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Abstract

Mass spectrometry-based protein quantitation is currently used to measure therapeutically relevant 

protein biomarkers in CAP/CLIA setting to predict likely responses of known therapies. Selected 

reaction monitoring (SRM) is the method of choice due to its outstanding analytical performance. 

However, data-independent acquisition (DIA) is now emerging as a proteome-scale clinical assay. 

We evaluated the ability of DIA to profile the patient-specific proteomes of sample-limited tumor 

biopsies and to quantify proteins of interest in a targeted fashion using formalin-fixed, paraffin-

embedded (FFPE) tumor biopsies (n=12) selected from our clinical laboratory. DIA analysis on 

the tumor biopsies provided 3,713 quantifiable proteins including actionable biomarkers currently 

in clinical use, successfully separated two gastric cancers from colorectal cancer specimen solely 

based on global proteomic profiles, and identified subtype-specific proteins with prognostic or 

diagnostic value. We demonstrate the potential use of DIA-based quantitation to inform 

therapeutic decision-making using TUBB3, for which clinical cut-off expression levels have been 

established by SRM. Comparative analysis of DIA-based proteomic profiles and mRNA 

expression levels found positively and negatively correlated protein-gene pairs, a finding 

consistent with previously reported results from fresh-frozen tumor tissues.
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1. INTRODUCTION

Cellular expression levels of clinically relevant proteins in patient tumor samples can guide 

selection of cancer therapies. While antibody-based immunohistochemistry (IHC) assays are 

most widely used in the clinic, mass spectrometry (MS)-based quantitative proteomics has 

been increasingly applied to clinical samples to objectively measure tumor expression levels 

of treatment-related protein biomarkers1–2. A targeted strategy using selected reaction 

monitoring (SRM) has been a method of choice for clinical proteomics due to its high 

analytical performance including exceptional sensitivity from a fixed quadrupole setting, and 

inherent selectivity achieved by paired selection of precursor and fragment ions defined as 

transitions. SRM-based protein detection in archived tissues offers fundamental advantages 

of robustness as it is less sensitive to pre-analytical variables such as age of tissue sections 

and fixation time than IHC 3–4. We previously demonstrated that SRM-based quantitation of 

the targeted therapy marker, human epidermal growth factor receptor 2 (HER2) is superior 

to IHC scores in predicting outcomes of clinical trial participants treated with anti-HER2 

therapy 1, 5.

While SRM is the standard MS-based method for measuring protein concentrations, high-

resolution/accurate mass-based parallel reaction monitoring (PRM) benefits from improved 

signal-to-noise ratio for quantitative analysis and flexibility for assay development. In 

general, PRM assays can perform better than SRM in more complex samples with high 

background, which is the case for clinical tumor biopsies 6–7. Both SRM and PRM are used 

to target specific analytes, often with stable isotope labeled (SIL) internal standards.

Data-independent acquisition (DIA) has recently emerged as a comprehensive solution for 

protein quantitation8. In contrast to data-dependent acquisition (DDA) where precursor ions 

are selected sequentially for fragmentation, in DIA mode, all precursor ions within a user-

defined m/z window are fragmented in parallel and generate MS2 data with convoluted 

product ions. As with PRM, DIA benefits from high-resolution mass analyzers to accurately 

measure product ions that can be used for further quantitative analysis. In general, DIA-

based quantitation relies on the MS2 measurement which can perform better than MS1 in 

complex matrices due to better selectivity and lower background noise 8–9.

Application of DIA to clinical proteomics for precision medicine can offer clear advantages. 

Its untargeted and systematic sampling process enables acquisition of comprehensive LC-

MS data consisting of all precursors and product ions present in the sample within the m/z 

range measured. Once digitally archived, this proteomic profile can be re-analyzed over and 

over again with newer clinical hypotheses or analytical strategies which may not have been 

available at the time of acquisition. For already validated protein biomarkers, DIA data can 

be analyzed in a targeted fashion by extracting the co-eluting fragment ions corresponding to 

the peptides of interest for quantitation 8, 10–11. This global proteomic profile in combination 

with corresponding genomic data from tumor biopsy samples can offer comprehensive 

characterization of tumor cells for precision medicine.

The analytical performance of DIA for proteomics has been thoroughly demonstrated 

elsewhere 12–16. In this study, therefore, we sought to evaluate the use of DIA to characterize 
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tumor biology and to measure oncology biomarkers in sample-limited formalin-fixed 

paraffin-embedded (FFPE) tumor biopsies using 12 archived gastrointestinal (GI) tumor 

biopsies. We focused to assess if single-shot DIA data from FFPE tumor biopsies using 1 μg 

protein extracts provide clinically relevant protein targets. DIA peak area of known 

biomarkers of which tumoral concentrations have been previously established by SRM for 

clinical use were compared to the SRM-based quantitation acquired from the same samples. 

Whole genome sequencing results and mRNA expression levels were analyzed, and the 

correlation results between protein and mRNA were compared with the previously reported 

correlation data from fresh-frozen tissue samples.

2. METHODS

2.1. Tissue samples

Slides of FFPE tumor tissue and clinical annotations were received in the authors’ clinical 

laboratory during 2016 (Table S-1 in the Supporting Information). Patients provided consent 

for research use of anonymized data from their test results.

2.2. Protein extraction and peptide generation

Two consecutive tissue sections per sample were prepared. The first sections were stained 

with hematoxylin and eosin (H&E), and were used to guide tumor area selection. The 

second sections were mounted on DIRECTOR® slides (Expression Pathology, Rockville, 

MD), deparaffinized with xylene, stained with hematoxylin, and subjected to 

microdissection based on the tumor-specific markup by a board-certified pathologist using 

MMI CellCut laser microdissection system (Molecular Machines and Industries, Eching, 

Germany) equipped with UV laser. A set of tissue images before and after laser 

microdissection of a sample used in this study is included in the Supporting Information 

(Figure S-1). Collected cells after laser ablation were heated in Liquid Tissue® buffer 

(Expression Pathology, Rockville, MD) at 95 °C for 1.5 h, and subsequently incubated with 

trypsin (Promega, Madison, WI) for 16 h at 37 °C. A Micro BCA assay (Thermo Fisher 

Scientific, Rockford, IL) was performed to determine total protein concentration. For both 

DIA and SRM analysis, 1 μg tumor protein digest was injected per sample.

2.3. LC-MS/MS experiment for SRM analysis

LC-SRM was performed in NantOmics’ CAP-accredited, CLIA-certified laboratory 

(Rockville, MD) using a nanoAcquity UPLC system (Waters, Milford, MA) coupled to a 

TSQ Quantiva mass spectrometer (Thermo Scientific, San Jose, CA)1. In each analysis, 1 μg 

of sample spiked with 5 fmol SIL internal standard peptides (ThermoFisher Scientific; 

TUBB3-ISVYYNEASSHK[13C615N2] and EGFR-IPLENL[13C615N1]QIIR) was loaded 

onto the Waters Symmetry C18 trap column (180 μm x 2 cm, 5 μm) and washed with 100% 

buffer A (0.1% formic acid in water). After trapping, the sample was loaded onto the Waters 

HSS T3 analytical column (100 μm x 10 cm, 1.8 μm). Peptides were separated over a 14 min 

step gradient: 2 min from 1%−9% buffer B (0.1% formic acid in acetonitrile), 6 min from 

9%−15% buffer B, 4 min from 15%−25% buffer B, and 2 min from 25%−50% buffer B with 

a flow rate of 800 nl/min. Eluents entered the mass spectrometer via an electrospray 

ionization interface with a 2.3 kV spray voltage. The SRM mode used a cycle time of 1 
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second with Q1/Q3 window 0.7. Details of SRM transitions are found in Supporting 

Information Table S-2. Data was analyzed using Pinpoint software version 1.3 (Thermo 

Scientific, San Jose, CA). Protein concentrations were determined by calculating the ratio of 

endogenous analyte signal to the internal standard signal, and multiplying by the amount of 

internal standard spiked into the sample (Fig. S-2, S-3 in the Supporting Information).

2.4. LC-MS/MS experiment for DIA analysis

DIA was performed at the University of Washington using a nanoAcquity UPLC system 

coupled to an Orbitrap Fusion mass spectrometer (Thermo Scientific, Bremen, Germany). A 

trapping column used for sample cleanup was a fused-silica column (150 μm x 4 cm, 3 μm) 

packed with C18 packing material (Reprosil Pur 120 C-18-AQ) (Dr. Maisch GmbH, 

Ammerbuch-Entringen, Germany). The analytical column was a PicoFrit column (75 μm x 

30 cm, 3 μm) (New Objective, Woburn, MA) and packed with the same material as the 

trapping column. In each mass spectrometry run, 1 μg of sample was loaded onto the 

trapping column and washed with a mixture of 98% buffer A and 2% buffer B. After 

trapping, the sample was loaded onto the analytical column and separated over a 90 min 

linear gradient from 2%−35% buffer B. As the peptides were eluted from the column, they 

entered the mass spectrometer via an electrospray ionization interface with a 2 kV spray 

voltage.

For DIA with gas-phase fractionation, a pooled sample was analyzed with 13 DIA LC-

MS/MS runs collectively covering 350 – 1000 m/z. Each DIA run acquired comprehensive 

MS/MS data on all precursors in a 50 m/z range. The MS/MS scans used a 2 m/z wide 

isolation window, acquired with resolving power 30,000 at 200 m/z. The acquisition consists 

of a cycle of MS/MS scan acquisition with a pair of MS scans acquired every 25 MS/MS 

scans. For DIA with single-shot acquisition, comprehensive MS/MS data on all precursors 

between 400 and 800 m/z was acquired with a 20 m/z isolation width. The acquisition 

consisted of a cycle of MS/MS scan acquisition with an MS scan acquired every 21 MS/MS 

scans. The MS/MS scans were acquired using an “overlapping window” multiplexing 

approach in which alternating cycles of MS/MS scans are offset by 10 m/z relative to one 

another (manuscript in preparation).

2.5. Library generation

The 13 raw DIA files with gas-phase fractionation were converted to mzML using 

ProteoWizard msconvert17, and submitted to peptide search by the Walnut tool, part of 

EncyclopeDIA (v. 0.6.3)18. A FASTA file was prepared using the protein sequences from 

UniProtKB/SwissProt (version 17-Jan, 2018; 20,231 entries)19. This proteome was used as 

both the “target” and “background” protein sequence database. The former is used to define 

query peptides after in silico digestion, and the latter to compute statistics for score 

calibration. The search performed was a tryptic digestion with no fixed or variable 

modifications, and one missed cleavage allowed. The precursor and fragment mass tolerance 

were both set to 10 ppm, and fragmentation was modeled using only the y-ion series. The 

number of quantitative ions was set to 5. Only peptide precursors with charge +2 or +3 were 

considered in the search. Percolator version 3.01 was selected to calibrate scores and 

calculate statistics for peptide detection confidence (e.g. q-value)20. After searching, a 
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chromatogram library (.elib) was saved containing peptides with q-value < 0.01 calculated 

on the combined set of 13 library runs.

2.6. Data query and chromatographic peak integration for quantitation

Prior to data query, the 12 single-shot DIA data were demultiplexed using msconvert (part of 

ProteoWizard v 3.0.11392) with vendor centroiding enabled and the filter “demultiplex 

optimization=overlap only” used to enable demultiplexing. The demultiplexed data were 

output in the .mzML format. The .elib library generated in the previous step was used to 

query the demultiplexed single-shot DIA data using the EncyclopeDIA tool. The same 

FASTA was used for the “background” as in the Library Generation step. The Target/Decoy 

approach was set to “Normal Target/Decoy” and the Data Acquisition type set to “Non-

Overlapping DIA” as the data had already been demultiplexed. The minimum and maximum 

number of quantitative ions were set to 3 and 5, respectively. The RT Align feature was 

enabled, to use detection of peptide features in common between files to improve detection 

sensitivity and accuracy as well as the calculation of optimal fragment ions and peak 

integration boundaries. All other parameters were set to the same values as in the Library 

Generation step. In both the library generation and wide-window query steps, both MS1 and 

MS2 data are used for peptide detection, but quantitation is done exclusively with MS2 data. 

The results from the analysis were exported into a .elib-format library containing peptides 

detected with an experiment-wide FDR of q < 0.0121.

For quantitation, a Skyline (v. 4.1.1.11756) document was created to visualize the resulting 

peptide detections and perform chromatographic peak integration and background 

subtraction21. To generate the document, the .elib file resulting from the data query was 

added to the document, which causes Skyline to use the peptides and peptide 

chromatographic peak integration boundaries defined by EncyclopeDIA. Skyline was set to 

pick the top 5 most intense product ions from the .elib file that are part of the singly charged 

y-ion series y3 – y(n-1) (ion 3 to last y ion). This effectively causes Skyline to use the top 5 

most intense transitions that were determined to be amenable for quantitation by 

EncyclopeDIA. Any peptides containing fewer than 3 transitions matching these criteria 

were removed from the document as were peptides containing fewer than 5 or more than 65 

amino acids. The centroided, demultiplexed data files were imported into Skyline with 

precursor and fragment ion mass tolerance set to 10 ppm. Integrated peak areas were 

exported as a report containing the integrated fragment ion signal intensity for each peptide 

precursor calculated by Skyline.

For further data analysis, a non-redundant set of 3,713 protein groups was created from a 

redundant list of 4,239 proteins by grouping proteins containing identical sets of peptides. 

Protein identifications differing only in Leu/Ile (isobaric) were also grouped. Those proteins 

associated only with a subset of peptides associated with another protein were removed. 

Hierarchical clustering was carried out using Perseus software 22, using Euclidean distance, 

average linkage and pre-processing with k-means (300 cluster, maximum of 10 iterations 

and 1 restart). Figures were generated using the ggplot2 and cowplot packages in R 

downloaded from https://github.com/wilkelab/cowplot.
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2.7. DNA and RNA analysis

Whole genome sequencing of tumor DNA, germline DNA and tumor RNA from each 

patient was performed in a NantOmics laboratory using the Illumina platform, as previously 

described 23. Germline sequencing was from a blood sample; tumor sequencing was from 

macrodissection of tissue sections mounted on slides according to annotation by a board-

certified pathologist. Normal and tumor genomes were sequenced to depths of roughly 30x 

and 60x respectively. About 300 million RNA reads were sequenced for each tumor. DNA 

reads were aligned to GRCh37 with BWA24 and mutations and copy number changes were 

determined using the NantOmics Contraster Pipeline25. Tumor purity was estimated based 

on the mutant allele frequency in the tumor sample compared to the matched normal sample. 

RNA reads were aligned with bowtie26 and transcript abundances were quantified with 

RSEM27.

Protein-mRNA correlation analysis was performed on Log2-scaled protein intensity and 

mRNA transcripts per million (TPM) values with an offset of 1. Gene set enrichment 

analysis of the correlation between the protein-mRNA pairs was performed using LIGER 

(https://github.com/JEFworks/liger). Gene sets used for this analysis came from subcellular 

localization annotations from UniProt19. and the Human Protein atlas 

(www.proteinatlas.org)28, as well as gene pathways from KEGG29.

2.8. DIA Data Availability

The Skyline document and raw files for DIA library generation and DIA sample analysis are 

available at Panorama Public. ProteomeXchange ID: PXD010934. Access URL: https://

panoramaweb.org/7nYM9z.url

3. RESULTS AND DISCUSSION

3.1. DIA analysis of therapeutic biomarkers

The overall workflows of proteomic sample preparation from FFPE biopsies and DIA-based 

mass spectrometric analysis are shown in Fig. 1. A spectral library was generated from a 

pooled sample analyzed with a narrow isolation window (2 Th; no overlapping) and gas-

phase fractionation. The library contained a total of 18,033 peptides amounting to 4,706 

human proteins based on UniProtKB/SwissProt sequence database 19. Each of the twelve 

biopsy samples analyzed with single-shot DIA using a wide isolation window (20 Th; 10 Th 

overlapped) were searched against this library, resulting in 12,256 quantifiable peptides and 

3,713 non-redundant protein groups for downstream analysis (3,600 single protein 

identifications and 113 protein groups). Detailed list of peptides with their detected retention 

times and intensities from both precursor ions and fragment ions in 12 samples were 

included in the Supporting Information (Table S-3 in the Supporting Information). The list 

of proteins obtained from these biopsy samples represent various cellular sub-locations (Fig. 

2A) (Table S-4 and S-5 in the Supporting Information, for 4,239 redundant and 3,713 non-

redundant protein identifications, respectively). To assess the depth of coverage of our 

single-shot DIA quantitation from tumor biopsies, we compared our findings with those of a 

previous study of FFPE CRC samples that employed multiple proteases, additional 

biochemical fractionation and DDA mass spectrometry, and reported estimated protein copy 
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numbers per cell30. The copy numbers per cell in the reference [30] were estimated by the 

“Protein Ruler” method, using MS signal of histones, total MS signal of proteins and 

measured DNA amount from samples31. Of the common proteins, Fig. 2B shows that our 

spectral library has good coverage (80%−100%) of high-copy number proteins (>1 × 105 

copies per cell), reasonable coverage of medium-copy number proteins (1 × 104 copies per 

cell; 30%−50%) and weak coverage of low-copy number proteins (1,000 copies and fewer 

per cell). This is not unexpected given the difference in sample fractionation, sample number 

and instrument time employed in the comparison study. Our single-shot analysis identified 

140 proteins that were not found in the comparison study, likely reflecting tissue- or patient-

specific differences. Fig. 2C shows that the copy numbers of our identifications span five 

orders of magnitude, from approximately 1 × 103 to 1 × 108 copies per cell (Table S-5 in the 

Supporting Information).

As evidence of the clinical utility of DIA-based proteomic data from FFPE tumor biopsies, 

we identified known biomarkers of response to cancer drugs. The 12 biopsies expressed 40 

of the 201 non-redundant cancer biomarkers listed in the curated database Cancer Genome 

Interpreter (CGI)32 (Fig. 2D). Furthermore, among the detected proteins, 131 were targets of 

FDA-approved therapies; An additional 986 were potential drug targets known to be 

involved in disease progress and belonging to the same functional classes of approved drug 

targets (www.drugbank.ca)33 (Table S-4 in the Supporting Information). Recently, a 

comprehensive analysis of the Cancer Genome Atlas (TCGA) dataset identified 299 cancer 

driving genes34. In our dataset, 104 proteins corresponding to these genes were quantified 

(35% of all drivers): this included 76 pan-cancer drivers, and drivers specific to 

adenocarcinoma of the colon (n=4) and stomach (n=7).

The presence of these biomarkers in patient tumor samples can provide useful information to 

physicians for therapeutic decision-making. Although cutoff values based on relationships 

between DIA readouts and therapeutic outcomes have not yet been established, 

demonstrating the ability of DIA-based proteomic profiling to quantify clinically relevant 

biomarkers from tumor biopsies is an important first step. Note that the majority of known 

biomarkers have been developed for genomic testing, including identification of point-

mutations as well as gene amplification. We anticipate that protein expression data obtained 

directly from tumor biopsies by a robust profiling method will identify novel biomarkers and 

suggest applications for protein-based clinical assays. The ample number of therapeutic 

targets obtained by a DIA analysis in biopsy samples supports the potential use of such data 

for discovery of drug targets and therefore new opportunities for developing companion 

diagnostics models.

3.2. Patient-specific proteomic profiles

The proteomic profiles of the 12 tumor samples were compared with one another to assess 

the ability of DIA readouts to reflect indication-specific or patient-specific characteristics. 

The result of unsupervised hierarchical clustering analysis indicated a clear distinction 

between colorectal cancer (CRC) and the other GI samples (non-CRC; patients #1 and #3) 

(Fig. S-4 in the Supporting Information). Further comparative analysis between these groups 

was performed to identify proteins whose expression levels are differentially elevated in 
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CRC or non-CRC samples (Fig. 3A). Requiring a minimum of two peptides per protein 

identification, we identified a subset of 15 proteins that were significantly overexpressed in 

CRC as compared to non-CRC samples (Fig. 3B; Table S-6 in the Supporting Information). 

In a TCGA dataset of multiple human cancers35–36, these 15 targets showed higher mRNA 

expression level in CRC tissue samples compared to gastric cancer samples. (p=0.0002; two-

tailed, paired t-test) (Fig. 3C). Immunohistochemical results from the Human Protein Atlas 

(www.proteinatlas.org) using verified antibodies37 showed that the same targets were 

significantly overexpressed in CRC tissue samples compared to gastric tumors (p=0.0039; 

two-tailed, paired t-test) (Fig. 3D).

Among the proteins that were differentially expressed between patients was succinate 

dehydrogenase B (SDHB). Visual inspection of the peptides inferring SDHB protein 

(QQYLQSIEER and WMIDSR) confirmed that SDHB was absent only in one biopsy 

obtained from patient #3. Fig. 4A demonstrates the MS2 traces of the unique SDHB peptide 

QQYLQSIEER measured in three biopsy samples exhibiting high, moderate, and no 

expression level, from patients #6, #12, and #3, respectively. No detectable trace of the 

targeted fragment ions was found at the expected chromatographic space (normalized 

retention time) in patient #3 while the background traces still remain relatively stable 

compared to other biopsies (Fig. 4A). Germline DNA analysis found that the patient with 

missing SDHB protein was heterozygous for a nonsense mutation in the SDHB gene 

(p.Arg90Ter) while SDHB was intact in the other patients (Fig. 4B).

Tumor DNA was significantly enriched for the mutation compared to germline DNA (30/38 

reads with the variant in tumor versus 18/50 reads in germline, p=7.6 × 10−6 by Fisher’s 

exact test). Only 3 out of 35 RNA transcript reads at the locus contained the mutation likely 

due to degradation of the truncated transcript via nonsense mediated decay. Copy-number 

analysis indicated loss of heterozygosity for chromosome 1p, including SDHB (1p36.13). 

The tumor DNA and RNA reads which do not contain the mutation are consistent with the 

estimate of 70% tumor purity after macrodissection of tumor region for genomic analysis. 

The absence of SDHB protein in the DIA analysis is consistent with higher tumor purity 

after microdissection of tumor regions. SDHB deficiency and loss of function is a known 

tumor driver in certain cancer types38. Approximately 7.5% of gastrointestinal stromal 

tumors (GIST) are SDH-deficient. As these patients are known to respond poorly to the 

common targeted therapy for GIST with tyrosine kinase inhibitor imatinib, diagnosis of this 

sub-type is critical for treatment decision-making38,39–40. This finding demonstrates the 

potential of DIA-based tumor characterization on FFPE biopsies to identify subtype-specific 

biomarkers. Seen from the perspective of assay development, the chromatographic and mass 

spectrometric attributes of the SDHB peptides identified by DIA analysis can be translated 

directly into the development of a new targeted assay.

Finally, the FDA recently approved an immunotherapy for treatment of tumor with high 

microsatellite instability (MSI-H) due to mutation or inactivation of genes in the DNA 

mismatch repair (MMR) pathway. This genetic marker is found in about 15% of CRC. Of 

the 12 samples analyzed in this study, none were found to be MSI-H by genomic analysis. In 

proteomic analysis, MMR family proteins including MLH1, MSH2, MSH3, MSH5, and 
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MSH6 were present at high levels across the samples, thus corroborating the genomic 

profile.

3.3. DIA compared to SRM-based quantitation of predictive biomarkers

We have previously demonstrated that protein concentrations of clinically actionable 

biomarkers measured by SRM in FFPE tumor biopsies provide objective cutoff values that 

predict therapeutic outcomes1, 41–42. Those cutoff values can be used to identify eligible 

patients for relevant therapies or to forgo specific therapies unlikely to benefit the patients. 

To investigate such utility with DIA-based quantitation, we compared DIA-readouts to the 

tumoral concentrations (amol/μg) obtained by SRM from the same biopsy samples focusing 

on TUBB3 (peptide: ISVYYNEASSHK) and EGFR (peptide: IPLENLQIIR). Good 

agreement between the methods was observed (Fig. 5). An SRM-based clinical cutoff value 

of 750 amol/μg was previously established for TUBB3 protein as predictive of resistance to 

taxane-based chemotherapy42. Based on this, biopsies expressing TUBB3 above this cutoff 

are unlikely to benefit from taxane42–43. If DIA readout of TUBB3 correlates with the SRM 

results, it would be reasonable to expect that the DIA readout corresponding to the SRM-

based cutoff would similarly identify patients unlikely to benefit from taxane. Fig. 5A 

demonstrates a good correlation between DIA and SRM results on TUBB3 in this study (r2 

= 0.80); as an example, a DIA threshold of 4.5E5 would correctly classify 11/12 samples 

(9/12 as taxane-resistant, 2/12 as taxane-sensitive, 1/12 mis-classified as taxane-resistant). 

Likewise, EGFR protein expression levels measured by two methods showed a good 

agreement (r2 = 0.70) (Fig. 5B). From SRM analysis of these samples, two gastric tumors 

exhibited EGFR expression higher than 320 amol/μg, the median tumoral concentration of 

EGFR established based on SRM data in our clinical laboratory, and those higher EGFR 

expressing samples are correlated with the DIA data. High tumor expression of EGFR is an 

indicator of benefit from cetuximab44. It is worth emphasizing that the experiments of DIA 

and SRM have been performed with significantly different instrument setups. The 

chromatography conditions of each method have been optimized independently to meet 

different purposes (SRM: 14 min separation time up to 50% ACN with 800 nl/min flow rate; 

DIA: 250 min separation time up to 35% ACN with 300 nl/min flow rate) with different C18 

columns as well as different ESI interfaces and instrumentation. Based on previously 

published results, direct comparison of SRM vs DIA quantification using the same 

instrument setup should result in a strong correlation (r2 > 0.95)8, 16, 45, while the correlation 

becomes weaker if the chromatographic conditions are different: Selevescek et al. reported 

correlations (n=51) between DIA and SRM, with a median correlation of 0.57 r2 46. In this 

case the weaker correlation is most probably due to the varying transition interferences 

and/or ion suppression levels, rather than the different acquisition methods of SRM and 

DIA.

This comparison experiment inspires us that DIA-based protein quantification can be used in 

clinic for therapeutic decision-making, as SRM-based clinical cutoffs could be directly 

projected to the DIA readouts. Moving forward, however, in order for DIA assays to be 

applicable in routine clinic, quantitative studies involving dilution curves need to be 

performed to define the limit of quantification (LOQ) of all peptides, and the standardized 

intensity normalization strategy needs to be defined for lab-to-lab robustness.
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3.4. Protein vs mRNA expression

It is widely accepted that mRNA expression levels of genes are not directly correlated to 

their cellular protein concentrations. Based on CPTAC’s recent proteogenomic studies 

conducted on CRC and breast tumor tissues, while overall correlations between mRNA and 

protein expression were not concordant, subsets of protein-mRNA pairs exhibited strong 

correlations both positively and negatively47–48. Genes encoding proteins with metabolic 

functions tended to be correlated with their protein expression levels, and genes encoding 

ribosome and proteasome compartments tended to be negatively correlated. As DIA data in 

this study generated expression levels of >3700 proteins, we repeated this analysis by 

comparing DIA readouts to mRNA levels (TPM values) obtained from the same FFPE 

tumor biopsies.

The overall correlation of 3429 protein-mRNA pairs across 12 patient samples is shown in 

Figure 6A with Spearman’s correlation of 0.45. (Fig. 6A) The Spearman’s correlation 

coefficients calculated for each mRNA-protein pair between the data types ranged from 

−0.71 to 0.97, and the median of the coefficients across mRNA-protein pairs was 0.31 (Fig. 

S-5). This result is comparable to the previously reported TCGA studies of fresh-frozen 

tumor tissues 47–48. We performed gene set enrichment analysis (GSEA)49 of the 

Spearman’s correlation coefficient between mRNA-protein pairs (Fig. 6B). The significantly 

enriched pathways with high mRNA-protein correlation (positive GSEA score) are involved 

in cellular metabolism and immune response. Significantly enriched gene sets with negative 

mRNA-protein correlation include ribosomes and spliceosomes. This finding also consistent 

with the previous studies conducted in frozen tissues 47–48.

CONCLUSIONS

We anticipate that proteome-wide expression data obtained directly from tumor biopsies by 

a robust DIA method will provide numerous opportunities in oncology. This includes 

identifying novel therapeutic targets or biomarkers in discovery mode, and also capitalizing 

on the high multiplexing capacity of quantitative measurement of protein biomarkers in a 

clinical setting. In this study, DIA-MS in combination with microdissection of the archived 

FFPE tumor biopsies achieved good depth of coverage (five orders of magnitude on the 

estimated protein copy numbers) even without peptide fractionation. Importantly, the 

quantified proteins include actionable cancer biomarkers, FDA-approved drug targets and 

known cancer driver genes. Complementary information from genomic and proteomic 

analyses solidified the conclusion based on molecular profiles, as highlighted by the patient-

specific non-detection of SDHB with loss of heterozygosity and nonsense mutation. A 

comparison of DIA vs SRM for two actionable biomarkers demonstrates the potential of 

DIA in clinical use for therapeutic decision-making, as SRM-based clinical cutoffs could be 

directly projected to the DIA-based protein quantitation. We suggest that DIA-based 

quantification of protein levels and correlation with patient outcomes will permit the 

development of improved diagnostic tests and extend the utility of known biomarkers 

beyond genomic testing. In summary, DIA-based analysis of clinical FFPE tumor biopsies 

represents an attractive diagnostic approach, combining reliable quantitation with broad 

proteome coverage.
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Figure 1. 
(A) Proteomic analysis of FFPE biopsy samples. Tissue sections mounted on Director® 

slides were subjected to microdissection (10 μm tissue thickness) after tumor-specific 

markup. Collected tumor cells were proteolyzed by trypsin after heat treatment. (B) DIA 

analysis for quantitative analysis. A library containing chromatographic and mass 

spectrometric attributes (MS1 and MS2 traces) of detected peptides was constructed using 

the gas-phase-fractionated DIAs in a pooled sample with 2 Th m/z window18. This library 

was used to match peptides from the DIA data obtained from the individual sample using a 

wider isolation window (20 Th). Summed AUCs of the fragment ions’ chromatograms per 

precursor are used to generate quantitative data.
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Figure 2. 
DIA-based proteomic analysis in tumor biopsies. (A) Detected 4,239 proteins (DIA library) 

were categorized based on their sub-cellular localization. (B) Binned protein identifications 

from the chromatogram library (Library) generated using gas phase fractionation and from 

individual single-shot analysis of samples (SS-DIA) are compared with findings of 

Wisniewski et al.30–31. (C) Comparison findings [reference 32] are listed by decreasing 

copies per cell; 95% of our single-shot protein identifications are found between 5 × 106 and 

2.5 × 103 copies per cell (n=3,573 matched protein identifications). Eight examples of 

proteins identified in single-shot analysis spanning the range of copies per cell were 

indicated. (D) Oncologic biomarkers matched to those cataloged in the Cancer Genome 

Interpreter database 32. 40 biomarkers at the protein level were detected and quantified 

across 12 samples.
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Figure 3. 
Evaluation of DIA-based differential expression. (A) Volcano plot showing a Welch’s t-test 

on proteins identified with two or more peptides, comparing CRC (n=10) and non-CRC 

(n=2) samples. 15 proteins significantly overexpressed in the CRC samples (q-value <0.01; 

Bonferroni multiple-hypothesis testing correction; red triangles) were selected for further 

analysis. Boxplots and paired samples are shown for: our proteomic quantification (B; 

median intensity); median mRNA expression levels obtained in TCGA studies (C); and IHC-

based tumor expression levels in the Human Protein Atlas (D).
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Figure 4. 
Differential SDHB status. (A) Chromatographic traces of four extracted fragment ions (y3, 

y5, y6, y8) (± 10 ppm) of a unique SDHB peptide, QQYLQSIEER are shown for three 

biopsies exhibiting different levels (high, intermediate, absent) of SDHB protein. (B) Depth 

of tumor DNA, germline DNA, and tumor RNA sequencing reads mapped to SDHB in three 

biopsies corresponding to the patient samples shown in DIA-MS data left. Red bar indicates 

the number of reads that contain Arg90ter.
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Figure 5. 
DIA readouts compared to protein concentrations by SRM. DIA vs SRM-based analysis of 

the same peptide showed a good agreement between the methods (A) TUBB3 with peptide 

ISVYYNEASSHK (r2=0.80). The shaded area contains samples with TUBB3 expression 

below the cutoff indicating likely taxane resistance. (B) EGFR with peptide IPLENLQIIR 

(r2=0.70). Samples in the shaded area express EGFR above the median concentration by 

SRM.
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Figure 6. 
Proteogenomic correlation analysis. (A) Overall correlation of protein and mRNA 

measurements across 3,429 protein-mRNA pairs from 12 patients (12 × 3,429 points). 

Spearman’s correlation coefficient is listed. (B) Gene set enrichment analysis of Spearman’s 

correlation coefficients between each protein-mRNA pair in 12 patients. 8 gene sets with the 

lowest FDR (<0.05) associated with either high protein-mRNA correlation (high GSEA 

score) or low protein-mRNA correlation are displayed.
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