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Abstract
Schizophrenia is a chronic mental disorder that is still poor-
ly understood despite decades of study. Many factors have 
been found to contribute to the pathogenesis, including 
neurodevelopmental disturbance, genetic risk, and envi-
ronmental insult, but no single root cause has emerged. 
While evidence from twin studies suggests a strong herita-
ble component, few individual loci have been identified in 
genomewide screens, suggesting a role for epigenetic ef-
fects. Rather, large numbers of weakly acting loci may cu-
mulatively increase disease risk, including several mapping 
to epigenetic pathways. In this review, we discuss mecha-
nisms of epigenetic regulation and evidence for an epigen-
etic contribution to disease phenotype. We further describe 
the range of experimental tools currently available to study 
epigenetic effects associated with the disease.

© 2019 S. Karger AG, Basel

Schizophrenia occurs in about 1% of the population 
and is highly debilitating socially and economically [1]. 
The aetiology is complex and poorly understood, and 
the interplay of genetic and environmental factors ap-
pears to be important in disease development. Symp-
toms defined by the Diagnostic and Statistical Manual 
of Mental Disorders (DSM-5) are classified as “positive” 
or “negative” [2]. Positive symptoms (e.g., hallucina-
tions, delusions, and disorganized thought) arise from 
excess expression of normal function, while negative 
symptoms (e.g., reduced emotional expression, loss of 
the ability to experience pleasure, poverty of speech, so-
cial withdrawal, and catatonic immobility) reflect a de-
crease or flattening of normal emotional function. It is 
common for schizophrenia to be comorbid with other 
disorders such as depression and personality disorders 
however, adding to the difficulty of diagnosis. Current-
ly, clinical treatments rely mainly on antipsychotic com-
pounds that act by the inhibition of the type 2 dopamine 
receptor pathway [3]. These compounds primarily re-
lieve the so-called positive symptoms. However, they are 
largely ineffective for relief of important symptoms such 
as attention and memory defects. Unfortunately, this 
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fails to prevent poor personal and social outcomes for 
schizophrenia [4].

Schizophrenia is associated with impaired perfor-
mance across a range of measurable parameters, includ-
ing neuron volume and number, synaptic connectivity, 
neurochemical balance, and sensory gating [5]. Post-
mortem studies show dysregulation of the transcriptomes 
and proteomes in pre-frontal and temporal cortex oligo-
dendrocytes [6–8]. Similarly, many key proteins respon-
sible for effective neuronal function, including ion chan-
nels and neurotransmitter pathway enzymes, show  
expression changes in post mortem brain from schizo-
phrenia patients [9]. Two general themes are central to 
most proposed models explaining schizophrenia pathol-
ogy: the role of the synapse [10] and the early stages of 
neuronal development (differentiation and maturation) 
[11].

Genetics and Epigenetics of Schizophrenia

Schizophrenia shows a high degree of heritability 
(∼64% based on family studies) [12], leading to efforts to 
map causal loci using high-throughput genomics technol-
ogies. To date, this work has failed, in general, to highlight 
strong individual genetic risk factors. Important excep-
tions include a deletion at 22q11 (∼25% of individuals 
with this deletion have symptoms of schizophrenia [13] 
and a number of SNPs mapping to the major histocom-
patibility complex [14]. However, large numbers of fre-
quently occurring low risk variants, many mapping to ear-
ly neurodevelopmental pathways have been discovered. 
In particular, a genome-wide association study that in-
cluded 36,989 cases and 113,075 individuals led to the 
identification of 128 common variants in 108 different 
loci, each contributing marginally to risk but cumulative-
ly accounting for a modest disease risk (OR ∼1.3) [15]. 
Many of the identified genes are involved in glutamatergic 
neurotransmission, synaptic plasticity, or encode voltage-
gated calcium channels, as well as the product of the DRD2 
gene (dopamine receptor D2), the main target of antipsy-
chotic drugs. Furthermore, transcripts of these 108 genes 
show elevated expression patterns in fetal brain when 
compared to post-natal brain [16]. Similar studies have 
reported increased expression of schizophrenia risk genes 
during early brain development [17, 18]. These findings 
are consistent with a generalized neurodevelopmental 
role for many genes associated with risk of schizophrenia.

In contrast to these common risk factors, a number of 
schizophrenia-associated loci have been reported that are 

rare in the disease population. Copy number variants 
mapping to 8 loci were identified in a meta-analysis of 
21,094 cases and 20,227 controls, including NRXN1, a 
neurexin involved in synapse formation and neurotrans-
mission [19]. Other loss-of-function mutations have been 
reported for the gene encoding histone H3 methyltrans-
ferase SETD1A [20]. These add to studies implicating epi-
genetic factors in schizophrenia, for example, the finding 
that schizophrenia risk loci are more likely to be found 
proximal to DNA methylation quantitative trait loci [21]. 
A recent investigation that combined a transcription-
wide association study with descriptions of gene expres-
sion, splicing, and chromatin activity, found 157 genes 
with transcriptional changes specifically associated with 
schizophrenia [22]. A significant proportion of these 
were strongly associated with nearby chromatin features, 
again supporting an important role for epigenetic mecha-
nisms in the disease. Similarly, some variants associate 
significantly with disease but appear to be limited to in-
dividual pedigrees. A translocation found to segregate in 
a Scottish pedigree with mental disorders, including 
schizophrenia, resulted in the disruption of the DISC1 
gene involved in synapse function and early neurodevel-
opment [23, 24]. However, DISC1 was not identified as 
significant in the genome-wide association study men-
tioned above. 

Mechanisms of Epigenetic Regulation

The above observations have switched research focus 
to a search for epigenetic factors that might explain the 
discrepancy between the strong inheritance of schizo-
phrenic disease and the lack of strong genetic markers. 
Epigenetics broadly refers to heritable changes in pheno-
type that are not encoded in the DNA sequence of the 
genome. These changes are therefore not permanent but 
can be carried from parent to daughter cell (or from one 
generation to the next), by a form of molecular memory 
that regulates gene expression programs. Several mecha-
nisms that can alter the chromatin environment sur-
rounding the regulated genes underlie these effects.

The level of mRNA and protein expression from a 
gene relies not only on features of the primary DNA se-
quence such as promotors and ribosome-binding sites. It 
is now clear that dynamic changes in the structure of the 
surrounding chromatin allow alteration in the activation, 
repression, and general regulation of genes [25]. Several 
distinct forms of epigenetic regulation are known. These 
distinct mechanisms cross-talk with each other in ways 
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that are not fully understood, and include (a) direct meth-
ylation of DNA; (b) modification of the associated his-
tone molecules by a range of chemical adducts (e.g., 
methylation, acetylation ubiquitination); (c) exchange of 
histone molecules with related isoforms; (d) regulation of 
access to DNA by manipulation of chromatin by nucleo-
some remodellers. While we focus here on the above 
mentioned pathways, it should be noted that many other 
mechanisms have been implicated in epigenetic effects, 
including those based on non-coding RNAs, non-genic 
DNAs, differential exosome expression, and alternative 
modification products catalyzed by the Ten-Eleven 
Translocation family of enzymes including 5-hydroxy-
methyl cytosine, 5-formylcytosine, 5-carboxylcytosine.

Direct methylation of DNA in mammals is mediated 
primarily by the DNMT (DNA methyltransferase) family 
that catalyzes the transfer of methyl groups to the C5 posi-
tion of CpG dinucleotides. Since levels of DNA methyla-
tion can be affected by dietary restriction, a link between 
periods of famine and increased incidence of schizophre-
nia has been proposed to be at least partly based on epigen-
etic phenomena [26, 27]. Gene expression can be influ-
enced by methylation of the underlying DNA in a number 
of ways, for example, by preventing access to transcription 
factors, or by recruiting chromatin-modifying enzymes. 
Much of the work toward epigenetically characterizing the 
schizophrenia epigenome has involved measuring direct 
DNA methylation through bisulphite sequencing and 
similar methods. For example, a recent study (41 cases, 46 
controls) across 4 brain regions found many genome re-
gions that displayed differentially methylated DNA [28], 
while a larger study (689 cases, 645 controls) using blood 
samples similarly identified many differentially methylat-
ed loci [29]. Other studies support the importance of DNA 
cytosine methylation in schizophrenia [30–32]. Differen-
tial DNA methylation studies to date have mapped to ma-
jor neurotransmitter pathways. For example, promoters of 
the reelin (RELN) and glutamic acid decarboxylase 
(GAD1) genes, components of the γ-aminobutyric acid-
ergic pathway, are hypermethylated in schizophrenia [33, 
34], while the promoter for the catechol-O-methyltrans-
ferase gene, a component of the dopaminergic pathway, 
was found to be hypomethylated in postmortem schizo-
phrenia brains [35]. The serotonin pathway has also been 
implicated, with hypermethylation of the promoter of the 
serotonin receptor type-1 gene (HTR1A) gene being re-
ported for blood samples of schizophrenia patients relative 
to controls [36]. Additionally, while not reviewed here, the 
effect of antipsychotics on DNA methylation is now wide-
ly reported (for recent review see [37]).

Post-translational modifications (PTMs) of histone 
proteins also have a significant effects on epigenetic regu-
lation of neuropsychiatric disorder, and schizophrenia 
[38]. Each nucleosome comprises 2 copies each of 4 his-
tone proteins (H2A, H2B, H3, H4). The N-terminal tails 
of H2A, H2B, H3 and H4 histones extend from the glob-
ular regions of the histone structure and are subject to 
extensive and dynamic modifications. Over 70 distinct 
histone amino acid modifications have been described, 
including methylation, phosphorylation, ubiquitination, 
acetylation and sumoylation [39]. They contribute to the 
regulation of gene expression in several ways, none com-
pletely understood. One mechanism involves the recruit-
ment (or displacement) transcription activators or re-
pressors to the cognate gene through enhanced protein 
interaction affinity, while another mechanism involves 
chromatin conformational changes that increase the ac-
cessibility for positive and negative regulatory factors. 
Some PTMs at specific amino acids are associated with 
repression of gene expression (e.g., methylation of his-
tone 3 at lysines 9 and 27), while others are associated 
with activation (e.g., acetylation at histone 3 at lysines 9 
and 14). The observation that distinct combinations of 
histone PTMs are found in different transcriptional and 
genomic contexts led to the proposal that a “histone 
code,” capable of interpretation by the transcription ma-
chinery, governs the expression of associated genes [40].

These PTMs are regulated by a network of enzymes 
(e.g., histone methyltransferases and histone demethyl-
ases) that are often housed in multi-subunit protein com-
plexes. For example, the Polycomb Repressor Complex 
(PRC1, PRC2) family of complexes mediate gene silenc-
ing via generation of trimethylated lysine 27 on histone 
H3 (H3K27me3) and ubiquitination of lysine 119 of his-
tone H2A (H2AK119Ub). Similarly, the COMPASS fam-
ily is associated with activating histone marks (H3K-
36me3). These complexes typically contain 5–10 protein 
subunits, including a core enzyme responsible for the his-
tone modification reaction (e.g., EZH2 in PRC2; SETD1A 
in COMPASS). The functions of the additional proteins 
in these and similar complexes are under intense study, 
but typically include modulation of the core enzymatic 
activity, targeting of the complex to specific genomic loci, 
and mediating interactions with other chromatin and sig-
naling proteins.

Another class of chromatin modification enzymes, 
termed “remodellers” is capable of altering the structure 
of the chromatin itself in order to enhance or inhibit local 
gene expression. While different remodeling complexes 
employ different mechanisms, they share an ATPase-
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translocation function that can manipulate the histone-
nucleosome architecture [41].

Relatively few reports have been published to date that 
specifically address the role of individual epigenetic path-
ways in schizophrenia. This can largely be attributed to 
the highly specialized technologies needed to study these 
effects, and to the difficulty in obtaining precious sam-
ples. Instead, the focus has been on assessing the levels of 
a small number of histone PTMs and the balance between 
histone acetylation and deacetylation. The use of periph-
eral blood mononuclear cells is one way to obtain suitable 
samples. Studies on histone PTM levels in schizophrenia 
found increased levels of the repressive histone mark 
H3K9me2 that was correlated with the age of onset, as 
well as resistance to treatment when this position was 
acetylated [42]. Other workers have focused on measur-
ing the relative abundance of the enzymes responsible for 
generating these histone marks. Increased histone deacet-
ylase activity (HDAC1) in schizophrenia patients has 
been noted in several studies, including those in the pre-
frontal cortex and the hippocampus and medial temporal 
lobe [43]. In keeping with this, over-expression of HDAC1 
in mice is associated with behavioral abnormalities and 
working memory deficits [44]. HDAC2 has also been 
linked to schizophrenia, an effect conferred at least partly 
through regulation of the metabotropic glutamate recep-
tor [45]. Finally, in an example of the emerging type of 
experiment now possible, analysis of enriched DNA mo-
tifs following chromatin profiling of pre-frontal cortex 
samples found evidence for the involvement of the  
MEF2C transcription factor in schizophrenia risk [46].

Environmental insult is now thought to be a major 
contributor to epigenetic change [47]. Maternal behavior 
is associated with altered histone acetylation, in addition 
to increased DNA methylation [48]. Similarly, mice ex-
posed to social defeat or isolation show increased levels of 
repressive histone marks, such as methylation of histone 
H3 at lysines 9 and 27. Interestingly, these effects are re-
versible by administration of the antidepressant imipra-
mine [49], while deacetylation of histones in the hippo-
campus using overexpression of HDAC5 blocks this ef-
fect [50]. In fact, histone deacetylation inhibitors show 
antidepressant effects in animal models of depression 
[51]. Immunological stress in the form of viral infection 
(pre- or post-natal) may also contribute to risk of schizo-
phrenia [52].

The connection between schizophrenia risk and epi-
genetic effects has led to speculation that drugs acting on 
epigenetic pathways may be beneficial. For example, 
some studies in animal models suggest that the fear ex-

tinction response can be manipulated through modula-
tion of HDAC [53]. However, the exact relevance to 
schizophrenia, and issues concerning which brain re-
gions are involved, and which specific HDAC isoforms 
should be targeted, make general conclusions problem-
atic.

Experimental Methods for Investigating Molecular 
Epigenetic Effects

The commercial availability of very high mass accu-
racy instruments in the last decade has led to improve-
ments in quantitative proteomics studies, as well as in-
creased confidence in molecular assignments when iden-
tifying proteins and PTMs. For example, acetylation and 
trimethylation of lysine, 2 critical epigenetic modifica-
tions on histones that are associated with different tran-
scriptional outcome, differ by less than 0.04 Da. However 
these 2 modifications can be resolved using Orbitrap type 
instruments. In general, mass spectrometry analysis of 
histones can be describes as “top-down” (where the intact 
protein is ionized and analyzed), or “bottom-up” (where 
the protein is first digested into peptides using a protease 
such as trypsin). Top-down approaches offer the possibil-
ity of a complete view of the individual histone molecule, 
including the exact state of PTMs present at a particular 
time. The drawbacks of the top-down approach are that 
it requires relatively specialized equipment and software, 
and that it needs large amounts of very pure sample [54]. 
A compromise approach, termed “middle-down,” in-
volves analysis of long peptide fragments has shown con-
siderable success [55]. Using the bottom-up approach, 
the very complex mixture of peptides (typically 1,000’s of 
distinct peptide molecules) produced following enzyme 
digestion are separated online reverse phase liquid chro-
matography (i.e., HPLC interfaced directly with the elec-
trospray source on the mass spectrometer) [56, 57].

These approaches are particularly challenging for his-
tone analysis for 3 reasons. First, the combinatorial ar-
rangements of acetylation and methylation at distinct res-
idues on a single peptide results in many isobaric molec-
ular species. Second, histone proteolysis products tend to 
be hydrophilic, requiring adaptation of the HPLC gradi-
ents. Third, histones are enriched in the basic residues 
that are cleaved by tryptic enzymes and so produce small 
peptides that are difficult to analyze using mass spec-
trometry (and that lose valuable information concerning 
co-occurrence of neighboring histone marks). Generally, 
these obstacles are overcome through use of the enzyme 
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Arg-C (which does not cleave after lysine residues), or by 
using alkylation chemistry [58]. The 2 main forms of al-
kylation of histones involve the use of propionic acid or 
acetic anhydride (the later generally in deuterated form 
to permit naturally occurring acetylation to be distin-
guished from the chemically introduced form) [56, 59]. A 
bonus of the chemical alkylation approach is that is alters 
the hydrophilic properties of many modified histone pep-
tides, allowing chromatographic separation (and quanti-
tation) of several isobaric peptide pairs that would other-
wise be indistinguishable [60].

For many histone marks, relative abundance can 
therefore be compared when carefully controlled MS 
runs are carried out, by calculating the parent ion signal 
(MS1) for the corresponding peptide. This generally re-
quires manual analysis of the mass spectrometry data us-
ing instrument-specific software to obtain extracted ion 
chromatographs, although recently developed programs 
such as MaxQuant [61] and Skyline [62] have consider-
ably reduced the workload involved. In general, label-free 
methods can be employed, but where possible, metabolic 
labeling can be used to improve resolution [63]. Unfortu-
nately, few cell culture models are available in schizo-
phrenia research so metabolic labeling is usually not an 
option.

Characterization of the enzyme complexes mediating 
histone PTM deposition and removal also relies heavily 
on mass spectrometry. These studies range from analysis 
of the global chromatin proteome [64], to identify of the 

components of purified histone modifying protein com-
plexes following affinity purification [65]. Recent devel-
opments include the use of affinity-tagged peptides to iso-
late histone PTM “readers” [66] and efforts to develop 
locus-specific recovery of histones using tagged nucleic 
acids or CRISPR-based reagents [67, 68]. Mass spectrom-
etry also lends itself to the analysis of other epigenetic 
phenomena, for example, the presence of histone vari-
ants. The histone 3 variants H3.1 and H3.3, for example, 
can be distinguished from each other by a single amino 
acid difference in the N-terminal tail [69]. A family of re-
lated approaches relies on affinity purification of epige-
netically marked DNA followed by analysis of the associ-
ated nucleic acid or protein by relevant techniques. These 
methods are generally referred to as chromatin immuno-
precipitation and incorporate a capture step using anti-
body-based reagents. Generally, these are high-quality re-
agents, although concerns have been raised about the 
specificity of these approaches in some cases [70]. In ret-
rospect, this is perhaps unsurprising/since in molecular 
terms, the difference between epigenetic marks (whose 
presence or absence can confer major differences in ex-
pression of the associated genes) can be subtle, for exam-
ple, mono-, di-, or trimethylated lysines. Examples of 
these techniques are outlined in Table 1. Typically, large 
amounts of starting material are needed, and factors such 
as cell heterogeneity can cause problems.

In conclusion, emerging technologies now enable the 
study of several aspects of epigenetic effects in schizo-

Table 1. Affinity-based chromatin enrichment techniques used in epigenetic studies

Abbreviation Alternative name Method

ChIP-chip ChIP-on-chip Chromatin immunoprecipitation of DNA using epigenetic 
mark-specific antibodies, followed by the identification of the 
associated DNA using microarrays

ChIP-seq ChIP-sequencing Chromatin immunoprecipitation of DNA using epigenetic 
mark-specific antibodies, followed by the identification of the 
associated DNA using sequencing

MeDIP-seq Methylated DNA  
immunoprecipitation

Immunoprecipitation of methylated DNA using methylated 
DNA-specific antibodies, followed by the identification of the 
associated DNA using sequencing

4C-seq/HiC-seq Circular chromosome
conformation capture-
sequencing

Cross-linking of locally interacting DNA regions, followed by 
the identification of those DNAs using sequencing

ChIP-MS ChIP-mass spectrometry Chromatin immunoprecipitation of DNA using epigenetic 
mark-specific antibodies, followed by the identification of the 
associated proteins using mass spectrometry
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phrenia and related pathologies. To date, these advanced 
approaches have not directly been applied to schizophre-
nia research, partly because they generally require spe-
cialized equipment and expertise, and partly due to an 
absence of experimental models and access to clinical ma-
terial. In future, however, these approaches are likely to 
offer exciting new viewpoints into the role of epigenetic 
mechanisms in the disease.
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