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Abstract

Reactions of thermally generated benzynes with diaziridines are reported. These trapping reactions 

follow the same pathway as reported earlier by Heine and coworkers with electron-deficient 

alkynes. The resulting N-aryl hydrazones were obtained efficiently in a single step. The preference 

for the mode of addition of the nucleophilic diaziridine nitrogen atom to the more electrophilic 

benzyne carbon was consistent with what is predicted on the basis of distortion analysis. The 

feasibility of converting the hydrazone into a Fisher-indole adduct was demonstrated.

Graphical Abstract

Forty-five years ago, Heine and coworkers reported on the reactions of nucleophilic 

diaziridines with electrophilic alkynes (e.g., 1 + 2 to 3 in Figure 1).1 Largely as a result of a 
15N-labeling experiment (red atoms), the mechanism of the reaction was deemed to involve 

initial addition of the alkylated (R1) nitrogen atom to provide the intermediate zwitterion 4.3 

Ring-opening was then invoked to give the iminium ion 5, within which proton transfer 

would then lead to the adduct 3.

Arynes, another class of “electrophilic acetylene,”1 have been trapped with myriad 

nucleophilic trapping agents.4Benzyne derivatives can be formed by simple thermal 

activation of appropriately tethered triyne substrates 5 via a process we have called the 

hexadehydro-Diels-Alder (HDDA) reaction.6 We report here reactions of various 

diaziridines with a number of electrophilic HDDA-generated benzynes. Gratifyingly, these 

transformations follow the same reaction course as uncovered in 1973. Namely (and as 

generically shown in Figure 2), when a substrate 6 is heated in the presence of a diaziridine 

2, a hydrazone 7 is formed efficiently. We suggest that this is best rationalized, again, by 
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initial attack of the N-alkylated nitrogen in 2 to the benzyne 8 to produce the zwitterion 9. 

Secondary amines readily add to electron poor alkynes, so the preferential attack by the 

more substituted and hindered (albeit also more electron rich) nitrogen atom in 2 to either of 

the “acetylenes” 1 or 8 may be attainable because of the highly unhindered nature of the 

electrophilic alkynes, all the more so because of the bent geometry of the sp-carbons in 8. 

Also, the trapping of an aryne by a nucleophile (here, the diaziridine nitrogen) is often 

significantly exothermic. Accordingly, the transition state should be reached early on the 

reaction coordinate and have a relatively long distance between the nitrogen and benzyne 

carbon atoms. This would further reduce the importance of steric interactions in the initial 

adduct formation. Further transformation of 9 to 7 requires both a proton transfer and ring-

opening event of the strained ring. This could conceivably be a concerted process or occur in 

either order via intermediate 1,2- or 1,4-zwitterions 10 or 11, respectively.

We first examined the reaction of triyne 6a with seven different diaziridines (2a–g, entries 

1–7, Table 1). These trapping agents differed in the nature of alkyl/aryl substitution at the 3–

position of the diaziridine ring. All bear one N-alkyl group (benzyl), which differentiates the 

nucleophilicity of the two nitrogen atoms. The products from these seven experiments 

(7aa-7ag) indicated that the benzyne trapping reactions with diaziridines had followed the 

same course of reaction as precedented (Figure 1) and projected on mechanistic grounds 

(Figure 2). They all can be rationalized as resulting from attack by the hindered, N1 nitrogen 

atom at the more electrophilic sp-hybridized carbon atom in the distorted benzyne 

intermediate 8a (Figure 3).

We proceeded to explore the reactions of other HDDA benzyne substrates, namely 6b–f 
(entries 8–17). These reacted in similar fashion, demonstrating generality within the benzyne 

component, leading to various N-arylated hydrazone products. The matching of which two 

reactants were used in the examples in entries 8–17 of Table 1 (i.e., which benzyne precursor 

6 with which diaziridine 2) was arbitrarily chosen. Nonetheless, this representative subset 

demonstrates the generality of the reaction.

Each of the benzyne species 8a-f derived from the set of poly-yne substrates 6a-f is shown 

in Figure 3. Their reactions with diaziridines were observed to proceed with exclusive 

regioselectivity for the cases of 8a, 8e, and 8f; mixtures of constitutional isomers were 

formed in each of the cases of 8b-d. These selectivities for nucleophilic addition to these 

benzynes are consistent with those expected either from (i) reported reactions with 

nucleophiles7 or (ii) the extent and direction of the computed distortion [DFT, Figure 3: 8a-c 
and f (see SI), 8d,7a and 8e7i]. Distortion analysis has been used quite successfully to 

account for the strong preference for addition by a nucleophile at the more electrophilic, 

obtuse sp-center, which has a greater proportion of p-character.8 As the magnitude of the 

difference in the two internal angles diminishes, subtle differences in steric effects for the 

two potential modes of addition begin to play a more important role (cf. differences in the 

isomer ratios among entries 9–12 or of 13 vs. 14).

The reactions using the 3-phenyl-substitued diaziridine 2d gave less efficient formation of 

the hydrazone products (entries 4, 10, 14, and 17). In one instance (entry 4), we separated 

and identified the product of the major competing pathway—namely, the (polar and 

Arora et al. Page 2

Org Lett. Author manuscript; available in PMC 2019 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chromatographically poorly behaved) amidine 12ad (Figure 4). Presumably, in this reaction 

the benzyne 8a undergoes initial attack by the NH rather than the NBn nitrogen atom of the 

diaziridine leading to the zwitterion 13. This species, now containing a benzylic C–H proton, 

can undergo internal proton transfer to produce 14 followed by a ring-opening event to give 

the amidine 12ad.

Finally, we have also demonstrated two examples in which these hydrazone products can be 

converted into fused indole derivatives. Specifically, we were inspired by the report of 

Greaney et al. in which benzyne-derived hydrazones underwent Fischer indole cyclization 

using Lewis acid catalysis to produce indole adducts.9When exposed to ZnCl2 at elevated 

temperature in tert-amyl alcohol, the hydrazones 7ae and 7aa produced the corresponding 

cyclized products 9ae and 9aa, respectively (Figure 5). In both cases Lewis acid mediated 

desilylation was observed under the reaction conditions.

In conclusion, the results presented here demonstrate the generality of trapping thermally 

generated, polycyclic benzyne species with heteroatom-rich diaziridines. These trapping 

reactions lead to N-arylated hydrazones in a single step. In some instances, these products 

can be converted to fused-ring indole derivatives. The mechanism of this trapping reaction 

with benzynes is consistent with one established earlier with electron deficient acetylenes. 

The preferred mode of addition was consistent with that suggested by DFT-derived 

structures of the intermediate benzynes.
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Figure 1. 
Reaction of nucleophilic diaziridines with electrophilic alkynes.1
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Figure 2. 
Reaction of a generic HDDA-generated benzyne and a monoalkylated diaziridine (this 

work).
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Figure 3. 
Internal bond angles (∠) at the two benzyne carbons, reflecting the computed ring distortion 

of the benzynes 8a-f derived from each of the poly-ynes 6a-f {DFT: [SMD(benzene)//

M06-2X/6-311+G(d,p)}.
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Figure 4. 
Rationale for formation of amidine 12ad via initial attack of the secondary amine in 2d to 

the benzyne 8a.
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Figure 5. 
Fischer indole adducts, 9ae and 9aa derived from hydrazones, 7ae and 7aa, respectively.
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