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Abstract

Quantification of tissue magnetic susceptibility using MRI offers a non-invasive measure of 

important tissue components in the brain, such as iron and myelin, potentially providing valuable 

information about normal and pathological conditions during aging. Despite many advances made 

in recent years on imaging techniques of quantitative susceptibility mapping (QSM), accurate and 

robust automated segmentation tools for QSM images that can help generate universal and 

sharable susceptibility measures in a biologically meaningful set of structures are still not widely 

available. In the present study, we developed an automated process to segment brain nuclei and 

quantify tissue susceptibility in these regions based on a susceptibility multi-atlas library, 

consisting of 10 atlases with T1-weighted images, gradient echo (GRE) magnitude images and 

QSM images of brains with different anatomic patterns. For each atlas in this library, 10 regions of 

interest in iron-rich deep gray matter structures that are better defined by QSM contrast were 

manually labeled, including caudate, putamen, globus pallidus internal/external, thalamus, 

pulvinar, subthalamic nucleus, substantia nigra, red nucleus and dentate nucleus in both left and 

right hemispheres. We then tested different pipelines using different combinations of contrast 
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channels to bring the set of labels from the multi-atlases to each target brain and compared them 

with the gold standard manual delineation. The results showed that the segmentation accuracy 

using dual contrasts QSM/T1 pipeline outperformed other dual-contrast or single-contrast 

pipelines. The dice values of 0.77±0.09 using the QSM/T1 multi-atlas pipeline rivaled with the 

segmentation reliability obtained from multiple evaluators with dice values of 0.79±0.07 and gave 

comparable or superior performance in segmenting subcortical nuclei in comparison with standard 

FSL FIRST or recent multi-atlas package of volBrain. The segmentation performance of the 

QSM/T1 multi-atlas was further tested on QSM images acquired using different acquisition 

protocols and platforms and showed good reliability and reproducibility with average dice of 

0.79±0.08 to manual labels and 0.89±0.04 in an inter-protocol manner. The extracted quantitative 

magnetic susceptibility values in the deep gray matter nuclei also correlated well between different 

protocols with inter-protocol correlation constants all larger than 0.97. Such reliability and 

performance was ultimately validated in an external dataset acquired at another study site with 

consistent susceptibility measures obtained using the QSM/T1 multi-atlas approach in comparison 

to those using manual delineation. In summary, we designed a susceptibility multi-atlas tool for 

automated and reliable segmentation of QSM images and for quantification of magnetic 

susceptibilities. It is publicly available through our cloud-based platform (www.mricloud.org). 

Further improvement on the performance of this multi-atlas tool is expected by increasing the 

number of atlases in the future.
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1. Introduction

Tissue magnetic susceptibility is a physical parameter indicating how the local magnetic 

field in tissue changes in response to an external applied magnetic field. Quantification of 

tissue magnetic susceptibility can provide unique information about tissue composition and 

many recent studies have demonstrated that physiologically significant tissue components 

including iron and myelin are dominant sources that influence the bulk tissue magnetic 

susceptibility in brain (Duyn and Schenck, 2016; Langkammer et al., 2010; Liu et al., 2011; 

Liu et al., 2015; Schweser et al., 2011; Wang and Liu, 2015). Abnormal changes in the 

concentration and distribution of these tissue components have been linked to different 

neurodegenerative diseases. For example, abnormal focal accumulations of iron in the brain 

have been reported in Alzheimer’s disease (AD) (Acosta-Cabronero et al., 2013; Ayton et 

al., 2017; Bartzokis et al., 1994; Connor et al., 1992; van Bergen et al., 2016b; van Bergen et 

al., 2018; Yamamoto et al., 2002), Parkinson’s disease (PD) (Barbosa et al., 2015; Dexter et 

al., 1989; Du et al., 2016; Graham et al., 2000; He et al., 2015; Lotfipour et al., 2012; Martin 

et al., 2008) and Huntington’s disease (HD) (Browne and Beal, 2006; Dominguez et al., 

2015; Dumas et al., 2012; Muller and Leavitt, 2014; Rosas et al., 2012; van Bergen et al., 

2016a). Similarly, iron content changes in the basal ganglia have been observed in multiple 

sclerosis (MS), in which the demyelination process may also be potentially better 

characterized by tissue magnetic susceptibility (Absinta et al., 2013; Bagnato et al., 2011; 

Chen et al., 2014; Haacke et al., 2009; Hagemeier et al., 2018; Langkammer et al., 2013; Li 
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et al., 2016; Schweser et al., 2018; Wiggermann et al., 2013; Wisnieff et al., 2015; Yao et al., 

2012; Zhang et al., 2016). Since non-invasive measurement of changes in brain iron and 

myelin content using MRI can give important insight into the normal and pathological 

processes during aging, quantitative magnetic susceptibility contrast may become a measure 

to monitor neurodegenerative diseases and, potentially, to test new therapeutics and their 

efficacy.

Recent advances in high field MRI and quantitative susceptibility mapping (QSM) 

techniques have led to exciting research possibilities and attracted much research interest in 

assessing tissue magnetic susceptibility at high spatial resolution through MR phase 

measurement (Bilgic et al., 2012; Cheng et al., 2009; de Rochefort et al., 2008; Deistung et 

al., 2017; Duyn et al., 2007; Haacke et al., 2015; Lim et al., 2013; Liu et al., 2015; Liu et al., 

2009; Schweser et al., 2011; Shmueli et al., 2009; Wang and Liu, 2015; Wharton and 

Bowtell, 2010; Yoon et al., 2018). However, besides the complicated phase processing and 

ill-conditioned phase to susceptibility inverse problem, condensed, reliable and consistent 

reference susceptibility metrics derived from QSM in a biologically meaningful set of 

structures that are universal and sharable, are still not widely available. This is partly due to 

the lack of robust brain segmentation tools for extracting the susceptibility measures from a 

broad range of healthy and diseased populations with large anatomical variations.

Currently, quantification of QSM in anatomical structures relies either on manual definition 

of regions of interest (ROI) which is extremely time consuming and evaluator-dependent (He 

et al., 2015; Li et al., 2014) or on automated brain mapping to available brain atlases. 

However, the most commonly used brain atlases are mainly based on T1 contrast (Lancaster 

et al., 2000; Mazziotta et al., 2001). Automatic analysis on QSM images using these atlases 

and standard whole brain registration and segmentation methods usually gives poor 

performance in iron-rich deep gray matter nuclei with low T1 contrast and thus poorly 

guided delineation and registration (Cobzas et al., 2015; Feng et al., 2017; Lim et al., 2013). 

This problem may be solved by building human brain atlases based on magnetic 

susceptibility contrast using high-quality QSM images of whole brain from a single subject 

(Lim et al., 2013) or multiple subjects with a multi-contrast multi-atlas approach, e.g. with 

dual QSM and T1 contrast multi-atlases (Cobzas et al., 2015) or using well registered group-

wise averaged QSM images (Acosta-Cabronero et al., 2016; Hanspach et al., 2017; Keuken 

et al., 2014; Keuken and Forstmann, 2015; Schweser et al., 2018; Visser et al., 2016). The 

superior susceptibility contrast sensitive to tissue iron content may also be used to build 

susceptibility-based atlases of certain iron-rich structures, such as the hippocampus and 

dentate nucleus (Goubran et al., 2014; He et al., 2017). Individual QSM images under 

testing can then be normalized to these susceptibility templates for more reliable 

segmentation and quantification as has been exemplified in some recent studies (Cobzas et 

al., 2015; He et al., 2017; Lim et al., 2013; Schweser et al., 2018).

One well-known limitation of the single or averaged susceptibility atlases, however, is that 

the segmentation accuracy is closely dependent on their anatomical similarity to the subject 

in question (Collins and Pruessner, 2010; Iglesias and Sabuncu, 2015). This is particularly 

an issue when studying populations with a large age range, e.g. in studies of brain iron 

change during the whole life span, or when studying patients with a large degree of 
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anatomical variation, e.g. pediatric patients or elderly patients with severe neurodegenerative 

diseases. In order to overcome this limitation, anatomical variations have to be taken into 

account in the atlases themselves. One possible option would be to build a longitudinal age-

dependent group-wise averaged susceptibility atlases as those developed very recently for 

studying brain iron changes during both development and aging using QSM (Zhang et al., 

2018). Such longitudinal susceptibility atlases have indeed shown superior performance over 

previous single subject susceptibility atlas and an appropriately selected age-matched QSM 

template can be used for the target population under investigation. An alternative approach 

to tackle this problem is by using so-called multi-atlas segmentation, which utilizes a set of 

atlases covering sufficiently large anatomical variations rather than some model-based 

average representation of the training datasets. Such multi-atlas approaches have been shown 

to have the flexibility to better capture anatomical variations through normalization to a 

sufficiently large number of atlases with accurate manual delineation and multi-label voting 

fusion (Tang et al., 2015) and usually offer superior segmentation accuracy at the expense of 

higher computational cost (Iglesias and Sabuncu, 2015).

The goal of the present study was to achieve a more reliable and more accurate automated 

tissue susceptibility quantification using a similar multi-atlas approach extended from 

previous study (Cobzas et al., 2015) using 10 pre-selected adult human whole brain atlases 

built on both magnetic susceptibility contrast and T1 contrast with sufficiently large 

anatomical variations. Based on QSM contrast, we built the susceptibility atlases for 10 

major deep gray matter nuclei, including caudate nucleus (CN), internal globus pallidus 

(GPi), external globus pallidus (GPe) putamen (Put), thalamus (Thal), thalamic pulvinar 

(Pulv), red nucleus (RN), substantia nigra (SN), subthalamic nuclei (STN) and dentate 

nucleus (DN) in both left and right hemispheres. We also developed an automated 

registration and segmentation pipeline using such multi-atlases based on QSM and T1-

weighted image (T1WI). We tested the reliability of this QSM/T1 multi-atlas pipeline in the 

atlas set and compared its segmentation performance with other multi-atlas pipelines using 

different combinations of contrast channels, e.g. using gradient echo magnitude with T1WI 

(GRE/T1) dual contrast channels etc. In addition, the segmentation and quantification 

accuracy in certain subcortical regions including CN, Put, GP and thalamus was further 

compared to those obtained using the standard FSL FIRST package (Patenaude et al., 2011) 

and another recent multi-atlas based package called volBrain (Manjon and Coupe, 2016). 

The reliability and reproducibility of the QSM/T1 multi-atlas was also tested on 

susceptibility MRI data acquired using two different scanning protocols, on two different 

scanner platforms, and eventually on data acquired at a different site. Furthermore, we have 

made the developed QSM/T1 multi-atlas segmentation pipeline publicly available through 

our MRICloud platform: www.mricloud.org, which has a simple web-based interface and 

does not require any installation or advanced computational equipment.

2. Material and Methods

2.1 Data acquisition and QSM processing

Our multi-atlas dataset was developed using a collection of MRI images from 10 healthy 

individuals, with an age range of 26 to 73 years old (mean ± standard deviation of 59.6 
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± 16.3 y/o, 5 male and 5 female). Three of them were collected from a reproducibility study 

described later in this paper and seven of them were collected from the BIOCARD study 

conducted at Johns Hopkins University on elderly subjects (Soldan et al., 2017). The 

protocols were approved by the Johns Hopkins University Institutional Review Board, and 

written informed consent was obtained from all participants. These ten subjects were 

selected to include variable anatomic patterns, expressed by different degrees and locations 

of brain atrophy (Fig. 1). All MRI images were acquired on a 3T Philips Achieva scanner 

(Philips Healthcare, Best, Netherlands) equipped with a 32-channel receive head coil (Nova 

Medical, Wilmington, Massachusetts). The susceptibility weighted MRI data were acquired 

on each subject in the supine position using a multi-echo 3D gradient echo (GRE) sequence 

with 1.0 mm isotropic resolution (transverse orientation, TE1/∆TE/TR=6/6/40 ms, 6 

unipolar echoes, FOV=224×224×140 mm3, flip angle 15°, bandwidth 217 Hz/px, SENSE 

factor of 2×1×2, scan time 7 min 19 sec). A high resolution T1-weighted MPRAGE image 

was also acquired for each subject with 1X1X1.2 mm3 resolution (sagittal orientation, TE/

TR=3.1/6.8 ms, flip angle 8°, TI=847 ms, Turbo Field Echo (TFE) factor of 240, SENSE 

factor 2×1×1, scan time 5 min 56 sec).

Susceptibility MRI phase data were preprocessed using Laplacian based phase unwrapping 

and V-SHARP method for removing background gradient with a maximum spherical mean 

value kernel radius of 6 mm and a truncated singular value decomposition (SVD) 

regularization threshold of 0.05 (Li et al., 2011; Wu et al., 2012). After removal of the 

background field, the resulting local frequency shift maps of the last four echoes (with TE of 

18 ms to 36 ms) were averaged to obtain a higher signal-to-noise ratio (SNR) as compared to 

single-echo reconstruction. The ill-conditioned QSM dipole inversion was solved by using a 

modified structural feature based collaborative reconstruction algorithm (SFCR) (Bao et al., 

2016) with only L1-norm based regularization i.e. λ1 = γ1 = 100 and λ2 = γ2 = 0. QSM 

images used to build the multi-atlas dataset and the quantitative susceptibility values 

reported in this study were not explicitly referenced to tissue susceptibility value of any 

selected structures, which is equivalent to referencing to the mean susceptibility of the whole 

brain (Li et al., 2014). Besides the QSM image, a GRE magnitude image averaged over all 

the echoes was also generated as a separate alternative contrast channel for testing the multi-

atlas pipelines (Fig. 1).

2.2 Atlas generation

For generating the multi-atlases, T1WI of each subject was first put in the QSM space by co-

registering to GRE magnitude image using FSL FLIRT and skull stripping was then 

performed with FSL BET (Smith et al., 2004). The final atlases were created in MNI space. 

The co-registered T1WI in the QSM space was brought to the JHU_MNI_SS template (Mori 

et al., 2008) by sequential 6, 9, and 12 parameters linear transformations. The same 

transformations were then applied to QSM and GRE magnitude images (Fig. 2, Multi-atlas 

Generation).

Two human evaluators (both with more than 10 years of experience in computational 

anatomy) created the multi-atlases based on collected images. First, based on QSM contrast, 

a neuroanatomist (AVF, MD, neuroradiologist, PhD in Neurosciences with 17 years of 
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experience) delineated the following deep gray matter structures: CN, GPi/GPe, Put, Thal, 

Pulv, RN, SN, STN and DN with general guidance of the ICBM probabilistic atlas (Mori et 

al., 2008). The parcellation of RN and SN were mainly defined based on QSM contrast on 

axial view, while the definition of STN was done on the coronal view, based on its position 

relative to SN with guidance from previous reported studies (Ewert et al., 2018; Keuken et 

al., 2014; Visser et al., 2016). The parcellation of thalamus and DN was done following the 

guidance of (Behrens et al., 2003; He et al., 2017; Lim et al., 2013; Morel et al., 1997; 

Zhang et al., 2010). Ventricles were delineated based on T1WI and GRE images. White 

matter and cortex were defined in the remaining tissue (not classified as any of the ROIs 

above) with the guidance of T1w tissue probabilistic map. A second evaluator (JH, Master in 

health sciences with 12 years of experience in computational anatomy) reviewed the 

delineations and ultimate decisions were achieved by consensus between the two evaluators 

if changes or modifications were needed.

2.3 Segmentation with multi-channel multi-atlas pipeline

The method and processing setups involved in the automated segmentation pipeline using 

the multi-channel multi-atlas are illustrated in Fig. 2 and described as follows. Let 

A1, …, An  be a set of n atlases where Ai = AQSM
i , AT1

i , AS
i  denotes the ith atlas with QSM, 

T1WI and the corresponding manual segmentation image in MNI space. Similarly, let 

T = TQSM, TT1  be the target QSM and T1W images that will be segmented. In the multi-

channel multi-atlas pipeline, the target images are mapped to the atlas image coordinates 

using a combination of affine transformation and large deformation diffeomorphic mapping 

(LDDMM) transformation. Then, atlas manual segmentations are transferred to the target 

image coordinates and combined via a multi-atlas fusion algorithm to create a target 

segmentation. The workflow is similar to what was created before for T1 and DTI multi-

atlas pipelines (Ceritoglu et al., 2009; Tang et al., 2013; Tang et al., 2014) and is illustrated 

in Fig. 2. Briefly, it involves the following steps.

1. Target pre-processing steps:

a. Scaling of TQSM to remove negative values; This was done by 

normalizing QSM values in the range of −0.15 to 0.25 (ppm) to 

nonnegative values (0 to 255). QSM values outside this range were 

cropped to the minimum or maximum of this range i.e. −0.15 or 0.25. 

Such a range was selected based on the typical range of susceptibility 

values of major brain tissue as reported in a previous study (Hanspach 

et al., 2017)

b. Bias correction of TT1 using the N4 algorithm as described in (Tustison 

et al., 2010);

c. Calculation of a 12 parameter or affine transformation matrix M12 

between TT1 and JHU_MNI_SS MNI atlas using the AIR program 

(Woods et al., 1998a; Woods et al., 1998b).

d. Deformation of T = TQSM, TT1  onto MNI space with M12
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2. Target to atlas registrations: For each atlas contrast image Ai = AQSM
i , AT1

i  and 

target contrast image T = TQSM, TT1  MNI space, the following steps are 

performed.

a. Scaling of AQSM
i  to remove negative values similar as in step 1a. Bias 

correction of AT1
i  similar as in step 1b.

b. Histogram matching between AQSM
i , TQSM and AT1

i , TT1 pairs. (Coltuc 

et al., 2006).

c. Calculation of a 12 parameter affine transformation Mi between TT1and 

AT1
i  via AIR.

d. Deformation of T = TQSM, TT1  with Mi

e. Calculation of a diffeomorphic transformation φi between 

T = TQSM, TT1  and Ai = AQSM
i , AT1

i  using multi-channel LDDMM.

f. Further deformation of T = TQSM, TT1  onto atlas image space with φi ..

The LDDMM algorithm calculates diffeomorphic transformations between 

images of anatomical configurations by computing the geodesic flow in the space 

of diffeomorphisms between these images. The optimal transformation, φ, is 

generated as the end point of the flow of a smooth time-dependent vector field, 

vt ∈ V using a gradient descent algorithm. The two most important parameters 

that affect the smoothness of the computed diffeomorphism and the registration 

accuracy are α (controls smoothness of νt) and T (number of time steps for 

discretization of νt). The parameters used in our pipeline are modified from 

Ceritoglu 2009, with two sequential transformations 

φ1 = φα = 0.01, T = 2, φ2 = φα = 0.005, T = 2 and these transformations are cascaded 

to compute the final diffeomorphism φ = φ1
−1 . φ2

−1. The inverse LDDMM 

transformation was then used to bring the atlas segmentation AS
i  to the target 

coordinates in MNI space. Further details of LDDMM-based image registration 

and normalization accuracy can be found in our previous publications (Beg et al., 

2005; Ceritoglu et al., 2009; Ceritoglu et al., 2013; Faria et al., 2011; Faria et al., 

2010; Klein et al., 2009). The theory and details of the multichannel LDDMM 

are described in (Ceritoglu et al., 2009).

3. Segmentation via multi-atlas fusion

The multi-atlas fusion algorithm (Tang et al., 2013; Tang et al., 2014) used in the 

pipeline can be briefly summarized as follows: The atlas set A1, …, An  contains 

a collection of locally-defined charts for each atlas generated from manual 

segmentation images AS
1, …, AS

n  The algorithm computes maximum a posteriori 
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(MAP) estimates of the high dimensional segmentations from the class of 

generative models representing the observed target image T, which is assumed to 

be Gaussian random field conditioned on the atlas charts as well as 

diffeomorphic changes of coordinates for each chart. The charts and their 

diffeomorphic correspondences are unknown and viewed as latent or hidden 

variables. The expectation-maximization (EM) algorithm yields the likelihood-

fusion equation and it is maximized by the a-posteriori estimator of the 

segmentation labels for the target image. The fused likelihoods are modeled as 

conditional Gaussian random fields with mean fields as a function of each atlas 

chart under its diffeomorphic change of coordinates onto the target. The 

conditional-mean in the EM algorithm specifies the convex weights with which 

the chart-specific likelihoods are fused. In the implementation of the algorithm, 

main computational steps are

a. In target image space T, computation of posterior probability p l x, T ,
where x is the spatial coordinate and l = 1, …, M is the label number and 

M is the total number of labels.

b. To get a smoother boundary on segmentations, filtering of posterior 

probability with iterated conditional modes(ICM) algorithm (Besag, 

1986) with a neighbouring probability of 0.65.

c. Computation of target segmentation image TS x = argmaxl p l x, T

4. Post-processing: Transformation of TS from MNI space to its native space using 

the inverse of the affine transformation M12 computed in step 1.

2.4 Performance testing of the multi-atlas pipeline

The performance of automated segmentation of subcortical gray matter nuclei using the 

QSM/T1 multi-atlas was first tested on the same atlas dataset in a leave-one-out (LOO) test 

manner. For this, each atlas was considered as a target brain and mapped to the other nine 

atlases using both QSM and T1 contrasts and the final labels were defined using the multi-

atlas label fusion (MALF) algorithm as also described above (Tang et al., 2015).

For quantitative assessment of the segmentation performance, we calculated the indices of 

agreement (Dice) between the manual delineations (gold standard) in the atlases and the 

ones obtained with the QSM/T1 multi-atlas pipeline. Metrics of surface displacement 

between the manual and QSM/T1 delineations were further calculated as an alternative 

measure. Such displacements between pairs of ROIs were computed using the following 

procedure. Surfaces were first generated from each ROI using a restricted Delaunay 

triangulation. The first set of minimum distances was computed using the distances between 

each vertex belonging to the first surface and those belonging to the second surface. The 

second set of minimum distances was generated for vertices belonging to the second surface 

using the same method. The mean distance was found by averaging these minimum 

distances. The Hausdorff distance was found by taking the maximum of the suprema of the 

first and second set of minimum distances. It was considered as the maximum surface 

distance between the pair of ROIs.
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In order to assess the relative performance of the QSM/T1 multi-atlas pipeline with respect 

to the different choices of image contrast channels, we conducted a similar LOO test using 

different combinations of available contrast channels including 1) QSM/GRE/T1, 2) QSM/

GRE, 3) GRE/T1, 4) QSM only and 5) T1 only. Here QSM/T1 refers to using dual contrast 

channels with QSM and T1 contrast, while T1 only refers to using the single T1 contrast 

channel. The segmentation pipelines were modified accordingly to utilize different contrast 

channels. To gauge the performances, the Dice metrics between the manual delineations and 

all the delineations obtained with different segmentation pipelines were compared for each 

deep gray matter region with left and right side combined. In addition, a third evaluator (LC, 

with 3 years of experience) delineated all the structures of interest in all the 10 atlases 

independently, blinded from the labels created by the first two evaluators, allowing a 

comparison of the inter-evaluator agreement with the manual vs. automated agreement.

Besides the Dice metrics of agreement, quantitative values of tissue structure volume and 

tissue magnetic susceptibility extracted with the QSM/T1 delineation were compared with 

those extracted with manual delineation. Pearson correlation coefficients were calculated 

between these quantitative measures. Bland-Altman analysis was also performance to test 

the agreement between these measures.

The performance of the QSM/TI multi-atlas pipeline was further compared with respect to 

the standard package of FSL FIRST (Patenaude et al., 2011) and a more recent multi-atlas 

based package volBrain (Manjon and Coupe, 2016) using the 10-atlas data set. Dice metrics 

with respect to the manual delineations were compared in common subcortical regions 

generated by all three packages (FIRST, volBrain and QSM/T1), including CN, Put, GP and 

thalamus. For this comparison, regions of GPi/GPe generated by the QSM/T1 pipeline were 

combined into a single GP region, while thalamic pulvinar was combined with thalamus. 

Tissue structure volumes and magnetic susceptibility values extracted from these ROIs were 

also compared.

2.5 Robustness over protocols and scanners from different vendors

In order to test the reproducibility of QSM measures over scan protocols and platforms and 

the robustness of the multi-atlas pipeline, we acquired susceptibility MRIs in 6 healthy 

subjects (mean age 37.2 ± 11.8 y/o, 4 male and 2 female) using two different protocols and 

platforms from two different manufacturers, thereby creating 3 susceptibility scans for each 

subject. The first protocol (Philips Protocol A) was the same one used for acquiring the 

images of the atlases; the second protocol (Philips Protocol B) used a single echo SWI 

protocol with 0.9×0.9×1.5 mm3 resolution (TE/TR=20/27ms, FOV=220×220×168 mm3, flip 

angle 15°, bandwidth 120 Hz/px, SENSE factor of 2, scan time 7 min 51 sec) on the same 

Philips scanner; the third scan was obtained on a 3T Siemens Magnetom Skyra scanner 

(Siemens Healthcare, Erlangen, Germany) with parameters matched to the Philips Protocol 

B (Siemens Protocol B). All three scans for each subject were acquired within 6 months. 

QSM images were calculated using similar methods and procedures as described above for 

the atlas dataset except that no echo averaging was performed for single-echo SWI data. 

GRE magnitude images were used to co-register scans acquired on each subject with 

different protocols and scanner platforms using 9 parameter linear transformation and the 
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transformation matrices were applied on the QSM images to put them into the same frame of 

reference.

Using the QSM/T1 multi-atlas segmentation pipeline, each QSM image acquired for each 

subject using each protocol was treated as a target brain and was automatically segmented 

and the mean QSM-based magnetic susceptibility value and corresponding tissue structure 

volume were extracted for each ROI. A manual label was also generated for each of the six 

subjects drawn on QSM images acquired using Philips Protocol A by one human rater (LC). 

Dice metrics of agreement with respect to the manual label were then calculated for the three 

automatically generated brain segmentations from the three different acquisition protocols. 

Similarly, Dice metrics were also calculated in an inter-protocol manner between the 

QSM/T1 brain segmentations obtained from each pair of scan data, e.g. from QSM data 

acquired using Philips Protocol A vs. Philips Protocol B etc. The extracted tissue structure 

volumes and quantitative susceptibility measures from each dataset using either the manual 

label or the QSM/T1 multi-atlas approach were further used to test the reproducibility of 

QSM and the multi-atlas pipeline using a linear correlation analysis and a Bland-Altman 

analysis.

2.6 Testing the pipeline in an external dataset

To further test the applicability and performance of our susceptibility multi-atlas tool, we 

applied it on a subset of a QSM dataset from a previously published study (Li et al., 2014) 

collected at an external site. The susceptibility weighted images were acquired on a 3T 

Siemens TimTrio scanner on 17 healthy subjects, 8 M/9 F, with age from 47 to 78 y/o (mean 

64.9 ± 9.7 y/o) using a 3D GRE sequence with 0.9×0.9×2 mm3 resolution, TE1/∆TE/

TR=4.92/4.92/35 ms, six echoes. QSM was calculated by using Laplacian based phase 

unwrapping, VSHARP and LSQR method as described in (Li et al., 2014). Frequency map 

or local field changes from all echoes were averaged to gain higher SNR.

Using the QSM/T1 multi-atlas pipeline, each brain was automatically segmented. Manual 

delineation was also performed by one human evaluator (LC). However, due to the lower 

resolution of this dataset, manual delineations of GPi and Gpe in GP and STN from SN 

could not be performed. Dice metrics of agreement between the automated segmentation and 

the manual delineation were calculated. For this, the GPi and GPe generated from the 

QSM/T1 pipeline were combined, while STN and SN were combined. Tissue structure 

volume and magnetic susceptibility values extracted from the two sets of ROIs, i.e. manual 

versus QSM/T1 multi-atlas approach were also compared.

3. Results

Figure 3 illustrates example manual delineation and parcellation maps obtained using the 

multi-atlas approach with different combinations of contrast channels overlaid on QSM 

images of a 46 y/o male participant. The three axial slices show clearly the structures of CN, 

putamen, GPi/GPe, thalamus, pulvinar, RN, SN and DN, while the coronal slice shows the 

STN on top of SN. It was observed that both the QSM/GRE/T1 and QSM/T1 multi-atlas 

pipeline gave results close to manual delineation and outperformed all other automated 

methods using either dual channels, e.g. QSM/GRE and GRE/T1, or a single contrast 
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channel, e.g. QSM only or T1 only pipelines. As marked by the arrows in Fig. 3, 

segmentations that exclude T1 contrast tend to have inferior performance around the 

ventricles and its surrounding structures e.g. CN and thalamus. On the other hand, 

segmentations excluding QSM contrast tend to have inferior performance in structures that 

have weak T1 contrast, e.g. RN, DN, or pulvinar.

The Dice metrics for all deep gray matter nuclei were calculated with respect to the manual 

delineation in the atlases (consensus by evaluators AVF and JH). As shown in Fig. 3, the 

QSM/T1 multi-atlas pipeline gave the overall (average over all structures) best performance 

(Dice of 0.77±0.09) among all of the automated segmentation pipelines and rivaled with the 

inter-evaluator Dice (0.79±0.07). Using three contrast channels i.e. QSM/GRE/T1, 

performed comparably (Dice of 0.75±0.10) to the QSM/T1 multi-atlas for all ROIs, but 

required longer computational time to segment each target brain (2.6±0.5 hours with 

QSM/GRE/T1 versus 1.6±0.5 hours with QSM/T1 on our cluster). The QSM/GRE and 

QSM-only pipeline gave comparable performance in most regions to the QSM/T1 pipeline 

(Dice of 0.75±0.10 and 0.76±0.08, respectively), but inferior performance in CN and 

thalamus. In comparison, the T1-only and GRE/T1 pipelines performed closely to the 

QSM/T1 multi-atlas in the caudate, putamen and thalamus (Dice values of 0.73±0.10 and 

0.66±0.12, respectively), but gave inferior performance in STN, SN, RN and DN. These 

results are in general consistent with what we have observed in the example delineations 

shown in Fig. 3. Since the QSM/T1 pipeline was found to give the best performance among 

all the tested contrast channel selections, the further tests conducted in this study used the 

QSM/T1 multi-atlas pipeline.

In terms of regional performances using the QSM/T1 pipeline, the segmentation of most 

subcortical regions gave Dice values above 0.8, with Dice values between 0.7 and 0.8 for 

small structures or certain substructures like GPi, GPe or STN. Delineations of the thalamic 

pulvinar however, showed only moderate agreement between automated and manual 

segmentation (Dice of 0.54), with a relatively low inter-evaluator Dice of 0.65. The surface 

displacement metric between the automated and manual segmentation (Table S1) gave a 

similar indication, with the mean distance in most ROIs below 1.0 mm suggesting an overall 

distance smaller than one voxel, except in the pulvinar where the mean distance reached 1.7 

mm.

The extracted tissue structure volumes (in mm3) and magnetic susceptibility values (in ppm) 

using either the manual delineation or the QSM/T1 pipeline are summarized in Table 1. 

Volume and susceptibility values extracted using the QSM/T1 pipeline are in general 

consistent and significantly correlated with those extracted using manual delineation with 

most correlation coefficient larger than 0.7, except in the small structure of STN (correlation 

coefficient smaller than 0.7, but still significant) and in pulvinar (volume measure found not 

significantly correlated). The overall correlation between the volume measures and 

susceptibility measures extracted using the QSM/T1 segmentation and manual labels in all 

the ROIs are 0.97 and 0.96, respectively (Figs. S1a and S1c). QSM/T1 approach showed 

some volume underestimation especially in CN, putamen and pulvinar (Fig. S1b). The 

corresponding susceptibility measures extracted from QSM/T1 approach showed a 95% 

limits of agreement of 0.0030±0.025 ppm with respect to the manual approach (Fig. S1d).
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The delineations of subcortical regions of CN, putamen, GP and thalamus using FSL FIRST, 

volBrain and QSM/T1 pipeline are illustrated in Fig. 4a. With respect to the gold standard 

manual delineation, comparable Dice metrics of agreement were observed between the three 

methods in CN and putamen, while the QSM/T1 pipeline significantly outperformed FSL 

FIRST and volBrain in GP (with p<0.05 and p<0.001, respectively) and in thalamus (with 

p<0.001 and p<0.05, respectively) as in Fig. 4b. It was further observed (Figs. 4c,d) that 

volBrain tended to underestimate the GP volume and overestimate the magnetic 

susceptibility in GP. In addition, FSL FIRST was observed to underestimate the GP volume 

and overestimate the thalamic volume.

Test results on the reproducibility of the QSM/T1 multi-atlas pipeline and the QSM 

magnetic susceptibility measures over scan protocols and platforms are illustrated in Table 2 

and Figs. 5 and 6. Figure 5a shows example delineations over QSM images acquired on a 57 

y/o male subject using different protocols as compared to the manual delineation drawn on 

Philips protocol A. The automatically generated ROIs showed almost perfect agreement in 

an inter-protocol manner, i.e. between-scan-protocols and between-platforms, with excellent 

segmentation reproducibility indicated by the high inter-protocol Dice values (0.89±0.04, 

with most of them over 0.85 except in certain small structures such as GPi and STN) and 

good dice metrics of agreement (0.79±0.08) with respect to the manual labels (Table 2). In 

addition, excellent correlations were observed between the QSM-based tissue susceptibility 

measures extracted from these three different scans using the QSM/T1 pipeline in an inter-

protocol manner (Figs. 5b-d, correlation coefficient all above 0.97) and with respect to those 

extracted using the manual labels (Fig. 6c, correlation coefficients all above 0.95). Similar 

reproducibility and high correlations were also observed in the tissue volume measures in an 

inter-protocol manner (Fig. 6b, correlation coefficient all above 0.99) and between tissue 

volume measures extracted from the QSM/T1 pipeline versus those from the manual labels 

(Fig. 6a, correlation coefficient all above 0.98). The corresponding Bland-Altman analysis 

results are shown in Figs. S2 and S3 on volume and susceptibility, respectively. In general, 

the inter-protocol comparisons on tissue magnetic susceptibility have smaller difference 

variations (95% limits about ±0.015 ppm) than the comparisons between QSM/T1 approach 

with respect to the manual labels (95% limits about ±0.023 ppm). Similar observations were 

made for volume measures.

To assess its general applicability, the QSM/T1 pipeline was tested on an external dataset. 

The results are shown in Fig. 7 and the corresponding Dice metrics and extracted tissue 

structure volumes and susceptibility values are summarized in Table 3. The segmentation by 

QSM/T1 multi-atlas pipeline in most selected structures agreed well with the manual 

delineation (Fig. 7a). An average Dice metric of 0.79±0.03 was observed over all ROIs 

(Table 3), with good performance (Dice values of 0.8 and above) observed in the basal 

ganglia and midbrain, while slightly inferior performance was observed in putamen, dentate, 

thalamus and thalamic pulvina (Dice of 0.74–0.78). The extracted tissue structure volume 

and magnetic susceptibility values in the deep gray matter nulcei using the automated 

segmentation were found to be consistent with those obtained using manual delineation 

(Table 3), with overall correlation coefficient above 0.97 for the structure volume measures 

(Fig. 7b) and above 0.94 for the tissue susceptiblity measures (Fig. 7c). The corresponding 

Bland-Altman plots of the volume and susceptiblity meaures between the QSM/T1 approach 
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and manual labels are shown in Fig. S4. The limits of agreement for tissue magnetic 

susceptibility are 0.0024±0.018 ppm.

We have made the developed QSM/T1 multi-atlas segmentation pipeline publicly available 

through our MRICloud platform: www.mricloud.org, which has a simple web-based 

interface and does not require any installation or advanced computational equipment. Users 

can simply upload the co-registered QSM and T1 images through the website and download 

the results after the calculation is finished. The output results include the segmentation in 

both native and MNI space with a summary of tissue structure volumes and magnetic 

susceptibility measures extracted for each label.

4. Discussion

In the present study, we developed a human brain multi-atlas tool utilizing both QSM and T1 

contrast for reproducible region selection and magnetic susceptibility quantification of iron-

rich subcortical gray matter nuclei. This was demonstrated for different imaging protocols 

and anatomical variations. Such a multi-atlas tool, currently not available, is an endeavor to 

address the increasing interest in studying aging and neurodegeneration using magnetic 

susceptibility as a quantitative MRI that can provide information about important tissue 

components such as iron and myelin. With the simple single-echo SWI acquisition widely 

available on clinical scanners and multi-echo GRE sequences increasingly used for QSM, 

existing and future studies are expected to benefit from such automated, reliable and freely 

accessible analysis tools for extracting clinically relevant quantitative susceptibility metrics 

from imaging data.

Previous and recent studies on automated analysis of QSM images have demonstrated the 

limitation of commonly used T1 based registration and segmentation approaches in 

quantifying QSM measures mainly due to the low T1 contrast in iron-rich deep gray matter 

nuclei (Cobzas et al., 2015; Lim et al., 2013). Many research efforts have therefore been 

devoted to the development of brain atlases and segmentation pipelines based on 

susceptibility contrast or on fused or combined contrast of susceptibility and T1 contrast 

(Cobzas et al., 2015; Feng et al., 2017; Garzon et al., 2018; Hanspach et al., 2017; Lim et al., 

2013; Zhang et al., 2018). A very recent study has shown that in order to build an averaged 

susceptibility template with the best overall performance in terms of co-registering all QSM 

images, it is necessary to use either a hybrid QSM/T1 contrast or a multi-contrast 

optimization taking into account these two contrasts (Hanspach et al., 2017). The 

performance is however region dependent with pure QSM contrast being superior in the 

basal ganglia and thalamus and the hybrid or multi-contrast methods being superior in the 

motor cortex region and veins. A similar approach was also used to build longitudinal QSM 

atlases recently (Zhang et al., 2018).

Previously, we were successful in developing a susceptibility single-atlas for automated 

segmentation (Lim et al., 2013). However, the accuracy of brain mapping to a single atlas or 

a group-average is largely dependent on the similarity between the atlas and the subject 

brain in question. Therefore, when studying populations with large anatomical variations; 

e.g. with characteristic morphological changes associated with age, notably enlarged 
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ventricles, widened sulci and cortical atrophy; accurate cross-subject registration may be 

hard to achieve (Diaz-de-Grenu et al., 2014) even with highly elastic diffeomorphic 

transformations, such as LDDMM (Miller et al., 2005; Wang et al., 2007). Consequently, 

automated analysis of quantitative magnetic susceptibility measures in elderly or patients 

with neurodegenerative diseases using the single-atlas is not very robust and reliable. In 

addition, for model-based group-averaged QSM atlas, an appropriate age-matched QSM 

template needs to be selected for segmenting the target brain (Zhang et al., 2018) and 

segmentation performance may still be not very robust if large anatomical variations exist in 

the same age group, e.g. due to pathological reasons (Iglesias and Sabuncu, 2015). As what 

happens for other image contrasts (Tang et al., 2015; Tang et al., 2013), the robustness of the 

registration and segmentation can be substantially improved by using a multi-atlas approach, 

which employs a set of human brain atlases covering sufficient anatomical variations with 

each atlas having accurate manual parcellation of similar brain structures.

One limitation of the QSM/T1 multi-atlas is of course the need to obtain both T1 and QSM 

images, which might not be available in all studies involving QSM e.g. iron studies. 

However, anatomical T1 weighted scans (MPRAGE) are routinely collected in research 

studies and often in clinical practice and, as shown in our study, the QSM/GRE multi-atlas 

might also give satisfactory segmentation in case a T1 scan is not available. T1 images have 

been widely used in MRI volumetric studies for years, with QSM images rarely collected in 

addition, which might be an even more important limitation for the wide use of our multi-

atlas tool. Yet considering the fact that QSM techniques have not been developed until the 

recent decade, it is believed that there will be an increasing interest and use of the automated 

multi-atlas segmentation pipelines in the coming future. In this study, a GRE magnitude 

image averaged over echo times was used as one contrast channel to get a trade-off between 

the different contrast weightings over short and long echo times. In practice, for single-echo 

SWI data, using GRE magnitude images with matched TE might further improve the 

registration and segmentation accuracy, at least at a similar field strength.

In the current susceptibility multi-atlases, we used QSM maps reconstructed from the single 

supine head position, which is in principle inferior as compared to the QSM map calculated 

using COSMOS (Calculation of Susceptibility through Multiple Orientation Sampling)(Liu 

et al., 2009) that was used in a previous susceptibility single-atlas acquired on a healthy 

young subject (Lim et al., 2013). This is due to the unavailability of the susceptibility 

weighted scans in multiple directions for the selected elderly subjects and the fact that for 

most current and future clinical studies, multi-orientation QSM probably won’t be available 

anyway. However, the SFCR analysis approach was recently shown to have near-perfect 

agreement with COSMOS for magnetic susceptibility quantifications in deep gray matter 

regions when using supine data (Bao et al., 2016) and its use in the atlases in the present 

study again provided good segmentation/normalization results. Even better image quality of 

single-orientation QSM and better correspondence with respect to COSMOS can be 

expected in the near future with recent developments of more sophisticated phase 

preprocessing techniques (Fang et al., 2017) and deep learning techniques(Yoon et al., 

2018).
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While the agreement indices of the automated segmentation with respect to manual 

delineation and the inter-evaluator agreement were satisfactory in the LOO test, they were 

both relatively low in the thalamic pulvinar, which is partly due to the low QSM contrast in 

the pulvinar of several subjects in our current atlas set. This is of course an issue intrinsic to 

the QSM/T1 approach, i.e. segmentation of structures with poor contrasts in both QSM and 

T1 images would be purely based on prior knowledge and prone to errors. The thalamic 

pulvinar contrast varied between subjects in our atlas set, most likely due to different tissue 

iron content. Prospectively, the addition of extra-channels of contrast, e.g., contrast derived 

from DTI, may help ameliorate this issue in these cases. Better segmentation performance 

and higher Dice values in pulvinar were observe in the protocol reproducibility tests and 

tests on the external dataset. Our current study has also shown that segmentations of certain 

substructures e.g. the GPi and GPe and STN might be possible with the developed QSM/T1 

multi-atlas tool if high resolution QSM images are available.

Compared to standard FSL FIRST and the recently developed multi-atlas based volBrain 

method, the presented QSM/T1 multi-atlas showed comparable or superior performance in 

segmenting several common subcortical regions, i.e. CN, putamen, GP and thalamus. 

However, it should be noted that our manual delineation was obtained by using both QSM 

and T1 contrast, while the training data or atlases in both FSL FIRST and volBrain were 

based on T1 contrast only. Since both manual and automated segmentation depends on the 

image contrast, there might be slight inconsistency between the delineation or definition of 

certain brain structures, e.g. definition of GP and thalamus, using combined QSM and T1 

contrast versus T1 contrast only. Such inconsistency would therefore favor our QSM/T1 

approach.

The susceptibility multi-atlas was also demonstrated to be very stable among platforms and 

protocols. Tests using the dataset acquired from the external study site employing a different 

acquisition protocol, a different scanner and a different QSM reconstruction further validated 

the reliability of our multi-atlas tool. Using these multi-atlas tools for normalization, the 

magnetic susceptibility values in most selected gray matter nuclei, which are known to be 

proportional to the tissue iron content, showed good reliability and reproducibility. Such 

stable results would allow combination of data from different sources into large databases 

and would help provide universal and generalizable metrics. These in turn could then be 

used for automated patient analysis, e.g. with the use of big data and machine learning 

approaches.

It should be noted that explicit QSM referencing to selected brain tissue was not used in the 

multi-atlases and all our conducted tests. Therefore, all the tissue magnetic susceptibility 

values reported in this study is equivalent to referencing to the whole-brain. The same way 

of referencing is also used in the summary output from our shared online pipeline (available 

at www.mricloud.org). However, this should not limit the use of other options of QSM 

referencing e.g. referencing to the ventricle CSF or overall WM as they are also provided in 

the multi-atlas segmentation. Users can also use other selected region of referencing for final 

QSM quantification.
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Strategies to further improve the automated segmentation include the expansion of the atlas 

library, i.e. to include more atlases that cover broader anatomical variations and different 

patterns of iron deposition thus QSM contrast especially in the basal ganglia and thalamus, 

which is known to change during aging (Li et al., 2014; Zhang et al., 2018). Such contrast 

changes make it easier to delineate certain structures at younger age, e.g. the GPi and GPe, 

and other structures at later age, e.g. the pulvinar. While the number of atlases to be used 

varies according to the contrasts and the subjects in question, previous observations by our 

group and others have shown that the segmentation accuracy may start to converge by using 

about 10 atlases if an appropriate atlas pre-selection can be done (Ma et al., 2015; Ye et al., 

2018). The criteria for pre-selection is the anatomical similarity between atlases and target. 

Factors such as age and pathology are also great determinants of anatomical similarity and 

therefore must be considered when selecting the proper atlas library. In addition, as the 

multi-atlas approach is critically dependent on the manual labels, certain systematic errors 

may exist if the original manual labels in the atlas are incorrect and have some common and 

consistent biases. Adding a step similar to “corrective learning” explained in (Wang and 

Yushkevich, 2013) after computing the label fusion might further improve the segmentation 

accuracy and help removing systematic manual segmentation errors in the original labels.

For the sake of cohort studies on brain volumetric change or iron deposition across the 

lifespan and among neurodegenerative diseases, the number of atlases used in the current 

study are still quite limited and probably account for only part of the expected variability. 

While more atlases will be added in the future, the 10 datasets we pre-selected to build this 

first version of the QSM/T1 multi-atlas pipeline does contain a reasonable amount of 

anatomical variation, e.g. with asymmetry, atrophy etc. that is essential for the multi-atlas 

method and showed reasonably good performance and robustness in all tested datasets 

(mainly healthy adults of middle to old age). Of course, for brains during neurodevelopment, 

i.e. infant, kids, teenagers, separate brain atlases are definitely needed. Increasing the 

number of atlases, especially with larger anatomical and susceptibility contrast variations in 

the future is expected to further improve the segmentation performance.

5. Conclusion

A magnetic susceptibility human brain multi-atlas quantification tool with improved 

accuracy and reliability for automated segmentation and quantification of QSM-based 

magnetic susceptibility measures was developed, which is expected to facilitate future 

individual analysis and studies on aging and neurodegeneration employing QSM. Further 

improvement on the performance of this tool is expected by increasing the number of atlases 

in the future.
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Acknowledgement

The authors would like to thank Mr. Joseph Gillen, Ms. Terri Brawner, Ms. Kathleen Kahl, Ms. Ivana Kusevic, Dr. 
Li Pan for their assistance with data acquisition. This project was supported by NCRR and NIBIB (P41 EB015909), 

Li et al. Page 16

Neuroimage. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NINDS (R01 NS084957), NIA (R21 AG061668) of the National Institutes of Health; Chinese Scholarship Council 
(201706310087 to Lin Chen); In MRICloud, computational analysis is done using Computational Anatomy 
Gateway via XSEDE (www.xsede.org) resources; Dr. Peter van Zijl is a paid lecturer for Philips Healthcare and is 
the inventor of technology that is licensed to Philips. Susumu Mori and Michael I. Miller own “AnatomyWorks”. 
Susumu Mori is its CEO. This arrangement has been approved by The Johns Hopkins University in accordance with 
its Conflict of Interest policies.

References

Absinta M, Sati P, Gaitan MI, Maggi P, Cortese IC, Filippi M, Reich DS, 2013 Seven-tesla phase 
imaging of acute multiple sclerosis lesions: a new window into the inflammatory process. Ann 
Neurol 74, 669–678. [PubMed: 23813441] 

Acosta-Cabronero J, Betts MJ, Cardenas-Blanco A, Yang S, Nestor PJ, 2016 In Vivo MRI Mapping of 
Brain Iron Deposition across the Adult Lifespan. J Neurosci 36, 364–374. [PubMed: 26758829] 

Acosta-Cabronero J, Williams GB, Cardenas-Blanco A, Arnold RJ, Lupson V, Nestor PJ, 2013 In vivo 
quantitative susceptibility mapping (QSM) in Alzheimer’s disease. PloS one 8, e81093. [PubMed: 
24278382] 

Ayton S, Fazlollahi A, Bourgeat P, Raniga P, Ng A, Lim YY, Diouf I, Farquharson S, Fripp J, Ames D, 
Doecke J, Desmond P, Ordidge R, Masters CL, Rowe CC, Maruff P, Villemagne VL, Australian 
Imaging B, Lifestyle Research G, Salvado O, Bush AI, 2017 Cerebral quantitative susceptibility 
mapping predicts amyloid-beta-related cognitive decline. Brain 140, 2112–2119. [PubMed: 
28899019] 

Bagnato F, Hametner S, Yao B, van Gelderen P, Merkle H, Cantor FK, Lassmann H, Duyn JH, 2011 
Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. 
Brain 134, 3602–3615. [PubMed: 22171355] 

Bao L, Li X, Cai C, Chen Z, van Zijl PC, 2016 Quantitative Susceptibility Mapping Using Structural 
Feature Based Collaborative Reconstruction (SFCR) in the Human Brain. IEEE Trans Med Imaging 
35, 2040–2050. [PubMed: 27019480] 

Barbosa JH, Santos AC, Tumas V, Liu M, Zheng W, Haacke EM, Salmon CE, 2015 Quantifying brain 
iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 
and R2. Magn Reson Imaging 33, 559–565. [PubMed: 25721997] 

Bartzokis G, Sultzer D, Mintz J, Holt LE, Marx P, Phelan CK, Marder SR, 1994 In vivo evaluation of 
brain iron in Alzheimer’s disease and normal subjects using MRI. Biological psychiatry 35, 480–
487. [PubMed: 8018799] 

Beg MF, Miller MI, Trouvé A, Younes L, 2005 Computing Large Deformation Metric Mappings via 
Geodesic Flows of Diffeomorphisms Springer Netherlands, pp. 139–157.

Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, 
Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM, 2003 
Non-invasive mapping of connections between human thalamus and cortex using diffusion 
imaging. Nature neuroscience 6, 750–757. [PubMed: 12808459] 

Besag J, 1986 On the Statistical-Analysis of Dirty Pictures. Journal of the Royal Statistical Society 
Series B-Methodological 48, 259–302.

Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E, 2012 MRI estimates of brain iron 
concentration in normal aging using quantitative susceptibility mapping. NeuroImage 59, 2625–
2635. [PubMed: 21925274] 

Browne SE, Beal MF, 2006 Oxidative damage in Huntington’s disease pathogenesis. Antioxid Redox 
Signal 8, 2061–2073. [PubMed: 17034350] 

Ceritoglu C, Oishi K, Li X, Chou MC, Younes L, Albert M, Lyketsos C, van Zijl PC, Miller MI, Mori 
S, 2009 Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor 
imaging. NeuroImage 47, 618–627. [PubMed: 19398016] 

Ceritoglu C, Tang X, Chow M, Hadjiabadi D, Shah D, Brown T, Burhanullah MH, Trinh H, Hsu JT, 
Ament KA, Crocetti D, Mori S, Mostofsky SH, Yantis S, Miller MI, Ratnanather JT, 2013 
Computational analysis of LDDMM for brain mapping. Front Neurosci 7, 151. [PubMed: 
23986653] 

Li et al. Page 17

Neuroimage. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.xsede.org


Chen WW, Gauthier SA, Gupta A, Comunale J, Liu T, Wang S, Pei MC, Pitt D, Wang Y, 2014 
Quantitative Susceptibility Mapping of Multiple Sclerosis Lesions at Various Ages. Radiology 
271, 183–192. [PubMed: 24475808] 

Cheng YCN, Neelavalli J, Haacke EM, 2009 Limitations of calculating field distributions and 
magnetic susceptibilities in MRI using a Fourier based method. Physics in Medicine and Biology 
54, 1169–1189. [PubMed: 19182322] 

Cobzas D, Sun H, Walsh AJ, Lebel RM, Blevins G, Wilman AH, 2015 Subcortical gray matter 
segmentation and voxel-based analysis using transverse relaxation and quantitative susceptibility 
mapping with application to multiple sclerosis. J Magn Reson Imaging

Collins DL, Pruessner JC, 2010 Towards accurate, automatic segmentation of the hippocampus and 
amygdala from MRI by augmenting ANIMAL with a template library and label fusion. 
NeuroImage 52, 1355–1366. [PubMed: 20441794] 

Coltuc D, Bolon P, Chassery JM, 2006 Exact histogram specification. IEEE Trans Image Process 15, 
1143–1152. [PubMed: 16671295] 

Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ, 1992 Regional distribution of iron and iron-
regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31, 327–335. 
[PubMed: 1573683] 

de Rochefort L, Brown R, Prince MR, Wang Y, 2008 Quantitative MR susceptibility mapping using 
piece-wise constant regularized inversion of the magnetic field. Magn Reson Med 60, 1003–1009. 
[PubMed: 18816834] 

Deistung A, Schweser F, Reichenbach JR, 2017 Overview of quantitative susceptibility mapping. 
NMR Biomed 30.

Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD, 1989 Increased nigral iron 
content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 
52, 1830–1836. [PubMed: 2723638] 

Diaz-de-Grenu LZ, Acosta-Cabronero J, Chong YF, Pereira JM, Sajjadi SA, Williams GB, Nestor PJ, 
2014 A brief history of voxel-based grey matter analysis in Alzheimer’s disease. J Alzheimers Dis 
38, 647–659. [PubMed: 24037033] 

Dominguez DJ, Ng AC, Poudel G, Stout JC, Churchyard A, Chua P, Egan GF, Georgiou-Karistianis N, 
2015 Iron accumulation in the basal ganglia in Huntington’s disease: cross-sectional data from the 
IMAGE-HD study. J Neurol Neurosurg Psychiatry

Du G, Liu T, Lewis MM, Kong L, Wang Y, Connor J, Mailman RB, Huang X, 2016 Quantitative 
susceptibility mapping of the midbrain in Parkinson’s disease. Mov Disord 31, 317–324. 
[PubMed: 26362242] 

Dumas EM, Versluis MJ, van den Bogaard SJ, van Osch MJ, Hart EP, van Roon-Mom WM, van 
Buchem MA, Webb AG, van der Grond J, Roos RA, investigators T-H, 2012 Elevated brain iron is 
independent from atrophy in Huntington’s Disease. NeuroImage 61, 558–564. [PubMed: 
22480728] 

Duyn JH, Schenck J, 2016 Contributions to magnetic susceptibility of brain tissue. NMR Biomed

Duyn JH, van Gelderen P, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M, 2007 High-field MRI of 
brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A 104, 11796–11801. 
[PubMed: 17586684] 

Ewert S, Plettig P, Li N, Chakravarty MM, Collins DL, Herrington TM, Kuhn AA, Horn A, 2018 
Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on 
multimodal MRI, histology and structural connectivity. NeuroImage 170, 271–282. [PubMed: 
28536045] 

Fang J, Bao L, Li X, van Zijl PCM, Chen Z, 2017 Background field removal using a region adaptive 
kernel for quantitative susceptibility mapping of human brain. J Magn Reson 281, 130–140. 
[PubMed: 28595120] 

Faria AV, Hoon A, Stashinko E, Li X, Jiang H, Mashayekh A, Akhter K, Hsu J, Oishi K, Zhang J, 
Miller MI, van Zijl PC, Mori S, 2011 Quantitative analysis of brain pathology based on MRI and 
brain atlases--applications for cerebral palsy. NeuroImage 54, 1854–1861. [PubMed: 20920589] 

Faria AV, Zhang J, Oishi K, Li X, Jiang H, Akhter K, Hermoye L, Lee SK, Hoon A, Stashinko E, 
Miller MI, van Zijl PC, Mori S, 2010 Atlas-based analysis of neurodevelopment from infancy to 

Li et al. Page 18

Neuroimage. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adulthood using diffusion tensor imaging and applications for automated abnormality detection. 
NeuroImage 52, 415–428. [PubMed: 20420929] 

Feng X, Deistung A, Dwyer MG, Hagemeier J, Polak P, Lebenberg J, Frouin F, Zivadinov R, 
Reichenbach JR, Schweser F, 2017 An improved FSL-FIRST pipeline for subcortical gray matter 
segmentation to study abnormal brain anatomy using quantitative susceptibility mapping (QSM). 
Magn Reson Imaging 39, 110–122. [PubMed: 28188873] 

Garzon B, Sitnikov R, Backman L, Kalpouzos G, 2018 Automated segmentation of midbrain 
structures with high iron content. NeuroImage 170, 199–209. [PubMed: 28602813] 

Goubran M, Rudko DA, Santyr B, Gati J, Szekeres T, Peters TM, Khan AR, 2014 In vivo normative 
atlas of the hippocampal subfields using multi-echo susceptibility imaging at 7 Tesla. Hum Brain 
Mapp 35, 3588–3601. [PubMed: 24339427] 

Graham JM, Paley MN, Grunewald RA, Hoggard N, Griffiths PD, 2000 Brain iron deposition in 
Parkinson’s disease imaged using the PRIME magnetic resonance sequence. Brain 123 Pt 12, 
2423–2431. [PubMed: 11099445] 

Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y, 2015 Quantitative susceptibility mapping: current 
status and future directions. Magn Reson Imaging 33, 1–25. [PubMed: 25267705] 

Haacke EM, Makki M, Ge Y, Maheshwari M, Sehgal V, Hu J, Selvan M, Wu Z, Latif Z, Xuan Y, Khan 
O, Garbern J, Grossman RI, 2009 Characterizing iron deposition in multiple sclerosis lesions using 
susceptibility weighted imaging. J Magn Reson Imaging 29, 537–544. [PubMed: 19243035] 

Hagemeier J, Zivadinov R, Dwyer MG, Polak P, Bergsland N, Weinstock-Guttman B, Zalis J, Deistung 
A, Reichenbach JR, Schweser F, 2018 Changes of deep gray matter magnetic susceptibility over 2 
years in multiple sclerosis and healthy control brain. Neuroimage Clin 18, 1007–1016. [PubMed: 
29868452] 

Hanspach J, Dwyer MG, Bergsland NP, Feng X, Hagemeier J, Bertolino N, Polak P, Reichenbach JR, 
Zivadinov R, Schweser F, 2017 Methods for the computation of templates from quantitative 
magnetic susceptibility maps (QSM): Toward improved atlas- and voxel-based analyses (VBA). J 
Magn Reson Imaging 46, 1474–1484. [PubMed: 28263417] 

He N, Langley J, Huddleston DE, Ling H, Xu H, Liu C, Yan F, Hu XP, 2017Improved Neuroimaging 
Atlas of the Dentate Nucleus. Cerebellum 16, 951–956. [PubMed: 28669058] 

He N, Ling H, Ding B, Huang J, Zhang Y, Zhang Z, Liu C, Chen K, Yan F, 2015 Region-specific 
disturbed iron distribution in early idiopathic Parkinson’s disease measured by quantitative 
susceptibility mapping. Hum Brain Mapp 36, 4407–4420. [PubMed: 26249218] 

Iglesias JE, Sabuncu MR, 2015 Multi-atlas segmentation of biomedical images: A survey. Med Image 
Anal 24, 205–219. [PubMed: 26201875] 

Keuken MC, Bazin PL, Crown L, Hootsmans J, Laufer A, Muller-Axt C, Sier R, van der Putten EJ, 
Schafer A, Turner R, Forstmann BU, 2014 Quantifying inter-individual anatomical variability in 
the subcortex using 7 T structural MRI. NeuroImage 94, 40–46. [PubMed: 24650599] 

Keuken MC, Forstmann BU, 2015 A probabilistic atlas of the basal ganglia using 7 T MRI. Data Brief 
4, 577–582. [PubMed: 26322322] 

Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, 
Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, 
Woods RP, Mann JJ, Parsey RV, 2009 Evaluation of 14 nonlinear deformation algorithms applied 
to human brain MRI registration. NeuroImage 46, 786–802. [PubMed: 19195496] 

Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, 
Mikiten SA, Fox PT, 2000 Automated Talairach atlas labels for functional brain mapping. Hum 
Brain Mapp 10, 120–131. [PubMed: 10912591] 

Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S, 2010 
Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 257, 455–462. 
[PubMed: 20843991] 

Langkammer C, Liu T, Khalil M, Enzinger C, Jehna M, Fuchs S, Fazekas F, Wang Y, Ropele S, 2013 
Quantitative susceptibility mapping in multiple sclerosis. Radiology 267, 551–559. [PubMed: 
23315661] 

Li W, Wu B, Batrachenko A, Bancroft-Wu V, Morey RA, Shashi V, Langkammer C, De Bellis MD, 
Ropele S, Song AW, Liu C, 2014 Differential developmental trajectories of magnetic susceptibility 

Li et al. Page 19

Neuroimage. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in human brain gray and white matter over the lifespan. Hum Brain Mapp 35, 2698–2713. 
[PubMed: 24038837] 

Li W, Wu B, Liu C, 2011 Quantitative susceptibility mapping of human brain reflects spatial variation 
in tissue composition. NeuroImage 55, 1645–1656. [PubMed: 21224002] 

Li X, Harrison DM, Liu H, Jones CK, Oh J, Calabresi PA, van Zijl PC, 2016 Magnetic susceptibility 
contrast variations in multiple sclerosis lesions. J Magn Reson Imaging 43, 463–473. [PubMed: 
26073973] 

Lim IA, Faria AV, Li X, Hsu JT, Airan RD, Mori S, van Zijl PC, 2013 Human brain atlas for automated 
region of interest selection in quantitative susceptibility mapping: application to determine iron 
content in deep gray matter structures. NeuroImage 82, 449–469. [PubMed: 23769915] 

Liu C, Li W, Johnson GA, Wu B, 2011 High-field (9.4 T) MRI of brain dysmyelination by quantitative 
mapping of magnetic susceptibility. NeuroImage 56, 930–938. [PubMed: 21320606] 

Liu C, Li W, Tong KA, Yeom KW, Kuzminski S, 2015 Susceptibility-weighted imaging and 
quantitative susceptibility mapping in the brain. J Magn Reson Imaging 42, 23–41. [PubMed: 
25270052] 

Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y, 2009 Calculation of susceptibility through 
multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from 
measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 61, 196–
204. [PubMed: 19097205] 

Lotfipour AK, Wharton S, Schwarz ST, Gontu V, Schafer A, Peters AM, Bowtell RW, Auer DP, 
Gowland PA, Bajaj NP, 2012 High resolution magnetic susceptibility mapping of the substantia 
nigra in Parkinson’s disease. J Magn Reson Imaging 35, 48–55. [PubMed: 21987471] 

Ma J, Ma HT, Li H, Ye C, Wu D, Tang X, Miller M, Mori S, 2015 A fast atlas pre-selection procedure 
for multi-atlas based brain segmentation. Conf Proc IEEE Eng Med Biol Soc 2015, 3053–3056. 
[PubMed: 26736936] 

Manjon JV, Coupe P, 2016 volBrain: An Online MRI Brain Volumetry System. Front Neuroinform 10, 
30. [PubMed: 27512372] 

Martin WR, Wieler M, Gee M, 2008 Midbrain iron content in early Parkinson disease: a potential 
biomarker of disease status. Neurology 70, 1411–1417. [PubMed: 18172063] 

Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, 
Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, 
Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Le Goualher G, Boomsma D, 
Cannon T, Kawashima R, Mazoyer B, 2001 A probabilistic atlas and reference system for the 
human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B 
Biol Sci 356, 1293–1322. [PubMed: 11545704] 

Miller MI, Beg MF, Ceritoglu C, Stark C, 2005 Increasing the power of functional maps of the medial 
temporal lobe by using large deformation diffeomorphic metric mapping. Proc Natl Acad Sci U S 
A 102, 9685–9690. [PubMed: 15980148] 

Morel A, Magnin M, Jeanmonod D, 1997 Multiarchitectonic and stereotactic atlas of the human 
thalamus. J Comp Neurol 387, 588–630. [PubMed: 9373015] 

Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, Toga 
AW, Pike GB, Neto PR, Evans A, Zhang J, Huang H, Miller MI, van Zijl P, Mazziotta J, 2008 
Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. 
NeuroImage 40, 570–582. [PubMed: 18255316] 

Muller M, Leavitt BR, 2014 Iron dysregulation in Huntington’s disease. J Neurochem 130, 328–350. 
[PubMed: 24717009] 

Patenaude B, Smith SM, Kennedy DN, Jenkinson M, 2011 A Bayesian model of shape and appearance 
for subcortical brain segmentation. NeuroImage 56, 907–922. [PubMed: 21352927] 

Rosas HD, Chen YI, Doros G, Salat DH, Chen NK, Kwong KK, Bush A, Fox J, Hersch SM, 2012 
Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch 
Neurol 69, 887–893. [PubMed: 22393169] 

Schweser F, Deistung A, Lehr BW, Reichenbach JR, 2011 Quantitative imaging of intrinsic magnetic 
tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? 
NeuroImage 54, 2789–2807. [PubMed: 21040794] 

Li et al. Page 20

Neuroimage. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Schweser F, Raffaini Duarte Martins AL, Hagemeier J, Lin F, Hanspach J, Weinstock-Guttman B, 
Hametner S, Bergsland N, Dwyer MG, Zivadinov R, 2018 Mapping of thalamic magnetic 
susceptibility in multiple sclerosis indicates decreasing iron with disease duration: A proposed 
mechanistic relationship between inflammation and oligodendrocyte vitality. NeuroImage 167, 
438–452. [PubMed: 29097315] 

Shmueli K, de Zwart JA, van Gelderen P, Li TQ, Dodd SJ, Duyn JH, 2009 Magnetic susceptibility 
mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 62, 1510–1522. 
[PubMed: 19859937] 

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, 
De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, 
Brady JM, Matthews PM, 2004 Advances in functional and structural MR image analysis and 
implementation as FSL. NeuroImage 23 Suppl 1, S208–219. [PubMed: 15501092] 

Soldan A, Pettigrew C, Cai Q, Wang J, Wang MC, Moghekar A, Miller MI, Albert M, Team BR, 2017 
Cognitive reserve and long-term change in cognition in aging and preclinical Alzheimer’s disease. 
Neurobiol Aging 60, 164–172. [PubMed: 28968586] 

Tang X, Crocetti D, Kutten K, Ceritoglu C, Albert MS, Mori S, Mostofsky SH, Miller MI, 2015 
Segmentation of brain magnetic resonance images based on multi-atlas likelihood fusion: testing 
using data with a broad range of anatomical and photometric profiles. Front Neurosci 9, 61. 
[PubMed: 25784852] 

Tang X, Oishi K, Faria AV, Hillis AE, Albert MS, Mori S, Miller MI, 2013 Bayesian Parameter 
Estimation and Segmentation in the Multi-Atlas Random Orbit Model. PloS one 8, e65591. 
[PubMed: 23824159] 

Tang X, Yoshida S, Hsu J, Huisman TA, Faria AV, Oishi K, Kutten K, Poretti A, Li Y, Miller MI, Mori 
S, 2014 Multi-contrast multi-atlas parcellation of diffusion tensor imaging of the human brain. 
PloS one 9, e96985. [PubMed: 24809486] 

Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC, 2010 N4ITK: improved 
N3 bias correction. IEEE Trans Med Imaging 29, 1310–1320. [PubMed: 20378467] 

van Bergen JM, Hua J, Unschuld PG, Lim IA, Jones CK, Margolis RL, Ross CA, van Zijl PC, Li X, 
2016a Quantitative Susceptibility Mapping Suggests Altered Brain Iron in Premanifest Huntington 
Disease. AJNR Am J Neuroradiol 37, 789–796. [PubMed: 26680466] 

van Bergen JM, Li X, Hua J, Schreiner SJ, Steininger SC, Quevenco FC, Wyss M, Gietl AF, Treyer V, 
Leh SE, Buck F, Nitsch RM, Pruessmann KP, van Zijl PC, Hock C, Unschuld PG, 2016b 
Colocalization of cerebral iron with Amyloid beta in Mild Cognitive Impairment. Sci Rep 6, 
35514. [PubMed: 27748454] 

van Bergen JMG, Li X, Quevenco FC, Gietl AF, Treyer V, Meyer R, Buck A, Kaufmann PA, Nitsch 
RM, van Zijl PCM, Hock C, Unschuld PG, 2018 Simultaneous quantitative susceptibility mapping 
and Flutemetamol-PET suggests local correlation of iron and beta-amyloid as an indicator of 
cognitive performance at high age. NeuroImage 174, 308–316. [PubMed: 29548847] 

Visser E, Keuken MC, Forstmann BU, Jenkinson M, 2016 Automated segmentation of the substantia 
nigra, subthalamic nucleus and red nucleus in 7 T data at young and old age. NeuroImage 139, 
324–336. [PubMed: 27349329] 

Wang H, Yushkevich PA, 2013 Multi-atlas segmentation with joint label fusion and corrective 
learning-an open source implementation. Front Neuroinform 7, 27. [PubMed: 24319427] 

Wang L, Beg F, Ratnanather T, Ceritoglu C, Younes L, Morris JC, Csernansky JG, Miller MI, 2007 
Large deformation diffeomorphism and momentum based hippocampal shape discrimination in 
dementia of the Alzheimer type. IEEE Trans Med Imaging 26, 462–470. [PubMed: 17427733] 

Wang Y, Liu T, 2015 Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue 
magnetic biomarker. Magn Reson Med 73, 82–101. [PubMed: 25044035] 

Wharton S, Bowtell R, 2010 Whole-brain susceptibility mapping at high field: a comparison of 
multiple- and single-orientation methods. NeuroImage 53, 515–525. [PubMed: 20615474] 

Wiggermann V, Hernandez Torres E, Vavasour IM, Moore GR, Laule C, MacKay AL, Li DK, 
Traboulsee A, Rauscher A, 2013 Magnetic resonance frequency shifts during acute MS lesion 
formation. Neurology 81, 211–218. [PubMed: 23761621] 

Li et al. Page 21

Neuroimage. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wisnieff C, Ramanan S, Olesik J, Gauthier S, Wang Y, Pitt D, 2015 Quantitative susceptibility 
mapping (QSM) of white matter multiple sclerosis lesions: Interpreting positive susceptibility and 
the presence of iron. Magn Reson Med 74, 564–570. [PubMed: 25137340] 

Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC, 1998a Automated image registration: I. 
General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22, 139–152. 
[PubMed: 9448779] 

Woods RP, Grafton ST, Watson JD, Sicotte NL, Mazziotta JC, 1998b Automated image registration: II. 
Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 22, 153–165. 
[PubMed: 9448780] 

Wu B, Li W, Guidon A, Liu C, 2012 Whole brain susceptibility mapping using compressed sensing. 
Magn Reson Med 67, 137–147. [PubMed: 21671269] 

Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T, 2002 Iron (III) 
induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the 
aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J 
Neurochem 82, 1137–1147. [PubMed: 12358761] 

Yao B, Bagnato F, Matsuura E, Merkle H, van Gelderen P, Cantor FK, Duyn JH, 2012 Chronic 
multiple sclerosis lesions: characterization with high-field-strength MR imaging. Radiology 262, 
206–215. [PubMed: 22084205] 

Ye CF, Ma T, Wu D, Ceritoglu C, Miller MI, Mori S, 2018 Atlas pre-selection strategies to enhance the 
efficiency and accuracy of multi-atlas brain segmentation tools. PloS one 13.

Yoon J, Gong E, Chatnuntawech I, Bilgic B, Lee J, Jung W, Ko J, Jung H, Setsompop K, Zaharchuk G, 
Kim EY, Pauly J, Lee J, 2018 Quantitative susceptibility mapping using deep neural network: 
QSMnet. NeuroImage 179, 199–206. [PubMed: 29894829] 

Zhang D, Snyder AZ, Shimony JS, Fox MD, Raichle ME, 2010 Noninvasive functional and structural 
connectivity mapping of the human thalamocortical system. Cereb Cortex 20, 1187–1194. 
[PubMed: 19729393] 

Zhang Y, Gauthier SA, Gupta A, Comunale J, Chia-Yi Chiang G, Zhou D, Chen W, Giambrone AE, 
Zhu W, Wang Y, 2016 Longitudinal change in magnetic susceptibility of new enhanced multiple 
sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM). J Magn 
Reson Imaging 44, 426–432. [PubMed: 26800367] 

Zhang Y, Wei H, Cronin MJ, He N, Yan F, Liu C, 2018 Longitudinal atlas for normative human brain 
development and aging over the lifespan using quantitative susceptibility mapping. NeuroImage 
171, 176–189. [PubMed: 29325780] 

Li et al. Page 22

Neuroimage. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: 
Example source images showing the GRE Magnitude, QSM and T1 weighted MPRAGE 

images of 5 out of the 10 subjects selected to generate the susceptibility multi-atlases. 

Variable anatomical patterns and different degrees of brain atrophy can be seen among these 

atlases. The GRE Magnitude images are averaged across different TEs (6ms to 36ms). Gray 

scales in QSM images are all in [−0.2, 0.2] ppm.
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Fig. 2: 
Schematic representation of the QSM/T1 multi-atlas generation (top row left) and automated 

segmentation pipeline (top row right). Some detailed processing steps, including 

preprocessing and coregistration with multi-contrast multi-atlas and LDDMM nonlinear 

warping used in the segmentation pipeline (box with blue border), are illustrated in the 

bottom panel.
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Fig. 3: 
Top row shows the comparisons of the segmentation performances of different multi-atlas 

pipelines using different combinations of contrast channels, i.e. QSM/GRE/T1, QSM/T1, 

QSM/GRE, GRE/T1, QSM and T1, to the manual delineation overlaid on QSM images of 

an example subject. Bottom row shows the Dice metrics of agreement with respect to the 

manual delineation of all the automated brain delineations using these pipelines in the leave-

one-out test on the atlas set (n=10) as compared to the inter-evaluators Dice. CN: caudate 

nucleus, GPi: globus pallidus internus, GPe: globus pallidus externus, Put: putamen, Thal: 

thalamus, Pulv: thalamic pulvinar, Ventr: ventricles, STN: subthalamic nucleus, SN: 

substantia nigra, RN: red nucleus, DN: dentate nucleus. Arrows with circular tails mark the 

inferior delineation performances around ventricles by pipelines that do not utilize T1 

contrast, while arrows with square tails mark inferior delineation performances in DN, RN 

and pulvinar by pipelines that do not utilize QSM contrast.
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Fig. 4: 
Example segmentations of common subcortical regions, including caudate, putamen, globus 

pallidus and thalamus, generated by the QSM/T1 multi-atlas pipeline, FSL FIRST and 

volBrain (a). Dice metrics of agreement between these automated delineations with respect 

to the manual delineation in those ROIs on the atlas set (n=10) are shown in (b). The 

segmented GPi and GPe obtained by QSM/T1 multi-atlas approach were combined for 

calculating the Dice in GP, while thalamic pulvinar was combined with thalamus for 

calculating Dice in the whole thalamus. The structure volumes (c) and tissue susceptibility 

values (d) extracted in these deep gray matter regions using the three automated methods are 

also compared to those obtained nusing manual delineation. CN: caudate nucleus, GP: 

globus pallidus. *: p<0.05, **: p<0.001 for two-way t-test after correction for multiple 

comparison.
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Fig. 5: 
Segmentation performance of the QSM/T1 multi-atlas pipeline (bottom row in a) on QSM 

data acquired using different protocols and platforms are compared to the manual label (top 

row in a). Scatter plot of quantitative susceptibility values (in ppm) per structure extracted 

from these data are shown in (b-d) in an inter-protocol manner with corresponding linear 

regression lines. Thal: thalamus, Pul: thalamic pulvinar, CN: caudate nucleus, PUT: 

putamen, RN: red nucleus, DN: dentate nucleus, STN: subthalamic nucleus, SN: substantia 

nigra, GPi/GPe: globus pallidus internus/externus.
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Fig. 6: 
Scatter plot of segmented tissue structure volumes (in mm3) using the QSM/T1 multi-atlas 

approach on data obtained with different acquisition protocols as compared to the manual 

delineation drawn on Philips protocol A (a) and in an inter-protocol manner (b) with 

corresponding linear regression lines. The quantitative susceptibility values (in ppm) per 

structure extracted from these data acquired using different protocols with the QSM/T1 

multi-atlas approach are also compared to those obtained using the manual delineation (c).
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Fig. 7. 
(a) Example manual and automated delineation using the QSM/T1 approach on a subject 

selected from the external dataset. Manual delineations of the sub-structures, i.e. GPi/GPe 

and STN, were not performed due to the lower resolution of the QSM images in this dataset 

and thus insufficient information to identify these sub-structures (marked by arrows with 

circular tail). The SN region therefore contains both SN and STN. The extracted tissue 

structure volumes (in mm3) (b) and quantitative susceptibility values (in ppm) (c) using the 

QSM/T1 approach were compared to those obtained using the manual labels.
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Table 1:

Structure volumes (in mm3) and tissue susceptibility values (in ppm) in the selected bilateral regions of 

interest obtained by manual delineation and the QSM/T1 multi-atlas approach in the leave-one-out test using 

the atlas set (subject n=10) and the corresponding correlations between these measures. Volume and 

susceptibility values are presented as mean ± standard deviation.

Measures Volume (mm3) Correlation Susceptibility (ppm) Correlation

ROIs Manual QSM/T1 R Manual QSM/T1 R

CN 4357±1174 3884±782 0.84 0.035±0.013 0.039±0.011 0.91

GPi 642±168 615±118 0.77 0.083±0.020 0.087±0.010 0.70

GPe 1793±688 1932±335 0.71 0.114±0.024 0.120±0.023 0.74

Putamen 4219±1123 3918±542 0.82 0.043±0.019 0.042±0.012 0.87

Thalamus 5431±845 5147±544 0.82 −0.013±0.011 −0.014±0.010 0.97

Pulvinar 991±630 835±336 −0.11† 0.021±0.021 0.026±0.023 0.74

STN 190±66 184±51 0.49 0.092±0.021 0.089±0.019 0.67

SN 724±226 704±179 0.90 0.107±0.019 0.114±0.021 0.82

RN 339±65 307±80 0.77 0.095±0.026 0.101±0.023 0.94

DN 941±335 873±229 0.86 0.085±0.017 0.089±0.016 0.77

CN: caudate nucleus, GPi/GPe: globus pallidus internus/externus, STN: subthalamic nucleus, SN: substantia nigra, RN: red nucleus, DN: dentate 
nucleus.

R; Pearson’s correlation coefficient. All correlations are significant with p < 0.05, except

†
: not significant with p > 0.05.
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Table 2:

Dice metrics of agreement for the automated segmentations of QSM images acquired with different protocols 

and platforms (PhilA, PhilB and SiemB) using the QSM/T1 multi-atlas pipeline. Left three columns show 

comparison with manual delineation drawn on Philips protocol A. Right three columns show the inter-protocol 

comparison.

Dice With Respect to Manual Inter-protocol

ROIs PhilA PhilB SiemB PhilA&PhilB PhilA&SiemB PhilB&SiemB

CN 0.85±0.02 0.86±0.02 0.85±0.02 0.93±0.01 0.94±0.01 0.94±0.02

GPi 0.70±0.06 0.70±0.07 0.71±0.07 0.82±0.05 0.85±0.04 0.85±0.05

GPe 0.81±0.03 0.79±0.03 0.80±0.04 0.88±0.02 0.90±0.02 0.90±0.03

Putamen 0.83±0.03 0.83±0.04 0.82±0.04 0.92±0.02 0.93±0.02 0.93±0.02

Thalamus 0.85±0.03 0.85±0.03 0.85±0.03 0.95±0.01 0.95±0.01 0.96±0.01

Pulvinar 0.80±0.04 0.78±0.06 0.79±0.05 0.88±0.03 0.89±0.02 0.91±0.03

STN 0.60±0.10 0.60±0.09 0.60±0.11 0.81±0.04 0.84±0.05 0.82±0.06

SN 0.77±0.03 0.76±0.05 0.74±0.04 0.87±0.01 0.87±0.02 0.87±0.03

RN 0.84±0.03 0.83±0.03 0.83±0.04 0.87±0.03 0.87±0.03 0.88±0.03

DN 0.87±0.02 0.86±0.03 0.86±0.02 0.89±0.02 0.88±0.01 0.89±0.03

Dice metrics are presented as mean ± standard deviation (subject n=6). CN: caudate nucleus, GPi/GPe: globus pallidus externus/internus, STN: 
subthalamic nucleus, SN: substantia nigra, RN: red nucleus, DN: dentate nucleus

PhilA: Philips protocol A; PhilB: Philips protocol B; SiemB: Siemens protocol B
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Table 3:

External data set results for deep gray matter nuclei: Dice metrics (between manual delineation and automated 

segmentation using the QSM/T1 multi-atlas approach), extracted structure volumes (in mm3) and tissue 

susceptibility values (in ppm)

Measures Dice Volume (mm3) Susceptibility (ppm)

ROIs Manual QSM/T1 Manual QSM/T1

CN 0.81±0.05 4068±449 4048±444 0.039±0.005 0.038±0.006

GP 0.83±0.03 2218±239 2589±261 0.094±0.021 0.096±0.017

Putamen 0.77±0.03 3778±293 3819±326 0.053±0.012 0.041±0.007

Thalamus 0.78±0.04 4716±679 4704±473 −0.003±0.006 −0.003±0.006

Pulvinar 0.75±0.05 919±149 973±208 0.038±0.013 0.038±0.011

STN/SN 0.81±0.04 809±118 663±78 0.060±0.016 0.069±0.013

RN 0.82±0.04 300±42 264±38 0.052±0.012 0.060±0.011

DN 0.74±0.07 1023±249 677±208 0.038±0.014 0.051±0.014

CN: caudate nucleus, GP: globus pallidus including both globus pallidus externus and internus (GPe/GPi), STN/SN: subthalamic nucleus and 
substantia nigra, RN: red nucleus, DN: dentate nucleus.
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