversity (α-diversity) and between-sample community differences 

(β-diversity) were examined. Peak oxygen uptake (V̇O2peak) was estimated from a graded exercise 

test (GXT) consistent with the modified-Naughton protocol, in which, exercise terminates at 85% 

age-predicted heart rate max (HRmax). AEE was measured over 10-days using doubly-labeled 

water wherein %body fat was calculated from total body water. Pearson correlations revealed α-
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diversity indices (Chao1, Observed Species, PD Whole Tree, Shannon) positively associated with 

V̇O2peak (r = 0.34 to 0.51; p < 0.05) whereas %HRmax during Stages 1–4 of the GXT (r = −0.34 to 

−0.50; p < 0.05) and %body fat (r = −0.32 to −0.41; p < 0.05) were negatively associated with the 

same α-diversity indices. Multiple linear regression models showed V̇O2peak accounted for 22% 

and 26% of the variance in taxonomic richness (Observed Species) and phylogenic diversity after 

adjustment for %body fat and menopausal status. Unweighted UniFrac (β-diversity) was 

significant for several outcomes involving cardiorespiratory fitness and significant taxa 

comparisons were found. Associations between gut microbiota and free-living AEE were not 

found. Results from the present work suggest cardiorespiratory fitness, not physical activity, is a 

superior correlate of gut microbiota diversity.

Keywords

cardiovascular; doubly-labeled water; energy expenditure; gut microbiome; maximal oxygen 
uptake

INTRODUCTION

Early detection and targeted therapies have improved 5-year relative survival rates (89%), 

such that, the number of breast cancer survivors (BCS) in United States is projected to soon 

exceed 4 million (Miller et al., 2016). Regrettably, among these women, the combined 

influence of cancer treatment and advancing age frequently coincides with several 

physiological shifts detrimental to cardio-metabolic health including increased adiposity 

(Vance et al., 2011), dysbiosis (Sheflin Whitney and Weir., 2014), and reduced 

cardiorespiratory fitness (Jones et al., 2012).

Compelling evidence indicates an active cross-talk exists between the gut and brain wherein 

endocrine cell-mediated interactions from gut microbiota and enterochromaffin cells 

perform neuro-immune response modulation and regulatory functions (Furness and Clerc, 

2000; Rhee, Pothoulakis and Mayer, 2009). While approximately two-thirds of gut microbes 

are reflective of diet and lifestyle (Qin et al., 2010), species diversity is generally considered 

representative of a healthy commensal gut microbiota. Dysregulation of this relative balance 

(i.e., dysbiosis) may play an underlying role as previous research in murine models has 

shown that an increased ratio of Firmicutes (p) to Bacteriodetes (p) corresponds with obesity 

(Turnbaugh et al., 2006). In recent human studies, uneven clustering of gut microbes have 

been associated with cardiovascular disease (Kelly et al., 2016) and type II diabetes (Larsen 

et al., 2010). Thus, gut microbiota diversity has been proposed as an emerging biomarker of 

health status (Bian et al., 2017).

Since habitual exercise represents a cornerstone to the prevention of cardio-metabolic 

disease, several studies have explored the connection between cardiorespiratory fitness and 

gut microbiota diversity (Estaki et al., 2016; Yang et al., 2017). Of the few available human 

investigations, Estaki et al. (2016) reported peak oxygen uptake (V̇O2) explained ≈20% of 

the variance in gut microbiota diversity (i.e., species richness) among young, healthy men 

and women. Alternatively, others have reported that the association between 

cardiorespiratory fitness and gut microbiota diversity may be mediated by %body fat (Yang 
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et al., 2017). Still, it is unknown if underlying differences in activity-related energy 

expenditure (AEE) are contributing to the relationship between cardiorespiratory fitness and 

gut microbiota, which is particularly important given the prevalence of obesity and 

insufficient physical activity among BCS. Given the myriad of direct/indirect consequences 

of cancer treatment, as well as, the propensity for obesity and insufficient physical activity, it 

remains unclear if cardiorespiratory fitness associates with gut microbiota diversity in BCS.

Gut microbes have long been theorized to modify estrogen metabolism (Adlercreutz et al., 

1984). Consistent with this principle, Flores and colleagues (2012) reported taxonomic 

richness (e.g., Shannon index, Observed Species) positively associated with circulating, non-

ovarian estrogens in men and postmenopausal women. While previous research has shown a 

positive association between body mass index (BMI) and estrogen (Boyapati et al., 2004), it 

is understandable that the risk of incident estrogen-related diseases, like breast cancer, are 

linked with obesity in postmenopausal women. Though habitual physical activity is thought 

to modulate this relationship (McTiernan et al., 2006), it is unclear whether the benefits of 

physical activity are driven by changes in adiposity or gut microbiota, as both associate with 

systemic estrogens. Recent comparative analyses of microbiota from urine and local breast 

tissue (Wang et al., 2017), as well as gut microbes (Goedert et al., 2015) have revealed 

compositionally distinct microbiomic profiles between women with and without breast 

cancer. Thus, a complex interaction exists between gut microbiota diversity, adiposity, 

menopausal status, and free-living physical activity.

Therefore, the current study sought to examine the associations between gut microbiota 

diversity with multiple measures of cardiorespiratory fitness while accounting for the 

potential influence of %body fat, menopausal status, and AEE among a cohort of post-

primary treatment, non-metastatic BCS. Based on previous findings, gut microbiota diversity 

may be a correlate of health status, and thus, closely linked with substrate delivery and 

utilization as evidenced by peak V̇O2. Consequently, we hypothesized peak V̇O2 and percent 

of age-predicted maximal heart rate during exercise, would associate with species richness 

and evenness (α-diversity). Similar to previous work (Paulsen et al., 2017), it was 

hypothesized that measures of cardiorespiratory fitness (e.g., peak V̇O2) would associate 

with between-sample community differences (β-diversity) with the potential for significant 

taxa comparison differences.

METHODS

Ethical approval

All study procedures were conducted in accordance with the ethical guidelines set forth by 

the local institutional review board (IRB-121114008) at the University of Alabama at 

Birmingham and the Declaration of Helsinki (ClincalTrials.gov NCT00929617). Written 

informed consent was obtained from all participants prior to study involvement.

Participants and design

Thirty-seven (n = 37) post-primary treatment BCS volunteered for the present cross-

sectional, proof-of-concept investigation. Several recruitment strategies were used including 
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periodical advertisement, institutional cancer registry, and contact with local cancer support 

groups. Preliminary phone screenings were conducted with interested respondents. Inclusion 

criteria were: 1) English-speaking females between the ages of 18–70 with a previous 

diagnosis of ductal carcinoma in situ or stage I-IIIA breast cancer, 2) physician’s clearance 

for study participation, 3) ambulatory, 4) not currently receiving or planning to receive 

radiation/chemotherapy, and 5) participating in < 30 minutes of vigorous-intensity physical 

activity or < 60 minutes of moderate-intensity physical activity per week for at least 6 

months. Exclusion criteria were: 1) contraindications to exercise, 2) recurrent or metastatic 

breast cancer, 3) antibiotic use within the previous week, 4) dementia/psychological 

disorders preventing study participation, 5) non-ambulatory, and 6) current participation in 

an exercise study. Eligible participants were scheduled for an orientation visit, during which, 

study expectations and testing procedures were explained. Testing procedures were 

performed over three visits within 10 days. With the exception of prescription medications, 

participants were asked to abstain from alcohol, caffeine, and smoking at least 12 hours 

before each visit. Vigorous-intensity physical activity was restricted at least 24 hours prior to 

testing. Following an overnight fast, participants reported to the Physical Activity Core 

Laboratory between 0730 and 0900.

Instrumentation and Measurements

A self-reported questionnaire was administered to collect descriptive data concerning age, 

race, medical history (i.e., breast cancer status, months since diagnosis), menopausal status, 

antibiotic use history, and comorbidities. Dietary components (grams per day of 

carbohydrate, sugar, and fiber) were quantified using a 3-day food record that included two 

weekdays and one weekend. Weight (kg) and standing height (m) were measured to 

calculate BMI. Following exhalation, a tape measure with a 4 oz. tension indicator was used 

to determine waist circumference. Physical activity patterns over a 10-day period were 

measured by a hip-worn triaxial accelerometer (GT3X, Pensacola, FL). In agreement with 

accepted physical activity guidelines (Physical Activity Guidelines Advisory Committee, 

2009), average minutes of vigorous-intensity (≥5725 counts∙min−1) were doubled then added 

to minutes of moderate-intensity (1952–5724 counts∙min−1) to quantitate moderate-to-

vigorous physical activity (MVPA; min·week−1). Average MVPA was calculated from daily 

wear-time and used for analyses.

Resting Energy Expenditure

Resting energy expenditure (REE) was determined while participants laid quietly awake in a 

softly lit, well-ventilated room. Ambient temperature was maintained between 22–23 °C. 

Oxygen uptake (V̇O2) and carbon dioxide (V̇CO2) production were continuously measured 

for 30 minutes using indirect calorimetry (Vmax Encore, Loma Linda, CA) coupled with a 

ventilated canopy. Energy expenditure (kcals) and respiratory quotient (VĊO2:V̇O2) were 

averaged in 60 second intervals by Vmax software using a modified-Weir equation. The 

concluding 20 minutes were used for analyses.

Standardized Treadmill Task

A two-stage, standardized treadmill task was used to evaluate physiological responses at 

submaximal intensities in a subset of participants (n = 18). Following the equilibration 
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period, breath-by-breath V̇O2 and V̇CO2 were measured via indirect calorimetry (MAX II, 

Pittsburgh, PA). Participants performed two 4 minute stages of 0.89 m/s at 0% and 2.5% 

grade. Steady-state V̇O2, defined as the highest 30 second average during each stage was 

used for analyses. Oxygen-pulse, representing the V̇O2 used by peripheral tissues per 

heartbeat, was calculated from steady-state V̇O2 (mLO2∙kg−1∙min−1) divided by the 

corresponding heart rate (bpm). Units are expressed in mLO2∙kg−1∙beat−1 to account for 

weight-bearing nature of walking and variance in body mass. Higher values of oxygen-pulse 

indicate greater V̇O2 per heartbeat (index of stroke volume) (Oliveira, Myers, & de Araujo, 

2011).

Graded Exercise Test

Within 5–6 days of completing the standardized treadmill task, a graded exercise test (GXT), 

consistent with the modified-Naughton protocol, was used to estimate peak V̇O2 from 

ACSM regression equations (American College of Sports Medicine, 2010). Treadmill 

workload was increased at two minute intervals until participants reached 85% of their age-

predicted (220-age) maximum heart rate (HRmax). Heart rate was measured continuously 

(Polar Electro, Kempele, Finland) and used to calculate the percent of age-predicted HRmax 

(%HRmax) during each stage. Since Stage 4 (0.89 m/s at 7% grade) estimates a peak V̇O2 of 

15.6 mLO2∙kg−1∙min−1, closely resembling the minimum peak V ̇O2 needed for functional 

independence in older women (Shephard, 2009), Stages 1–4 were of interest and included 

for analyses. Heart rate recovery was measured at minutes one and two upon the termination 

of the GXT as indices of parasympathetic reactivation and sympathetic withdrawal, 

respectively.

Doubly-Labeled Water

Total energy expenditure (TEE) was calculated over a 10-day period under free-living 

conditions using doubly-labeled water (DLW) (Hunter et al., 2015). The DLW technique 

makes use of the inherent difference in elimination kinetics between deuterium (2H) and 

oxygen-18 (18O) in the body. Deuterium is lost solely through body water whereas 18O is 

lost from both water and carbon dioxide. Briefly, a baseline urine specimen was provided in 

the morning, after which, participants were administered an oral dose of 2H2O and H2
18O 

based on their measured body weight (54 g if ≤ 60 kg; 63 g if 60.1 to 75 kg; 74 g for 75.1 to 

95 kg; and 89 g for > 95 kg). Post-dose urine samples were collected at +3 hours and +4 

hours to permit isotopic equilibrium. Ten days later, two additional urine samples were 

collected in the morning. Carbon dioxide production rates were determined using a fixed 

constant for the dilution space ratio (1.0427) provided by Speakman et al. (Speakman, Nair 

and Goran., 1993) and converted to energy expenditure using the equation by de Weir (Weir, 

1949): TEE (kcal∙d−1) = 3.9 (rCO2 / RQ) + 1.1, where rCO2 is the rate of carbon dioxide 

production in liters per day and RQ is the respiratory quotient (0.88) used for all 

participants. Urine samples were stored at −20 °C until measured in duplicate by isotope 

ratio mass spectrometry. Coefficient of variation (CV) for repeated-measures in our 

laboratory is 4.3%. Free-living AEE was estimated by initially reducing TEE by 10% to 

account for the thermogenic effects of digestion. AEE was then calculated by subtracting 

REE from the adjusted-TEE. Percent body fat was derived from total body water (Hunter et 

al., 2015).
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Gut Microbiota Diversity

Gut microbiota were examined from fecal wipes processed according to the protocol 

described by Kumar et al. (2014) and Paulsen et al. (2017). In short, samples were collected 

and sent via overnight mail to our local Microbiome Resource Laboratory where they were 

stored at −80 °C until analyses were performed. Individual samples were dissolved in a 

buffer solution then processed with a DNA Miniprep Kit to acquire isolated fecal DNA. 

Polymerase chain reaction (PCR) was used to amplify the V4 region of the 16S rRNA gene 

then analyzed with Illumina MiSeq DNA sequencing. Two hundred fifty base paired-end 

sequences were obtained, and following filtering of low quality reads, the paired-end 

sequences were merged and analyzed. Quality control, operational taxonomic unit (OTU) 

picking, and taxonomic assignment were performed as previously described (Kumar et al., 

2014). Within-sample microbiota diversity (α-diversity) was evaluated using Chao1, 

Shannon, and Simpson indices which measure gut microbiota richness and evenness. 

Additional α-diversity assessments were performed with Observed Species and PD Whole 

Tree which measure species richness and phylogeny, respectively. Between-sample 

microbiota community differences (β-diversity) were analyzed using weighted (quantitative) 

and unweighted (qualitative) UniFrac distance metrics (Lozupone and Knight., 2005). For β-

diversity, the following continuous outcomes were divided into quartiles (i.e., the difference 

in the minimum and maximum values were divided by four): age, number of comorbidities, 

BMI, waist circumference, %body fat, months since cancer diagnosis, peak V̇O2, %HRmax 

Stages 1–4 of GXT, AEE, MVPA, sugar intake, carbohydrate intake, and fiber intake. The 

following outcomes were dichotomized: ethnicity (African-American vs. other), menopausal 

status (yes vs. no), history of chemotherapy (yes vs. no), and history of radiation (yes vs. no) 

with the original categories maintained for breast cancer stage (0 vs. 1 vs. 2 vs. 3 vs. 4) and 

hormonal therapy (none vs. ≤ 1 year vs. > 1 year).

Statistical Analyses

Participant characteristics are presented as means and standard deviations unless noted 

otherwise (Table 1). The Shapiro-Wilk test was used to confirm the normality of 

distributions. Two-tailed parametric (Pearson) correlations were performed on variables of 

interest. Based on consequent results, multiple linear regression was used to examine the 

associations for peak V̇O2 and %HRmax (Stage 3, GXT) on α-diversity while adjusting for 

%body fat and menopausal status. Of note, adjusting variables were included following 

significant bivariate association and/or plausible physiologic link to gut microbiota. 

Additionally, Stage 3 of the GXT was used as surrogate for cardiorespiratory fitness since all 

37 participants completed the stage and workload matched a vigorous-intensity effort as 

evidenced by an average 70 ± 10% %HRmax. Collinearity of diagnostics for all variables 

were within acceptable limits as variable inflation factors for each model were less than 

2.22. Separate univariate analyses were used to evaluate differences in α-diversity between 

participants in the highest quartile for peak V̇O2 (≥ 22.4 mLO2∙kg−1∙min−1) versus those 

below. all others. Substantive differences were determined with Hedges’ g as a measure of 

effect size: 0.2 as small; 0.5 as medium; and 0.8 as large. Principal coordinate analysis 

(PCoA) was used to visualize β-diversity differences among outcome categories or quartiles. 

Statistical significance of the β-diversity/outcomes relationships were determined using 

permutational multivariate analysis of variance (PERMANOVA). Kruskal-Wallis testing 
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with false discovery rate (FDR) correction procedures compared relative taxa level 

frequencies using QIIME for variables with statistically significant β-diversity. The 

threshold of statistical significance for all tests was set a priori and defined as two-sided p-

value ≤ 0.05 (or q-value ≤ 0.05 for analyses using FDR correction).

RESULTS

Overview

Descriptive data are shown in Table 1. Coinciding with established BMI stratifications, 21 of 

37 (57%) of participants were obese (> 30 kg/m2) while 19 of 37 (51%) had an increased 

risk of cardio-metabolic disease as evidenced by a waist circumference > 88 cm (Janssen, 

Katzmarzyk & Ross., 2004). Accelerometry-based measurement showed 20 of 37 (54%) 

participants appeared to be meeting the minimum recommendation of accumulating at least 

150 minutes of MVPA per week. Mean cohort data indicated peak V̇O2 was 20 ± 5 mLO2∙kg
−1∙min−1 or approximately 33% greater than the minimum cardiorespiratory fitness needed 

for independent-living among older women (Shephard, 2009). Food record data showed that 

just 6 of 36 (17%) met the American Dietary Guidelines (22.4 g/day) for daily fiber intake in 

women aged 51 years and older (Department of Health and Human Services, 2015).

α-Diversity

Consistent with our hypotheses, zero-order correlation coefficients revealed several α-
diversity indices significantly associated with markers of cardiorespiratory fitness including 

peak V̇O2 and %HRmax during the GXT (Table 2). Surprisingly, free-living AEE and TEE 

were not associated with α-diversity. Percent body fat, but not waist circumference, 

negatively associated (r = −0.32 to −0.41; p < 0.05) with Chao1, Observed Species, and PD 

Whole Tree. Menopausal status trended toward significance for Chao1 (r = −0.32; p = 

0.057), PD Whole Tree (p = 0.10) and Observed Species (p = 0.11) suggesting 

premenopausal participants tended to have greater species richness. However, no other 

demographic or diet variable associated with α-diversity.

In Table 3, multivariate regression modeling showed that peak V̇O2 was shown to account 

accounted for 22% and 26% of the variance in richness and phylogenic diversity as 

represented by Observed Species and PD Whole Tree, respectively. Participants were 

stratified into quartiles based on peak V̇O2 wherein analyses revealed participants (n = 13) in 

the highest quartile (≥ 22.4 mLO2∙kg−1∙min−1) exhibited significantly higher α-diversity 

scores compared to participants (n = 24) occupying the lower quartiles (Figure 1). 

Unadjusted scatterplots shown in Figure 2, illustrate the distribution of alpha diversity with 

respect to cardiorespiratory fitness. Given the resultant negative associations, it appears 

participants with greater cardiorespiratory fitness, as evidenced by a lower percentage of 

age-adjusted %HRmax, had higher gut microbiota diversity.

Shown in Table 4, %HRmax (Stage 3, GXT), adjusted for %body fat and menopausal status, 

accounted for 28% to 35% of the variance in three of the five models examining α-diversity. 

Oxygen-pulse during Stage 1 (r = 0.52 to 0.70) and 2 (r = 0.62 to 0.75) of the standardized 

treadmill task positively associated with several α-diversity indices. Increased aerobic 
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capacity (represented by a greater V̇O2 per heartbeat) positively associated (r = 0.75; p = 

0.001; n = 17) with PD Whole Tree. Interestingly, the correlation coefficients between 

oxygen-pulse and α-diversity were reliably stronger during the graded walking task. 

Additionally, heart rate recovery during minutes 1 and 2 were found to be negatively 

associated (r = −0.47 to −0.60; p < 0.05) with indices of α-diversity. As shown in Figure 3, a 

greater reduction in heart rate 1-minute post-exercise, indicative of greater parasympathetic 

reactivation, and thus, increased aerobic fitness associated with the Shannon index.

β-Diversity

With unweighted UniFrac clustering used to detect differences in specific taxa present, β-

diversity differences were found for BMI (p = 0.043), waist circumference (p = 0.017), 

%HRmax during Stage 2 (p = 0.046) and Stage 3 (p = 0.016) of the GXT, along with peak 

V̇O2 (p = 0.04). Similar to our previous work (Paulsen, et al, 2017), quartiles for continuous 

variables were dichotomized (1 and 2 vs. 3 and 4) to test taxa differences responsible for the 

β-diversity findings. Quartiles 1 and 2 vs. 3 and 4 for %HRmax during Stage 2 and 3 of the 

GXT, exhibited statistically significant taxa differences following FDR correction for 

organisms within the phyla of Actinobacteria (p), Bacteroidetes (p), and Proteobacteria (p). 

Because visualization of the 3D PCoA plot showed distinct differences between quartile 1 

and 4 of peak V̇O2, taxa comparisons were performed wherein significant taxa differences 

for Verrucomicrobia (p) and Verrucomicrobiae (c) were found after FDR correction 

(0.002737 vs. 0.047163 for quartile 1 vs. quartile 4; FDR corrected q-value = 0.024 and 

0.002737 vs. 0.047163, q = 0.048, respectively).

Unweighted UniFrac clustering revealed significant differences for heart rate recovery at 

minute one (p = 0.047) and minute two (p = 0.018) post-exercise. However, following FDR 

correction significant taxa differences in heart rate recovery remained for minute one 

(parasympathetic reactivation) but not minute two (sympathetic withdrawal). Given that 30 

different taxa were different, we report those OTUs at the genus level with differences noted 

for organisms within the phyla of Actinobacteria (p), Firmicutes (p), and Proteobacteria (p). 

Among the four aerobic fitness measures with taxa differences, Since several taxa were 

detected at a very low mean relative abundance suggesting these taxa make up a very minor 

population of microbes in the sample; hence, To aid reader interpretation, we provided the 

top 10 genera for peak V̇O2 (Figure 4). As indicated greater aerobic capacity is associated 

with higher relative abundance of Bacteroides (g) and Prevotella (g), lower relative 

abundance of Escherichia (g), and variable differences in multiple organisms within 

Firmicutes (p).

DISCUSSION

Though previous work (Estaki et al., 2016; Yang et al., 2017) has shown a link between 

cardiorespiratory fitness and gut microbiota diversity, the underlying effects of %body fat 

and free-living AEE have not been previously examined. To this end, the hypotheses of the 

present investigation were based on the widely-accepted premise that %body and AEE both 

associate with cardiorespiratory fitness. Hence, we sought to explore the inter-associations 

between gut microbiota diversity and measures representative of cardiorespiratory fitness 
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(e.g., peak V̇O2, %HRmax during exercise) while accounting for the potential influence of 

%body fat, menopausal status, and AEE. Consistent with our hypotheses, our findings 

revealed that peak V̇O2 accounted for 22% and 26% of the variance in taxonomic richness 

and phylogenic diversity, respectively, after adjustment for %body fat and menopausal 

status. Age-adjusted %HRmax during Stage 3 of the GXT accounted for 28% to 35% of the 

variance in 3 of 5 α-diversity regression models. Remarkably similar findings, linking 

higher aerobic fitness and greater gut microbiota diversity, were also found for oxygen-pulse 

during exercise and heart rate recovery. After FDR correction, significant taxa differences 

were observed for four aerobic fitness measures (peak V̇O2, %HRmax during Stages 2 and 3 

of the GXT, and heart rate recovery at 1-minute post-exercise). Collectively, the present 

findings suggest aerobic fitness associates with gut microbiota diversity among post-primary 

treatment, non-metastatic BCS.

Whereas a high cardiorespiratory fitness is known to attenuate cardiovascular disease risk/

progression, the contributing features are generally thought to involve favorable arterial 

compliance, autonomic tone, and endothelial function. However, our data adds further 

support to the probability that a high peak V̇O2 may also offset the risk of various chronic 

disease states through interactions with the gut microbiota. Similar to previous work (Estaki 

et al., 2016, Yang et al., 2017), our results demonstrate that peak V̇O2 associates with 

microbiota species richness and phylogenic diversity after adjustment for %body fat and 

menopausal status, while participants with peak V̇O2 ≥ 22.4 mLO2∙kg−1∙min−1 had greater 

α-diversity. Although our cross-sectional design restricts causal inferences we can make 

concerning peak V̇O2 and gut microbiota diversity, Allen and colleagues (2018) recently 

showed six weeks of aerobic training (in the absence of dietary modifications), altered gut 

microbiota and microbial-derived short chain fatty acids in a group of lean and obese 

participants. In their study, participants exhibited compositionally distinct microbiomic 

profiles at baseline (lean vs. obese) that disappeared following exercise training. 

Interestingly, among the obese participants, the changes in gut microbiota diversity 

corresponded with an improved maximal V̇O2. Certainly, these data highlight the responsive 

nature of gut microbiota to exercise training and strong link to cardiorespiratory fitness.

Due the systemic, cardio-metabolic benefits of physical activity, it is logical that insufficient 

quantities contribute to poorer health outcomes including dysbiosis (Nehra et al., 2016). 

However, in humans, the underlying mechanisms whereby physical activity and gut 

microbiota interact to effect host physiology remains largely unexplored. Data from animal 

models offers intriguing evidence supporting voluntary physical activity (i.e., wheel 

running) as an effective modulator of gut microbes (Allen et al., 2015; Matsumoto et al., 

2008). While compelling, the translational implications to humans are less straight-forward, 

as it is difficult to disentangle the true physical activity/exercise-mediated effects on gut 

microbiota (or vice versa) under free-living conditions. Since variation in non-exercise 

activity thermogenesis is a key feature to overall health and weight maintenance, our group 

was surprised to discover weekly minutes of MVPA and AEE (kcals∙day−1) were unrelated 

to indices of α-diversity and β-diversity. Nevertheless, our data appears suggestive that 

cardiorespiratory fitness, not physical activity, is a better correlate of gut microbiota 

diversity. It is worth noting, our relatively small sample size may have restricted our ability 

to identify possible relationships between AEE and gut microbiota diversity, as the precision 
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to measure free-living AEE via DLW is less than that to measure heart rate and V̇O2 (e.g., 

CV < 3% in our laboratory). It is intriguing to consider how genetic endowment for high 

cardiorespiratory fitness may interact with gut microbiota in defense against cardio-

metabolic disease through the lifecycle.

While Estaki et al. (2016) did not report a significant association between cardiorespiratory 

fitness and β-diversity, it is possible youthful age (mean < 30 yrs.) and higher 

cardiorespiratory fitness may have contributed to these findings. In the present work, we 

identified a greater relative abundance of several organisms within the phyla of 

Bacteriodetes (p), Proteobacteria (p), Actinobacteria (p), and Firmicutes (p). These phyla 

include organisms involved in formation of short-chain fatty acids, possibly linking gut 

microbiota to health (Chakraborti, 2015), yet the organisms with significant taxa 

comparisons reported here are not among the more prevalent and known butyrate-producing 

bacteria (Louis and Flint, 2009). It is noteworthy that increased Bacteroidetes (p) and 

Verrucomicrobia (p), as found here with greater aerobic fitness, have been reported in mice 

after Roux-en Y (RYGB) gastric bypass surgery along with alterations in short chain fatty 

acid production (↑propionate and ↓acetate) (Liou et al., 2013). This same study reported an 

increase in Escherichia (g) in mice after RYGB, which is in contrast, to our finding that 

cardiorespiratory fitness may be associated with a decrease in the Escherichia (g) supporting 

the need for further research (Liou et al., 2013). Although no prior human study has reported 

an association between greater relative abundance of Verrucomicrobia (p) and 

cardiorespiratory fitness, this organism has been associated with obesity in humans (Zhang 

et al., 2009). Furthermore, several potential taxa differences (e.g., Proteobacteria (p)) 

warrant further study as potential links between exercise and improvements in psychosocial 

outcomes like depression (Jiang et al., 2015).

Despite the rapid increase in studies linking gut microbiota to health status, gut microbes 

have been known to influence estrogen metabolism for many decades (Adlercreutz et al., 

1984). More recently, Flores et al. (2012) reported gut microbiota diversity positively 

associated with systemic, non-ovarian estrogens in men and postmenopausal women but not 

premenopausal women. Researchers from that study indicated negligible effects when 

adjustments were made for age and BMI. However, they did not have a measure for aerobic 

fitness. Similarly, age was not associated with gut microbiota α-diversity in the present 

work. Interestingly, self-reported menstrual status was a significant, independent correlate in 

3 of 5 α-diversity regression models. In other words, participants who specified they had not 

experienced menopause exhibited greater α-diversity. While our results differ from previous 

work (Flores et al., 2012), it is interesting that menopausal status remained significant after 

adjusting for %HRmax and %body fat. It is important to note that men tend to have higher 

absolute aerobic capacities than women, and as such, the sample of men (n = 25) and 

postmenopausal women (n = 7) reported by Flores et al. (2012) may have simply had a 

greater aerobic fitness compared to the premenopausal women (n = 19). Still, it is difficult to 

completely reconcile our divergent findings since we did not have a direct measure of 

estrogen metabolites or control for menstrual phase, as this would require a specifically 

designed study.
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Limitations

We recognize several limitations in the present investigation. Inherent with our cross-

sectional design, we lack the ability to establish cause-and-effect or direction for the 

reported associations. Certainly the present outcomes are correlative in nature and should 

therefore be considered hypothesis-generating. Our participant sample was restricted to 

women with a history of breast cancer which tended to exhibit low cardiorespiratory fitness 

and multiple comorbidities. As such, generalizability of our results to other demographics 

should be performed with caution. Additionally, we do not include any functional outcomes 

(e.g., fecal concentrations of short chain fatty acids) of gut microbiota which are likely 

important for gut health. Nevertheless, strengths include the use of DLW to objectively 

measure free-living EE, as well as, evaluating taxa comparisons with several measures 

representative of aerobic capacity.

Conclusions

To our knowledge, this is the first study to examine the link between cardiorespiratory 

fitness and gut microbiota diversity while accounting for the underlying effects of %body fat 

and free-living AEE. Our primary findings showed that peak V̇O2 associated with taxonomic 

richness and phylogenic diversity while %HRmax during exercise accounted for 28% to 35% 

of the variance in α-diversity adjusted for %body fat and menopausal status. Consequently, 

it seems cardiorespiratory fitness, not physical activity, is a better correlate of gut microbiota 

diversity. Future work should include controlled-feeding (i.e., diet standardization) and 

exercise training to properly examine the longitudinal changes in gut microbiota. In doing 

so, researchers may be able to identify strategies and optimize therapeutic approaches to 

enhance health outcomes among clinical populations.
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New Findings: What is the central question of this study? Does the link between 

cardiorespiratory fitness and gut microbiota diversity persist after adjusting for the 

potential effects of %body fat and activity-related energy expenditure (AEE)? What is the 

main finding and its importance? This is the first study to examine the link between 

cardiorespiratory fitness and gut microbiota diversity while accounting for the underlying 

effects of %body fat and free-living AEE. Results from the present work suggest 

cardiorespiratory fitness, not physical activity, is a superior correlate of gut microbiota 

diversity among post-primary treatment, non-metastatic breast cancer survivors.
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Figure 1. 
Unadjusted, between-groups comparisons of alpha diversity among participants above and 

below 22.4 mLO2·kg−1·min−1 VO2peak. Note participants (n = 13) above 22.4 mLO2·kg
−1·min−1 had higher alpha diversity compared to those (n = 24) with a lower VO2peak. 

Substantive differences were determined by Hedges’ g as a measure of effect size: 0.77 

(Chao1), 1.21 (Observed Species), 1.12 (PD Whole Tree), 1.15 (Shannon), 0.72 (Simpson). 

Data are represented by means and S.D. †denotes significance at p ≤ 0.05.
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Figure 2: 
Unadjusted scatterplot of alpha diversity (e.g., Chao1, Observed Species, PD Whole Tree, 

and Shannon) and percent of age-predicted maximal heart rate (%HRmax) during Stage 3 of 

the graded exercise test. Mean intensity corresponded to 70 +/− 10% %HRmax. Note the 

tendency for greater aerobic fitness, evidenced by lower %HRmax associated with higher 

alpha diversity. Groups are dichotomized by VO2peak above and below 22.4 mLO2·kg
−1·min-1. n = 37.
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Figure 3. 
Unadjusted scatterplot of Shannon index and the change (Δ) in heart rate recovery 1-minute 

post-graded exercise test. Note the negative association depicting higher alpha diversity and 

greater parasympathetic reactivation, evidenced by more pronounced heart rate recovery. 

**significance at p < 0.05.
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Figure 4. 
Top 10 genera truncated for peak V̇O2. Note that groups are dichotomized by VO2peak above 

and below 22.4 mLO2·kg−1·min-1.
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Table 1.

Participants characteristics (n = 37).

Demographics

 Age (yrs.) 55 ±9

 Race (no.(%))

  African American 16(43)

  European American 19(51)

  Other 2(6)

 Comorbidities 2.1 ± 1.9

 BMI (kg/m2) 31.8 ± 7.8

 Waist circumference (cm) 92 ± 16

 Body fat (%)† 46 ± 7

Cancer status

 Months since diagnosis 53 ± 60

 Breast cancer stage (no.(%))

  DCIS 5 (14)

  I 11 (29)

  II 17(46)

  III 4(11)

 Chemotherapy (yes) 26(70)

 Radiation (yes) 20(54)

Fitness and heart rate responses

 Peak V02 (mL02 kg"1min1) 20 ±5

 %HRmax stage 1 61 ± 7

 %HRmax stage 2 64 ± 8

 %HRmax stage 3 70 ± 10

 %HRmax stage 4 75 ± 11

Physical activity measures

 TEE (kcal day_1)† 2012 ±302

 AEE (kcal day_1)† 650 ± 229

 MVPA (min week1) 173 ± 90

Diet‡

 Sugar (g) 85 ± 42

 Carbohydrates (g) 206 ± 66

 Fiber (g) 16 ± 8

Alpha diversity (au)

 Chaol 341 ± 44

 Observed species 277± 50

 PD whole tree 23± 4

 Shannon 5± 1

 Simpson 0.9± 0.08
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†
n = 32;

‡
n = 36;

BMI, body mass index; ductual incarcinoman in situ; Peak oxygen uptake (VO2) estimated from the graded exercise test; % HRmax stage 1–4, 

percent of age-predicted heart rate (HR) max derived(from 220-age)during stage 1–4 of modified-Naughton protocol; TEE, total energy 
expenditure; AEE, activity-related energy expenditure; MVPA,moderate-to-vigrorous physical activity. Diet represents daily averages. Values are 
shown as means and SD’s unless noted otherwise.
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