Skip to main content
. 2019 Mar 25;16(6):1070. doi: 10.3390/ijerph16061070

Table A2.

The matching quality of propensity score matching (PSM).

Panel A. Propensity Score Prediction-Dependent Variables:
(=1 if the Hospital Taking Digital Business as the Largest Business Except for Common Hospital Services, Otherwise = 0)
Parameter Standard Error
Matching variables
Capital input −0.4492 ** (0.0681)
Human input 0.0974 (0.0830)
Cash flow −0.8048 ** (0.2186)
Leverage 0.0001 (0.0002)
Intercept −2.8063 ** (0.0495)
LR χ2 (p-Value) 229.66 (0.0000)
Matching period (before legislation) 2013–2015
Observation size 15,098
Panel B. Balance check [nearest-neighbor, N = 3]
Mean t-test
Treated Control Bias % T-value p > t
Capital input 0.5117 0.4839 0.3 0.22 0.8260
Human input 0.3126 0.2710 1.2 0.52 0.6020
Cash flow 0.0222 0.0328 −0.9 −1.31 0.1900
Leverage 4.8218 −3.4042 5.0 0.80 0.4230
Panel C. Balance check [nearest-neighbor, N = 7]
Mean t-test
Treated Control Bias % T-value p > t
Capital input 0.5117 0.4839 0.3 0.22 0.8260
Human input 0.3126 0.2540 1.6 0.77 0.4420
Cash flow 0.0222 0.0344 2.5 −1.07 0.2860
Leverage 4.8218 0.7040 −0.7 0.60 0.5460

Notes: Logistic model is applied for the propensity score prediction. Standard errors are reported in brackets. Capital input is measured by total assets, and human input is measured by total costs of employees of hospitals (both in €10 million), * p < 0.05, ** p < 0.01.