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Abstract

Tissue-nonspecific alkaline phosphatase (TNAP), a glycosylphosphatidylinositol-anchored 

ectoenzyme present on the membrane of matrix vesicles (MVs), hydrolyzes the mineralization 

inhibitor inorganic pyrophosphate as well as ATP to generate the inorganic phosphate needed for 

apatite formation. Herein, we used proteoliposomes harboring TNAP as MV biomimetics with or 

without nucleators of mineral formation (amorphous calcium phosphate and complexes with 

phosphatidylserine) to assess the role of the MVs’ membrane lipid composition on TNAP activity 

by means of turbidity assay and FTIR analysis. We found that TNAP-proteoliposomes have the 

ability to induce mineralization even in the absence of mineral nucleators. We also found that the 

addition of cholesterol or sphingomyelin to TNAP-proteoliposomes composed of 1,2-dipalmitoyl-

sn-glycero-3-phosphocholine reduced the ability of TNAP to induce biomineralization. Our results 

suggest that the lipid microenvironment is essential for the induction and propagation of minerals 

mediated by TNAP.
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Introduction

During bone formation, osteoblasts or chondrocytes produce and mineralize the extracellular 

matrix (ECM) [1]. The formation of apatite is initiated in the lumen of matrix vesicles 

(MVs) and has been described to depend on the presence of a nucleator, the nucleational 

core (NC), in the lumen of MVs [2, 3]. The components of the NC, the amorphous calcium 

phosphate (ACP) in association with phosphatidylserine (PS), result in calcium–phosphate–

lipid complexes (PS-CPLXs). Further accumulation of Ca2+ and inorganic phosphate (Pi) in 

MVs can lead to the growth of apatite crystals, which then propagate on the ECM and 

continue to grow onto collagenous fibers, forming bone tissues. Tissue-nonspecific alkaline 

phosphatase (TNAP, E.C. 3.1.3.1) [4, 5] is a glycosylphosphatidylinositol (GPI)-anchored 

protein present on the plasma membrane of osteoblasts and chondrocytes, and also on the 

surface of MVs [6]. TNAP provides Pi needed for apatite crystallization by hydrolyzing 

phosphomonoesters [7]. Among various substrates, TNAP catalyzes the hydrolysis of 

pyrophosphate (PPi), a mineralization inhibitor [8], thus facilitating the formation of apatite 

crystals [5, 9–11]. Adequate local concentrations of extracellular PPi, originating from the 

hydrolysis of sodium adenosine-5′-triphosphate (ATP) by nucleotide pyrophosphatases/

phosphodiesterases (NPPs) or from transport of intracellular PPi by the action of progressive 

ankylosis protein (ANK), and of extracellular Pi originating from the hydrolysis of PPi or of 

other phosphomonoesters by TNAP are essential to allow normal mineralization [5, 12–14]. 

The catalytic properties of the GPI-anchored, polidocanol-solubilized and 

phosphatidylinositol-specific phospholipase C-released TNAP suggest that the location of 

TNAP on the membrane of MVs can control substrate selectivity in this micro-compartment, 

suggesting that assays of TNAP bound to MVs or bound to proteoliposomes might be more 

relevant than assays performed with solubilized enzymes, particularly when studying the 

hydrolysis of organophosphate substrates [15].

The MVs’ membrane contains high content of cholesterol (Chol), sphingomyelin (SM) and 

PS, resembling the lipid content of rafts in the plasma membrane [16, 17]. The organization 

of the lipids influences the activity of the proteins present on the rafts, thus the study of the 

interactions between TNAP and the lipids of the MVs’ membrane is essential to understand 

the initiation and propagation of biomineralization process [18–21].

The ability of proteoliposomes to mimic the function and structure of biomembranes [22–

27] makes them a convenient model to determine the factors of MV-mediated 

mineralization. Other researchers also aim to work with therapeutic mimetic cell to provide a 

source of cell-like assemblies, which exhibits the core structural or functional properties of 

their natural counterparts with broad envisioned applications in biomedicine. One most 

recent example is the generation of microreactors loaded with liposomes harboring TNAP to 

biomineralization studies [28].
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Our research group has standardized a methodology to fabricate biomimetic models of MVs 

containing TNAP incorporated into lipid microdomains, allowing biochemical and 

biophysical studies of the biomineralization driven by MVs [22, 29, 30]. Here, we prepared 

proteoliposomes harboring TNAP composed by 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC), DPPC:Chol (9:1), DPPC:SM (9:1) and DPPC:Chol:SM (8:1:1) 

(molar ratios) to evaluate how the lipid composition affects the ability of proteoliposomes to 

form apatite minerals through the activity of TNAP for the biological substrate ATP as the 

source of Pi when incubated in a synthetic cartilage lymph (SCL) buffer either in the 

presence or absence of nucleators.

Materials and methods

Production of TNAP

Human TNAP was expressed as previously described [24, 31] and used immediately after 

detergent removal to avoid aggregation.

Liposome preparation

DPPC, DPPC:Chol (9:1), DPPC:SM (9:1), and DPPC:Chol:SM (8:1:1) (molar ratios) were 

prepared in 50 mM Tris–HCl buffer, pH 7.5, containing 2 mM MgCl2, to yield a final 

solution with 10 mg/mL of lipids, as previously described [30].

Proteoliposome preparation

TNAP (0.02 mg/mL) was incorporated into the liposomes dispersed in a 50 mM Tris–HCl 

buffer, pH 7.5, containing 2 mM MgCl2 by direct insertion in a 1:10,000 protein:lipid (molar 

ratio). The mixture was incubated at 25 °C for 1 h and ultracentrifuged at 100,000×g for 1 h, 

at 4 °C. The pellet (proteoliposomes) was resuspended to the original volume in the same 

buffer. The activity of TNAP in both pellet and supernatant was assayed to determine the 

percentage of TNAP incorporation into liposomes [29]. The protein concentrations were 

estimated as described by Hartree [32] in the presence of 2% (0.2 g/mL) SDS. Bovine serum 

albumin was used as a standard.

Dynamic light scattering measurement

The determination of liposomes and proteoliposomes’ size distribution was performed by 

dynamic light scattering (DLS) as previously described [26]. Average values (n = 5) of the 

vesicles’ diameters was obtained at 25 °C by unimodal distribution, previously filtered (0.8 

mm). DLS measurements were performed throughout the period of use of the samples (7 

days) and both diameter and intensity varied less than 5%, when stored at 4 °C. Data were 

reported as the mean of five measurements of three different vesicles’ preparations.

Enzymatic activity measurements

For ATP hydrolysis, phosphomonohydrolase activities were assayed discontinuously by 

measuring the amount of released Pi at 37 °C in 50 mM Tris–HCl buffer containing 2 mM 

MgCl2, pH 7.4, as previously described [24, 26]. One enzyme unit (1 U/mg) is defined as 

the amount of enzyme hydrolyzing 1.0 nmol of substrate per minute per milligram of 
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protein. Maximum velocity (Vmax), apparent dissociation constant (K0.5), and Hill 

coefficient (n) obtained from substrate hydrolysis were calculated as described [33]. Data 

were reported as the mean of triplicate measurements of three different enzyme preparations. 

Statistically significant differences were defined as p < 0.05.

Synthesis of ACP and PS-CPLX nucleators

ACP and PS-CPLX nucleators were synthesized as previously described [3, 34, 35].

Mineralization assays with proteoliposomes

TNAP-proteoliposomes were incubated in SCL buffer in the presence or absence of ACP or 

PS-CPLX at pH 7.5. SCL contained 2 mM Ca2+, 104.5 mM Na+, 133.5 mM Cl−, 63.5 mM 

sucrose, 16.5 mM Tris, 12.7 mM K+, 5.55 mM glucose, 1.83 mM HCO3
−, and 0.57 mM 

MgSO4 [34]. The assay was accomplished with a saturating ATP concentration (as the Pi 

source) for TNAP activity present in each distinct proteoliposome. Thus, ATP concentrations 

of 6 mM, 10 mM, 5 mM, and 9 mM were used for the proteoliposomes composed of DPPC, 

DPPC:Chol (9:1), DPPC:SM (9:1), and DPPC:Chol:SM (8:1:1), respectively. Enzyme-

devoid liposomes were used as control. Mineral formation/propagation was measured by 

turbidity at 340 nm (A340) using a multi-well microplate assay as described before [34]. 

Triplicate samples (280 µL) were successively distributed into wells of a 96-well microplate. 

Turbidity measurements were made after brief agitation (10 s) followed by 48 h of 

incubation at 37 °C, using a Molecular Devices M3 microplate reader (Sunnyvale, CA). The 

results were normalized according to the protein concentration of each proteoliposome, 

since different efficacies of TNAP incorporation were obtained depending on the lipid 

composition of the proteoliposome.

Fourier-transform infrared spectroscopy

The proteoliposomes were incubated in SCL buffer, as described above, in the absence of 

nucleators. Then, the samples were placed on the germanium crystal of an attenuated total 

reflectance (ATR) accessory to assess the chemical groups in the formed minerals by means 

of FTIR spectroscopy (Shimadzu-IRPrestige-21). The efficacy of mineralization was 

assessed by calculating the ratio between the areas of the internal reference band of the ester 

phospholipid (C=O) at 1740 cm−1 and the band corresponding to the asymmetrical 

stretching of the PO4
3− group at 1032 cm−1.

Statistical analysis

All quantitative measurements were carried out 3–5 times and values are reported as mean ± 

standard error of the mean (SEM). Groups were compared with the one-way ANOVA or a 

two-tailed Student’s t test. A p value of < 0.05 was considered significant.

Results

Biomineralization induced by MVs is a complex process in which Ca2+ and Pi accumulate 

inside MVs and induce nucleation and formation of apatitic minerals [5, 7]. Previously, we 

have characterized the incorporation of TNAP into proteoliposomes made of DPPC:Chol, 

DPPC:SM, or DPPC:Chol:SM by differential scanning calorimetry (DSC) [30]. Here, the 
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biophysical characterization of vesicles by DLS (Table 1) showed that the average diameters 

of the liposomes and proteoliposomes did not alter significantly when compared with the 

diameter obtained for DPPC-vesicles. Comparing the sizes distribution of liposomes with 

proteoliposomes harboring TNAP, in the presence of TNAP, no more than 10% in the 

increase in the vesicles diameter was observed (DPPC-vesicles 6%, DPPC:Chol-vesicles 

10%, DPPC:SM-vesicles 6% and DPPC:Chol:SM-vesicles 4%) (Table 1). Comparing the 

lipid compositions in the presence of cholesterol and sphingomyelin with neat DPPC-

vesicles, the diameter of vesicles formed did not alter significantly (maximum variation of 

15%), despite the diverse lipid compositions studied. Low polydispersity index (PI) values 

were obtained for the different lipids compositions, indicating that the samples were nearly 

monodisperse in size (Table 1).

The kinetic behavior of membrane-anchored TNAP depends on the lipid composition of the 

liposomes [26]. Thus, we have investigated the effect of the liposome composition on the 

kinetic parameters of the reconstituted TNAP 1:10,000 protein:lipid (molar ratio), to 

determine the saturating ATP concentration for each lipidic composition, as shown by the 

arrows in Fig. 1. For DPPC-proteoliposomes harboring TNAP, Vmax values were observed to 

follow the order DPPC:Chol (9:1) > DPPC:SM (9:1) > DPPC:Chol:SM (8:1:1) 

proteoliposomes (Table 2). Only positive cooperativity (n) was observed for ATP hydrolysis 

for all tested compositions (Table 2). The catalytic efficiencies of DPPC, DPPC:Chol (9:1), 

and DPPC:SM (9:1) showed the same order of magnitude (from 5.7 × 102 to 3.5 × 102 M−1 s
−1) and a lower value was obtained for the ternary composition (1.1 × 101 M−1 s−1) (Table 

2).

We then assessed the ability of these proteoliposomes to induce/propagate biomineralization 

in a SCL buffer with a saturating ATP concentration (as a source of Pi) for TNAP activity 

present in each distinct proteoliposome, and in the presence or absence of ACP or PS-CPLX 

as nucleators. Thus, ATP concentrations of 6 mM, 10 mM, 5 mM, and 9 mM were used for 

the proteoliposomes composed of DPPC, DPPC:Chol (9:1), DPPC:SM (9:1), and 

DPPC:Chol:SM (8:1:1), respectively, as determined in Fig. 1.

We found that DPPC-proteoliposomes induced mineral formation, as probed by turbidity 

assay, when incubated for 48 h in SCL buffer containing saturating concentration of ATP as 

TNAP substrate (Fig. 2). DPPC:Chol (9:1), DPPC:SM (9:1), and DPPC:Chol:SM (8:1:1) 

(Fig. 2) proteoliposomes harboring TNAP produced less mineral than DPPC-

proteoliposomes. DPPC:Chol:SM-proteoliposomes induced slightly less minerals than those 

produced by DPPC:SM-proteoliposomes, however, higher than those produced by 

DPPC:Chol-proteoliposomes.

Notably, the presence or absence of a nucleator (ACP or PS-CPLX) did not significantly 

affect the production of minerals in any of the proteoliposomes.

The differences in mineralization efficiency among the distinct types of proteoliposomes 

were further assessed by means of ATR-FTIR spectroscopy (Fig. 3). Indeed, turbidity did 

not provide the nature of mineral formed, therefore we used IR spectroscopy to determine 

the type of minerals. This analysis was performed in the absence of nucleator. All the 
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recorded ATR-FTIR spectra showed broad bands at 3470–3410 cm−1 that were assigned to 

the O–H stretching vibrations of water [36]. The sharp and strong absorption bands at 2922 

and 2852 cm−1 were assigned to the asymmetric and symmetric, respectively, C–H 

stretching vibrations of the CH2 groups of acyl chains. The band of the ester carbonyl C=O 

group of phospholipids was located at 1740 cm−1, whereas the C–H scissoring band was at 

1470 cm−1. The C–O vibration characteristic of fatty acid esters generated a band at 1234 

cm−1, whereas in the 1090–960 cm−1 regions were located the broad absorption bands 

arising from the P–O stretches of both organic and inorganic phosphate [37]. The latter 

bands confirmed that a phosphate mineral phase arose after incubating the vesicles in SCL 

buffer with ATP, validating that the proteoliposomes were able to induce mineralization even 

in the absence of a nucleator.

To get more quantitative information about the difference in the apatite minerals produced 

by the different types of proteoliposomes, we calculated the ratios between the area of the 

FTIR band relative to the apatite minerals at ~ 1032 cm−1 and that of the band relative to 

carbonyl group of the phospholipids at ~ 1740 cm−1 (Table 3). These data showed that 

DPPC-proteoliposomes harboring TNAP without Chol induced the formation of minerals 

more effectively than the vesicles containing this sterol and that the ternary system produced 

more minerals than the binary systems, thus validating the results obtained through the 

turbidity assay (Fig. 3b).

Discussion

The lipid composition of MVs is different from that of the plasma membrane and from the 

total lipid composition in the whole cell [38, 39]. The main differences are a greater amount 

of PS (3.2–4.5 fold), SM (2.2–2.5 fold), and total lysophospholipids (1.8–2.2 fold), and a 

smaller amount of PC (0.6–0.7 fold) in MVs with respect to whole cells. Additionally, MVs 

are enriched in Chol and depleted in triacylglycerols compared to the plasma membrane and 

whole cells [20, 39]. The activity of membrane enzymes is affected by the lipid 

microenvironment [23, 30, 40–42]. We have previously described that an increase in the 

complexity of the proteoliposomes decreased the activity of GPI-anchored TNAP 

incorporated in the membrane [30]. Herein, we investigated the effects of the lipid 

composition on the ability of proteoliposomes to produce apatite minerals by means of 

turbidity assay. We found that proteoliposomes produced minerals in the order DPPC > 

DPPC:SM (9:1) > DPPC:Chol:SM (8:1:1) > DPPC:Chol (9:1) proteoliposomes, probably 

due to the lipid phase behavior of the membrane microenvironments [30, 40], which can 

influence differently the Vmax of ATP hydrolysis and catalytic efficiency of TNAP, as 

observed in Table 2. Studies regarding biomineralization comparing other sources of Pi for 

TNAP hydrolysis when incorporated in proteoliposomes are need to be performed. However, 

the scenario with PPi, for example, is even more complex than ATP. Beyond substrate, PPi is 

a potent inhibitor of TNAP activity and can also suppress hydroxyapatite crystal formation 

and propagation acting as a potent calcification inhibitor in biologic fluids [4].

Chol alters the physical properties and lateral organization of the plasma membrane by 

increasing the thickness and decreasing the permeability of the phospholipid bilayer [29, 30, 

40, 43–45]. Addition of Chol decreases the area occupied per molecule in lipid bilayers, 
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which increases lipid/lipid interactions and induces a separation of membrane lipids into a 

fluid liquid crystalline phase (Lα) and a liquid ordered phase (Lo) enriched in Chol and 

sphingolipids [17, 30, 40, 43]. The presence of Lo microdomains in proteoliposomes may 

explain the lower levels of minerals generated by Chol-containing proteoliposomes 

compared to Chol-devoid ones (Fig. 2).

The DPPC:SM membranes form distinct types of clusters than DPPC:Chol membranes [44, 

45]. In particular, DPPC:SM vesicles did not display lateral phase segregation on the 

membrane as observed on DPPC liposomes [30], which may explain the higher levels of 

mineral produced by proteoliposomes made of DPPC and DPPC:SM (9:1) when compared 

to those made in the presence of Chol (DPPC:Chol and DPPC:Chol:SM) (Fig. 2). Finally, 

the insertion of SM in the DPPC:Chol system stabilizes the membrane through hydrogen 

bridges between the hydrocarbon chains, which may explain the increased levels of mineral 

formation observed in DPPC:Chol:SM (8:1:1) proteoliposomes compared to DPPC:Chol 

(9:1) ones (Fig. 2).

The infrared spectra of all proteoliposomes displayed the band relative to the apatite 

minerals centered at ~ 1032 cm−1, which confirmed that minerals were produced by all the 

lipidic systems. Additionally, the values of the ratio between the area of the apatite band at ~ 

1032 cm−1 and that of the phospholipid-specific band at ~ 1740 cm−1 (ester carbonyl C=O) 

for the tested proteoliposomes was higher for pure DPPC-TNAP compared to the 

proteoliposomes containing Chol and SM [46]. This result further validated that the 

proteoliposomes without Chol induced mineral formation more efficiently than those 

containing Chol.

In conclusion, we found that proteoliposomes harboring TNAP have the ability to induce 

mineralization after 48 h of incubation under saturating ATP concentrations as the source of 

Pi, even in absence of a nucleator. Additionally, we found that the presence of ordered 

domains due to the addition of Chol to DPPC or DPPC:SM-proteoliposomes decreased their 

ability to produce minerals. Our results indicated that in addition to the essential components 

required for the mineralization, such as enzymes, substrates, ions and lipids, the degree of 

packaging of lipid bilayers can affect the phosphohydrolytic activity and catalytic efficiency 

of TNAP in the bilayers, as well as affecting the supersaturation conditions necessary to 

precipitate apatite crystals. The diameter of vesicles formed did not alter significantly, 

despite the diverse lipid compositions studied. Thus, the physical properties and the lateral-

phase organization of lipids in proteoliposomes are relevant to regulate the apatite 

propagation mediated by TNAP function during mineralization.

In the future, these proteoliposomes may act as nanodelivery systems mimicking the MVs’ 

function and thus facilitate the bone fractures’ regeneration, help the dental implant fixation 

or decrease the time for patient recovery.
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Fig. 1. 
Achievement of Vmax for the hydrolysis of ATP by TNAP-proteoliposomes composed of 

different lipid compositions: (black) DPPC, (green) DPPC:Chol (9:1), (red) DPPC:SM (9:1) 

and (blue) DPPC:Chol:SM (8:1:1) (molar ratios). Arrows indicate the saturating ATP 

concentration for each distinct proteoliposome. Inset: representation to determine Hill 

coefficient (n). Data were reported as the mean of triplicate measurements of three different 

enzyme preparations
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Fig. 2. 
Effect of TNAP-proteoliposomes composed of DPPC, DPPC:Chol (9:1), DPPC:SM (9:1) 

and DPPC:Chol:SM (8:1:1) (molar ratios), on mineral propagation in the absence of 

nucleator (blank) and in the presence of ACP (blue) or PS-CPLX-seeded SCL (red), at pH 

7.5. The assay was accomplished in SCL buffer with a saturating ATP concentration for 

TNAP activity for each distinct proteoliposome. ATP concentrations of 6 mM, 10 mM, 5 

mM, and 9 mM were used for the proteoliposomes composed of DPPC, DPPC:Chol, 

DPPC:SM and DPPC:Chol:SM, respectively, as indicated by arrows in Fig. 1. Enzyme-

devoid liposomes were used as control and bars show the increment in absorbencies after 48 

h of incubation at 37 °C. All results are expressed as mean ± SEM. P < 0.05
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Fig. 3. 
FTIR spectra of the minerals obtained from the mineralization assays under incubation of 

TNAP-proteoliposomes composed of (green) DPPC, (black) DPPC:Chol (9:1), (pink) 

DPPC:SM (9:1) and (blue) DPPC:Chol:SM (8:1:1) (molar ratios), in SCL, at 37 °C, at pH 

7.5, in the absence of nucleators. ATP concentrations of 6 mM, 10 mM, 5 mM, and 9 mM 

were used for the proteoliposomes composed of DPPC, DPPC:Chol, DPPC:SM and 

DPPC:Chol:SM, respectively, as indicated by arrows in Fig. 1. Mineralization was followed 

by the differences in the ratio between the areas of the internal reference band of the 

phospholipid (C=O) at 1740 cm−1 and the band corresponding to the asymmetrical 

stretching of the PO 43− group at 1032 cm−1
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Table 1

Biophysical characterization by DLS of liposomes and TNAP-proteoliposomes composed by different lipid 

compositions

Liposome/proteoliposome composition Diameter (nm) Polydispersity index (PI)

Lipid (molar ratio) TNAP

DPPC − 115.0 ± 0.4 0.08 ± 0.01

DPPC + 121.1 ± 5.9 0.15 ± 0.05

DPPC:Chol (9:1) − 121.9 ± 0.5 0.09 ± 0.03

DPPC:Chol (9:1) + 133.8 ± 8.8 0.12 ± 0.05

DPPC:SM (9:1) − 127.1 ± 1.0 0.09 ± 0.03

DPPC:SM (9:1) + 134.5 ± 9.1 0.09 ± 0.06

DPPC:Chol:SM (8:1:1) − 133.4 ± 0.8 0.04 ± 0.03

DPPC:Chol:SM (8:1:1) + 138.8 ± 21.9 0.12 ± 0.11
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Table 2

Kinetic parameters for the hydrolysis of ATP by TNAP reconstituted in liposomes 1:10,000 protein:lipid 

(molar ratio) of different lipid compositions

Kinetic parameters TNAP-proteoliposomes

DPPC DPPC:Chol DPPC:SM DPPC:Chol:SM

Vmáx (U/mg) 910.0 ± 10.6 732.8 ± 15.3 191.2 ± 12.3 122.8 ± 10.3

K0.5 (mM) 3.18 ± 0.02 2.75 ± 0.06 0.32 ± 0.01 2.22 ± 0.04

n 3.42 ± 0.01 1.91 ± 0.07 2.74 ± 0.02 0.99 ± 0.09

kcat/K0.5 (M−1 s−1) 5.7 × 102 5.3 × 102 3.5 × 102 1.1 × 101
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Table 3

Ratios between the areas of the bands at 1032 (PO4
3−) and 1740 (C=O) cm−1 obtained by ATR-FTIR for the 

different proteoliposomes samples

Proteoliposomes composition PO4 3−/C=O

DPPC 3.2 ± 0.1

DPPC:Chol (9:1) 1.8 ± 0.1

DPPC:SM (9:1) 2.2 ± 0.1

DPPC:Chol:SM (8:1:1) 1.9 ± 0.1
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