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Abstract

Background: The obesity-related risk of developing metabolic syndrome is higher in males than in females of
reproductive age, likely due to estrogen-mediated reduced adipose tissue inflammation and fibrosis with
hypertrophied adipocytes. Depletion of the ubiquitin ligase Siah2 reduced white adipose tissue inflammation
and improved glucose metabolism in obese male mice. Siah2 is a transcriptional target of estrogen, but data is
lacking about the effect of Siah2 on adipose tissue of females. We therefore evaluated the impact of Siah2
deficiency on white and brown adipose tissue in females of reproductive age.

Methods: Body composition, adipose tissue morphology, brown adipose tissue gene, and protein expression
and adipocyte sizing were evaluated in wild-type and Siah2KO female and male mice fed a low-fat or high-fat
diet. Glucose and insulin tolerance, fasting glucose, insulin, fatty acids and triglycerides, and gene expression of
inflammation markers in perigonadal fat were evaluated in wild-type and Siah2KO female mice. Microarray analysis of
brown fat gene expression was carried out in both sexes. Statistical analysis was assessed by unpaired two-tailed t test
and repeated measures ANOVA.

Results: Siah2 deficiency improves glucose and insulin tolerance in the presence of hypertrophied white adipocytes in
high-fat-fed female mice with percent fat comparable to male mice. While previous studies showed Siah2KO reduces
the white adipose tissue inflammatory response in male mice, the response in females is biased toward the upregulation
of M2-like markers in white adipose tissue. In contrast, loss of Siah2 leads to increased whitening of brown fat in males,
but not in females. This corresponded to increased expression of markers of inflammation (F4/80, Ccl2) and thermogenic
genes (Pgcialpha, Dio2, Ucp-1) and proteins (PGC-1a, UCP-1) in females. Contrary to expectations, increased expression of
thermogenic markers in females was coupled with a downregulation of ERalpha and ERRgamma protein levels.

Conclusions: The most striking sex-related effect of Siah2 deficiency is reduced whitening of brown fat in high-fat-fed
females. Protection from accumulating unilocular adipocytes in the brown fat corresponds to increased expression of
thermogenic genes and proteins in female, but not in male mice. These results raise the possibility that Siah2 contributes
to the estrogen-related effects on brown fat function in males and females.
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Background
Obesity increases the risk of developing metabolic syn-
drome, a collection of risk factors for type 2 diabetes that
includes insulin resistance and dyslipidemia. The connec-
tion between obesity and metabolic dysfunction is more
common in males than females of reproductive age in
rodents [1-3] and humans [4, 5]. Although women have
an overall higher percent body fat, increased lower body
subcutaneous adipose tissue in women is thought to con-
fer protection against obesity-related insulin resistance
that is typically associated with abdominal visceral fat
more common in men [6-9]. However, this protection
diminishes in postmenopausal females as visceral fat
increases, pointing to the importance of sex hormones in
influencing fat distribution [10, 11]. Although estrogen-
driven accumulation of subcutaneous fat protects against
obesity-related insulin resistance [10], recent trends indi-
cate a rise in metabolic syndrome among younger females,
mainly driven by increased intra-abdominal visceral
obesity [12]. This reinforces the strong correlation
between abdominal adipose tissue and the adverse
metabolic consequences of obesity in males or females.
Metabolic complications with obesity arise from the
inability of adipose tissue to expand and safely store the
excess lipids. Adipose tissue can expand by producing new
adipocytes (hyperplasia) or increasing the volume of exist-
ing fat cells (hypertrophy). Abdominal adipose tissue
expands by either route, but is less able to generate new ad-
ipocytes than subcutaneous adipose tissue [13]. When the
lipid storage capacity of the hypertrophied adipocytes is
exceeded, the lipid is stored in the skeletal muscle and liver,
leading to insulin resistance [14, 15]. This coincides with
the increased release of fatty acids from the enlarged adipo-
cytes, recruitment of macrophage to the adipose tissue, and
higher expression of pro-inflammatory proteins that signi-
fies chronic, low-grade inflammation in the adipose tissue.
Estrogens affect the relationship between adipocyte
hypertrophy, adipose tissue inflammation and insulin
responsiveness in males and females [9]. Estrogen-re-
sponsive receptor alpha (ERa) depletion in visceral fat
leads to adipocyte hypertrophy and adipose tissue
inflammation in male and female mice [16]. However,
when ERa is deleted specifically in adipocytes, sex-re-
lated differences emerge in which adipose tissue expan-
sion via adipocyte hypertrophy occurs in females, but not
male mice. Even so, the females are protected from
adipose tissue inflammation and impaired glucose meta-
bolism despite adipocyte hypertrophy [16].
Obesity-related changes in adipocyte size and adi-
pose tissue inflammation also occur in brown adipose
tissue, and sex-related differences in adipose tissue ex-
tend to brown fat as well [17]. Women have increased
brown adipose tissue mass compared to men [18, 19],
and estrogen activates brown fat thermogenesis, but there
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is no clear evidence of higher energy expenditure in
women. Brown adipose tissue’s ability to use lipids as fuel
to drive adaptive thermogenesis is negatively impacted by
obesity as the brown fat undergoes “whitening” with the ac-
cumulation of large, unilocular lipid droplets characteristic
of white fat [20]. In male mice, this is accompanied by
brown adipose tissue inflammation as macrophages sur-
round the dysfunctional “whitened” brown adipocytes [21],
forming the characteristic “crown-like structure” indicative
of macrophages surrounding lipid droplet remnants from
dead adipocytes [22]. While the anti-inflammatory proper-
ties of estrogen are well-known [23, 24], sex-related dif-
ferences in estrogen signaling in brown adipose tissue
with obesity are not well described.

Our earlier studies of the mammalian homolog of the
Drosophila ubiquitin ligase seven-in-absentia-2 (Siah2)
in adipose tissue from obese male mice showed that
Siah2 deficiency leads to adipocyte hypertrophy in white
adipose tissue, but protects against adipose tissue in-
flammation and the associated insulin resistance [25].
Siah2 interacts with the peroxisomal proliferator-activated
receptor gamma (PPARy) [26], a nuclear receptor that
regulates lipid metabolism as well as inflammatory re-
sponses in adipose tissue [27], and selectively regulates
PPARYy activity in gonadal adipose tissue [25]. Siah2 is also
a transcriptional target of the nuclear receptor ERa. In
ERa-positive breast cancer cells, estrogen stimulates
gene expression by upregulating Siah2 transcription
and stimulating Siah2-mediated N-CoR degradation
[28]. Estrogen-related regulation of Siah2, and its pre-
viously observed effects on white adipose tissue,
prompted us to examine sex-dependent differences in
white and brown adipose tissue inflammation in diet-
induced obesity in a systemic Siah2-deficiency (Siah2KO)
mouse model.

Here, we show that loss of Siah2 protects against
impaired glucose metabolism and disrupts the connection
between hypertrophied adipocytes and adipose tissue
inflammation in the white adipose tissue of the high-fat-
fed females, similar to our earlier reports in male mice.
Most strikingly, Siah2 deficiency upregulates expression of
Pgcla, Dio2, and Ucpl in female, but not in male brown
fat mice. The change in thermogenic gene expression
corresponds to increased protein expression of PGCla
and UCP1 and less whitening of the female brown fat than
observed in the male mice. Unexpectedly, enhanced
markers of brown fat thermogenesis in the HFD-fed
females correspond to substantially reduced protein
expression of the nuclear receptors ERa and ERRy that
promote brown fat thermogenesis [29, 30]. This suggests
that sex-related modulation of Siah2 activity in brown fat
may act to dampen thermogenic responses to chronic
overnutrition in females by regulating ERa and ERRy
protein levels in brown fat.
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Methods

Experimental animals

Siah2KO mice were generated and maintained as described
[25, 31]. Wild-type C57BL/6] mice were obtained from
Jackson Laboratories. The female mice were reproductively
intact. All animal experiments were approved by the
Pennington Biomedical Research Center Animal Care
and Use Committee (protocol #1030). The animals
were multi-housed with a 12-h light-dark cycle at 24 °C.
At 4 weeks of age, wild-type and Siah2KO male and
female mice of similar body weight within each sex were
randomly assigned (n=8-10/group) to a defined 10%
low-fat (LFD; 10% kcal fat, Research Diets, #D12450H,
sucrose matched to the HFD) or 45% high-fat (HFD;
45% kcal fat, Research Diets, #D12451) diet and were
fed ad libitum for 4 months thereafter. Body weight
was measured weekly and body composition was measured
bi-weekly by NMR. At the end of the study, the mice were
euthanized between 8 and 11 AM.

Glucose and insulin tolerance tests

For the glucose (GTT) and insulin (ITT) tolerance tests,
the amount of glucose or insulin administered was nor-
malized to fat-free mass [32], which did not vary signifi-
cantly among groups (20.1 —/+ 0.13 g) at 12 weeks on each
diet. Mice were fasted 4 h prior to administering 2 g/kg
fat-free mass of glucose/mouse (GTT) or 1 U/kg fat-free
mass insulin/mouse (HumulinR) (ITT) by intraperitoneal
injection.

Blood chemistry

Fasting serum glucose levels were measured using a
Breeze2 glucometer (Bayer, Leverkusen, Germany). Fasting
insulin and leptin levels were assayed via ELISA (Crystal
Chem). Serum nonesterified fatty acids (Abcam) and
triglycerides (Eagle Diagnostics) levels were assayed
according to manufacturers’ instructions.

Microarray analysis

Brown adipose tissue RNA (RNA integrity number > 8) was
analyzed for gene expression on Illumina MouseRef-8v2.0
expression arrays. RNA from eight to ten animals/group
was combined into three pooled samples/group. Samples
from male and female animals were analyzed separately.
Raw gene expression signals were background adjusted and
quantile normalized using GenomeStudio (V2011.1.llumina
Inc.). For each sample, probes with detection p value < 0.05
were considered “expressed.” These probes were log trans-
formed (base 2), and treatment-specific fold changes were
computed as log ratios. The statistical significance of
differential expression was ascertained by a regularized
t test, based on Bayesian probability models [33]. All
statistical analyses were controlled for multiple testing
via the false discovery rate (FDR) [34]. The microarray
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dataset was submitted to Gene Expression Omnibus
(GEO) data repository (GSE123990).

Over-representation analysis

Over-representation analysis (ORA) of biological functions
and putative upstream regulators was carried out by sub-
jecting a pre-filtered list of 333 BAT differentially expressed
genes for females and 415 genes for males (absolute fold
change >1.3 and nominal p value <0.05) to Ingenuity
Pathway Analysis tool (IPA, QIAGEN Redwood City).
Reference gene sets corresponding to “biological functions”
(as defined in the Ingenuity Knowledge Base) were analyzed
for statistically significant over-representation. Additionally,
predictions of changes in the activity status of upstream
transcription factors that would be consistent with the
observed gene expression changes were also carried out.
Biological functions and upstream regulators with a z score
> 2.0 or <— 2.0 were considered to be activated or inhibited,
respectively  (http://pages.ingenuity.com/rs/ingenuity/im-
ages/0812%20downstream_effects_analysis_whitepaper.
pdf). Statistical significance of over-represented gene
sets was ascertained via Fisher’s exact test and cor-
rected for multiple testing via the Benjamini-Hochberg
procedure [34].

Quantitative PCR

Total RNA was purified from inguinal, gonadal, and brown
adipose tissue, (200 ng) reverse transcribed, and real-time
PCR performed with TagMan chemistry as described [25].
The results were normalized to hypoxanthine-guanine
phosphoribosyltransferase (HPRT), where ACr<-/+0.5
within each sex [35] for the males and females separately
due to significant sex-related differences in housekeeping
gene expression and analyzed using the 27T method
with wild-type values used as the calibrator. The gene list is
provided in Additional file 1.

Preparation of whole cell extracts and immunoblotting
Adipose tissue was homogenized in a denaturing buffer
and processed for immunoblotting as described [25].
Nitrocellulose membranes were incubated with anti-
bodies (Additional file 2) for 1-2 h at room temperature
or overnight at 4 °C. MemCode staining of the nitrocel-
lulose and B-actin levels were used to confirm equal pro-
tein content in each lane.

Immunohistochemistry and immunostaining

Adipose tissue was fixed in 10% formalin, then embedded
in paraffin, sectioned onto slides, and stained in hematoxylin
and eosin (H&E). Adipose tissue collagen content and fibro-
sis was determined by trichrome staining. H&E-stained
inguinal and epididymal adipose tissue and laminin
stained brown adipocytes (see Additional file 3 B) were
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analyzed using Image J software programmed to measure
the area of each adipocyte based on size and shape exclu-
sion limits. Adipocytes or adipocyte remnants surrounded
by crown-like structures were manually excluded from
analysis. The number of adipocytes counted/experimental
condition ranged from 413 to 8442. The number of
adipocytes/fat pad was approximated by converting
adipocyte area to a spherical volume, assuming a circu-
lar structure for each adipocyte, and then calculating
the number of adipocytes/cm?®. After converting the fat
pad weight to a volume by assuming the density of each
fat pad as equivalent to lipid content at 0.915 g/cm?,
the total volume of each fat pad number was divided by
the adipocytes/cm® to determine the number of adipo-
cytes/fat pad. A small error is introduced in the calcu-
lation as this method does not account for the
difference in percent lipid content in gonadal versus
inguinal fat depots.

Statistical analysis

Normal distribution of glucose and insulin levels,
food intake, and body weight was assessed using the
D’Agostino-Pearson omnibus normality test. Statistical
significance for body weight, GTT, and ITT was deter-
mined using repeated measures ANOVA. Statistical sig-
nificance for all other data was determined using an
unpaired two-tailed t test. JMP Pro 10.0 (SAS Institute)
and GraphPad Prism 5 softwares were used for statistical
analyses. Variability was expressed as the mean —/+ stand-
ard deviation.

Results

We previously found that despite impaired adipogenesis
[36], Siah2KO male mice become obese when challenged
with a high-fat diet (HFD) [25]. To further determine if the
Siah2KO phenotype is sex-related, we compared body
weight and percent fat mass in female and male wild-type
and Siah2KO mice fed a low-fat diet (LFD) or HFD for 4
months (Fig. 1a). In contrast to the male Siah2KO mice,
body weight gain was attenuated in the female Siah2KO
mice compared to the wild-type female mice on the HFD,
but not the LFD (Fig. 1a). Female mice of both genotypes
had higher adiposity at baseline (Fig. 1b), but the higher
rate of fat mass deposition in the male mice resulted in
comparable percent fat mass within 1 month of initia-
ting the high-fat diet. However, loss of Siah2 in the
males was associated with lower percent fat mass at
4 months. This is reflected in lower fat mass for white
and brown adipose tissue relative to total fat mass
(Fig. 1c). This did not occur in the HFD-fed Siah2KO
female mice, resulting in a significant difference in
relative fat mass of gonadal and brown adipose tissue
between the male and female Siah2KO mice. Interes-
tingly, the amount of brown fat mass relative to total
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fat mass in the females was substantially higher than
observed in males independent of genotype.

Although the female wild-type and Siah2KO mice
had higher adiposity than male mice at baseline and
gained 50-60% of their initial body weight on the
HFD, they remained glucose (Fig. 2a) and insulin
tolerant (Fig. 2b). The increased responsiveness to
insulin in Siah2KO females on the low- or high-fat
diet was comparable to our previous findings with
Siah2KO males [25] and (Additional file 4 A-C).
Unlike our earlier results in male mice, Siah2 defi-
ciency did not correspond to lower fasting glucose or
insulin levels in the female mice (Fig. 2c, d). However,
loss of Siah2 resulted in a twofold increase in insulin
levels with the low-fat diet (Fig. 2d). Like the males in
our earlier study, triglyceride levels were unchanged
by diet or genotype (Fig. 2e), but increased fat mass in
the Siah2KO females on high fat correlated with sig-
nificantly reduced circulating free fatty acids (Fig. 2f),
suggesting an improved ability of adipose tissue to
store lipids.

Healthy adipose tissue expansion with excess calorie
intake requires expansion via enlarging existing adipo-
cytes and production of new, small adipocytes that
increase the capacity to store neutral lipids as adipocytes
[37]. Adipose tissue expansion via hypertrophy of exis-
ting adipocytes is associated with fibrosis and recruit-
ment of pro-inflammatory immune cells to the adipose
tissue, leading to insulin resistance as the adipocytes
release free fatty acids into circulation [38]. In our earlier
study, a striking feature of the adipose tissue in the
Siah2KO male mice was fewer crown-like structures and
less adipose tissue fibrosis although the adipocytes were
larger in the HFD-fed Siah2KO males compared to
HFD-fed wild-type males [25]. These morphological
changes were coupled with reduced expression of a wide
range of genes that regulate inflammation in adipose
tissue [25] (Additional file 4 D). In this study, we found
that Siah2 deficiency in the HFD-fed females was also
associated with fewer crown-like structures in the
gonadal fat pad (Fig. 3a). The female gonadal fat
(gWAT) had fewer crown-like structures independent of
genotype when compared to male mice, but crown-like
structures in the gWAT were further decreased in the
Siah2KO females. This corresponded to less fibrosis in
the female gonadal fat regardless of genotype (Fig. 3b)
and larger adipocytes in the gWAT and iWAT of the
females, as seen in the males (Fig. 4 a, c). Thus, deple-
tion of Siah2 in the females resulted in a substantial
decrease in morphological indicators of inflammation in
white adipose tissue depots even though adipocyte size
was increased with the high-fat diet. Our approximation
of the number of adipocytes/fat pad indicated increased
numbers as well as increased adipocyte size in the
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Fig. 1 Wild-type and Siah2KO female mice fed a high-fat diet have percent fat mass comparable to male mice, but higher levels of brown fat
relative to total fat mass. a Body weight, b percent fat mass, and c fat pad weight/total fat mass were measured in the wild-type (WT) and
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female gonadal fat, whereas in males, adipocyte hyper-
trophy was not accompanied by increased numbers
(Fig. 4 b). The increased adipocyte size in the inguinal
fat of both sexes corresponded to the reduced numbers
of adipocytes in each fat pad (Fig. 4d), suggesting the
subcutaneous fat tissue expanded via enlarging existing
adipocytes in both sexes.

We anticipated that the absence of signs of adipose tissue
dysfunction related to inflammation would be reflected in
reduced gene expression of inflammation markers in the
females. However, as shown in Fig. 5, this was not the case
in the gonadal fat of the female Siah2KO mice. Unlike our
previous results in male Siah2-deficient mice [25], there
was no decrease in macrophage recruitment in the female
visceral fat with the HFD (F4/80, Cd68, Cd11b). Although
induction of a proinflammatory marker of M1-like macro-
phage (CD1Ic) was attenuated in the HFD-fed Siah2KO
females, the expression of pro-inflammatory mediators was
either unchanged (Cc/2, Ccr2, Tnfalpha, IL-6) or increased

(Pai-1, Saa3) in contrast to that of male HFD-fed Siah2KO
mice (Additional file 4 D). Notably, Siah2 deletion in-
creased Pai-1 and Saa3 gene expression in the insulin-sen-
sitive females independent of diet. However, genes
associated with M2-like/homeostatic macrophage (Ym-1,
Fizz-1, Arg-1, IL-4) were robustly upregulated only in the
HFD-fed Siah2Ko females.

While much of the focus on obesity-induced adipose
tissue inflammation has centered on visceral fat depots,
inflammatory responses also occur in brown adipose
tissue in response to obesity [21, 39, 40]. In this study,
we noted that brown fat mass relative to total fat mass
in the HFD-fed wild-type or Siah2KO females was
significantly higher than the males (Fig. 1c). H&E and
trichrome staining of the brown adipose tissue of the
wild-type and Siah2KO males and females showed
striking differences in their responses to HFD. As
shown in Fig. 6a, brown fat from HFD-fed wild-type
and Siah2KO males accumulated unilocular adipocytes
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with obesity, and brown fat whitening was increased
further with Siah2 deficiency. Unilocular adipocyte
accumulation was substantially lower in the HFD-fed
wild-type and Siah2KO females, with no additional
increases in the knockout animals (an enlarged view is
shown in Additional file 3 A). Trichrome staining for
fibrosis in the brown fat indicated minimal fibrotic
changes in the brown fat in either genotype or sex
(Fig. 6b). Consistent with accumulating large lipid
droplets, the brown adipocytes in the HFD-fed wild-
type and Siah2KO males were substantially larger than
adipocytes in the HFD-fed female (Fig. 6¢). We did not
detect a statistically significant diet-dependent change
in the number of adipocytes/brown fat pad in either sex
or genotype (Fig. 6d). To look more closely at the
sex-dependent differences in brown fat (BAT) from the
WT and Siah2KO males and females, we carried out a
microarray analysis of the brown fat obtained from the
HFD-fed mice.

Gene expression analysis identified a total of 26 genes
that were differentially regulated in males and 71 genes
in females at a nominal p value < 0.001 and absolute fold
change > 1.5. Of these, only four genes (Rab4a, Eriché,
Entpd4, and LOC329575) were differentially expressed
in common between male and female BAT samples
(Fig. 7), suggesting largely sex-dependent transcriptomic
responses in BAT. Gene set overrepresentation analysis
in IPA predicted an inhibition of transcription factors
related to energy metabolism (Ppargcla) (Fig. 7b) or
inflammatory process (Nfe2l2, Cepbp) (Fig. 7c) in
Siah2-deficient male samples, whereas Siah2-deficient
female samples showed a predicted inhibition of the
lipogenic transcription factors SrebfI and Srebf2 (Fig. 7d).
These findings are consistent with phenotypic observ-
ations, e.g., the inhibition of Ppargcla mRNA signaling
in male Siah2KO BAT are likely to reduce fatty acid
oxidation and contribute toward whitening, and reduc-
tions in Nfe2[2- or Cepbp-encoded proteins are likely to
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contribute to the observed lower inflammatory tone of
HFD-fed male Siah2KO samples.

In addition to microarray analysis, we investigated the
expression of genes encoding proteins related to lipid
metabolism, inflammation, and mitochondrial function.
Of the lipid metabolism genes tested, adipose trigly-
ceride lipase (Atgl) and Midlipl (an acetyl-coenzyme A
carboxylase-binding protein) transcripts were robustly
upregulated in HFD-fed Siah2KO male BAT but not in
females, whereas Agpatl (acylglycerol-3-phosphate-O-a-
cyltransferase-1) was upregulated in the HFD-fed
Siah2KO animals independent of sex (Fig. 8a). Gene
markers of mitochondrial function were regulated by
Siah2 either in both sexes (Slc25al, Tim44) or specific-
ally in males (Cs, Mful) or females (Opa-1). In contrast,
markers of thermogenesis displayed upregulation (Pgcla,
Dio2, Ucpl) or downregulation (Pdrml6) specifically in
HFD-fed Siah2KO females (Fig. 8c). Markers of inflam-
mation in brown fat displayed sex-by-genotype inter-
actions (Fig. 8d). Thus, Siah2 deficiency corresponded to
reduced mRNA expression of the macrophage-specific
markers F4/80 and Yml, a M2-macrophage specific
marker [41] in males, but increased expression in
females. Among cytokine/chemokine genes, Tnf alpha
expression was suppressed by Siah2 deficiency in both
sexes, whereas Ccl2 levels were significantly reduced
Siah2KO males but highly upregulated in Siah2KO
females. A similar sex-dependent effect was also observed
for leptin, where loss of Siah2 led to reduced Leptin

mRNA expression in females, but not in males. However,
the brown fat specific reduction in Leptin transcripts
did not correspond to reduced circulating levels of lep-
tin protein in the HFD-fed Siah2KO females compared
to wild-type, although leptin protein levels were sig-
nificantly lower in females compared to males on the
high-fat diet (Fig. 8e).

To determine if the Siah2-mediated changes in thermo-
genic gene expression corresponded to increased expres-
sion of the encoded proteins, we carried out western blot
analysis of PGC-1a and UCP-1 expression in brown
fat from the HFD-fed male and female mice. As shown
in Fig. 9a, b, PGCla and UCP1 were increased in
HFD-fed females, but not in males. Thus, Siah2-mediated
sex-dependent transcriptional regulation of thermogenic
genes (Fig. 8c) correlates with the increased levels of
PGC-1a and UCP1 protein in the brown adipose tissue of
Siah2KO females. Given the evidence that Siah2 is an ERa
transcriptional target [28, 42], we asked if ERa protein
expression in brown fat is regulated by Siah2 deficiency.
Notably, estrogens play a major role in regulating energy
balance and thermogenesis through peripheral and central
mechanisms [43], and ER« is also expressed in brown fat
[44], although regulation of ERa signaling in brown fat per
se is not well described. We anticipated ER« protein levels
would be increased, corresponding to increased expres-
sion of ERa targets PGCla and UCP1. However, ERa
levels are substantially downregulated in the absence of
Siah2 (Fig. 9¢, d) in the HFD-fed females, but unchanged
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Fig. 4 Siah2KO affect adipocyte size and number in male, but not female gonadal and inguinal fat. Adipocyte size (area) in the LFD and HFD-fed
female and male wild-type (WT) or Siah2KO (KO) mice was determined by automated cell counting of H&E stained tissue using Image J software.
Adipocyte number/fat pad was estimated by converting the adipocyte area to an adipocyte volume (pl) and converting fat pad weight to a

volume using the density of lipids. a Adipocyte volume (pL) and b adipocyte number/fat pad for gonadal fat. ¢ Adipocyte volume (pL) and
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in males. We then assayed the expression of the estrogen-
related receptor gamma (ERRY), an orphan nuclear recep-
tor closely related to the estrogen receptors that is highly
expressed in brown fat and other oxidative tissue [45].
Recent studies show ERRYy is critical for maintaining the
thermogenic capacity of brown fat [30] independent of
PGCla expression [46]. As with ERa, Siah2 deficiency
educed ERRy protein levels in female, but not male
brown fat r (Fig. 9¢, d). In contrast to protein levels,
the transcript levels of ERalpha and ERRgamma gene
expression appeared to increase in HFD-fed Siah2KO
females, although the trend was either not significant
or marginally significant (Fig. 9e).

Given the impact of estrogen-mediated hypothalamic
AMPK activity on brown fat function, we assayed AMPK
activity in the brown fat of the HFD-fed wild-type and
Siah2KO mice. We found no Siah2-mediated effect on
AMPK activity in the brown fat of the male or female
mice (Fig. 9¢, d). Finally, our earlier studies demon-
strated that loss of Siah2 in obese male mice leads to
increased PPARy protein levels in gonadal fat [25]
(Additional file 4 E). This prompted us to assay PPARy
levels with Siah2 depletion in brown fat. As shown in
Fig. 9c, d, Siah2 does not regulate PPARy in brown
adipose tissue, although PPARy trends down in the
females and up in the males. While the limited number of
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Fig. 5 Siah2 regulates mRNA expression of markers of gonadal adipose tissue inflammation in female mice. Gene expression of markers of
inflammation, cytokines, and chemokines was assayed in the perigonadal adipose tissue of wild-type (WT) and Siah2KO (KO) female mice after 16
weeks on the LFD or HFD using real-time gRT-PCR. Statistical significance of Siah2KO compared to wild-type within diet, * p < 0.05, *** p < 0.001

samples assayed may be insufficient to capture significant
increases in PPARY in the brown fat of male mice, the re-
sults suggest Siah2-mediated regulation of select nuclear
receptor protein levels depends on signaling events that
are both fat depot-specific and sex-dependent. The results
are summarized in Table 1.

Discussion

Earlier studies of the impact of Siah2 deficiency carried
out in a male mouse model of diet-induced obesity
showed the ubiquitin ligase Siah2 functions at the inter-
section of adipose tissue inflammation and insulin resist-
ance in obesity. In the obese male mice, loss of Siah2
promotes lipid storage in hypertrophied adipocytes and
reduces adipose tissue inflammation that leads to insulin
resistance [25]. The HFD-fed male Siah2-deficient mice
are a model of metabolically healthy obesity, a pheno-
type more typically associated with females [3] and

attributed to the anti-inflammatory properties of estro-
gens [16]. The impact of Siah2 on adipose tissue inflam-
mation coupled with estrogen-mediated regulation of
Siah2 gene expression [28] prompted us to ask if there
are sex-dependent effects of Siah2 deficiency on adipose
tissue function in obesity. As found in the obese male
mice, Siah2 in the high-fat-fed female mice regulates the
relationship between white adipose tissue expansion via
hypertrophy, adipose tissue inflammation, and insulin
sensitivity. However, unlike the HFD-fed male mice [25],
Siah2 deficiency in the HFD-fed females does not
broadly dampen proinflammatory macrophage, cytokine,
and chemokine expression. Instead, reduced crown-like
structures in Siah2-deficient high-fat-fed females was
associated with differential upregulation of markers of
homeostatic resident macrophage and chemokines that
promote alternative activation of macrophage. Genes
encoding secreted factors such as TNFa and SAA3, that
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are generally associated with adipose tissue inflammation
and insulin resistance [47], were also upregulated in
the gonadal fat of HFD-fed Siah2KO female mice,
despite their insulin sensitivity. This does not occur in
obese Siah2KO male mice [25], but it agrees with re-
cent evidence that SAA3 has anti-inflammatory pro-
perties and promotes a shift in macrophage toward a
M2-like phenotype in adipose tissue [48]. Increased
Tnf alpha mRNA in the context of a shift toward
M2-like markers is also consistent with a positive role
for pro-inflammatory stimulus in maintaining healthy
adipose tissue as lipid storage capacity is challenged
[49]. Thus, loss of Siah2 in female gonadal fat may dif-
ferentially promote activation of resident M2-like mac-
rophages and enhance adipose tissue remodeling to
accommodate increased lipid storage demands in a
sex-related manner.

In agreement with Wu et al. [50], we found that
diet-induced fat expansion in the female gonadal fat

occurred by increasing both hypertrophies of existing
adipocytes and increasing the number of adipocytes
while the male gonadal fat expanded by hypertrophy
alone. In contrast, the inguinal and brown fat expanded
solely by increasing the size of existing adipocytes in
both sexes. Although the loss of Siah2 altered gene
expression of inflammation markers, it did not change
the mode of adipose tissue expansion in the HFD-fed
females. In contrast, Siah2 deficiency significantly re-
duced the number of adipocytes in the white fat (and
trending down in the BAT) of the HFD-fed males,
lending further support for sex-related differences in the
role of Siah2 in regulating the relationship between fat
mass expansion and adipose tissue inflammation with
obesity in white and brown fat.

Adipose tissue inflammation also occurs in obese
brown adipose tissue as brown fat accumulates large
unilocular lipid droplets characteristic of white adipose
tissue in male mice [21]. Although leptin-mediated
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Fig. 7 Microarray analysis of brown fat transcriptomics in HFD-fed male and female mice. a-d Analysis of gene expression in male and
female BAT samples. a Overlap of differentially expressed genes (nominal P < 0.001, absolute fold-change > 1.5) in male and female samples.
b-d Mean-average plots for gene targets of transcription factors Nfe2l2 and Ppargcia (male BAT samples) and Srebf] (female BAT samples),
based on over-representation analysis in Ingenuity Pathway Analysis tool. Transcription factor target genes are shown as solid circles,

A
67
female

1.0- (male) NFE2L2
2 05 o
O
4
N
& 0.0
(2
(@]
e
N -0.5
°

-1.0

4 8 12 16
average log?2 signal
whereas the remaining genes on the microarray are shown as open circles

B 1.0 (male) PPARGC1A
05
@]
S
5 00 %
o
O
& 05 -
[®)]
o
-1.0- ‘
4 8 12 16
average log2 signal
1.0 (female) SREBF1
o®
0.5/ weonan
e 8

log2F C(Siah2KOvsWT)
o
o

-1.0

6 8 10 12 14 16
average log?2 signal

signaling has been implicated in brown fat inflammation
when white fat-like unilocular lipid droplets accumulate
in the brown fat [21], loss of Siah2 appears to disrupt
this connection as “whitening” of the brown fat in the
HFD-fed wild-type male mice (and to a less extent in
the Siah2KO male mice), and elevated leptin mRNA and
protein levels were not accompanied by increased
markers of inflammation. In contrast, reduced leptin
mRNA and protein levels in the HFD-fed females were
associated with robustly increased mRNA expression of
a pro-inflammatory chemokine marker (Ccl2) in the
Siah2KO females.

While a relatively low number of genes are differen-
tially regulated between the sexes in brown fat by Siah2
with a HFD challenge, decreased expression of genes
supporting fatty acid oxidation in the Siah2KO males
and lower levels of genes controlling lipogenesis in
Siah2KO females are consistent with the morphological
data with Siah2 deficiency in both sexes. Lipolysis (Azgl)
is likely increased by Siah2 deficiency with a short fast,
but other markers of lipid metabolism are not substan-
tially regulated by sex or genotype. However, we cannot
rule out significant changes in lipid metabolism with

Siah2 deficiency in the brown fat of either sex given the
extensive post-translational regulation of lipid metabolism
exemplified by ATGL-mediated control of lipid storage
and release [51].

Most striking are the sex- and genotype-dependent
differences related to inflammation and thermogenesis.
The effect of Siah2 deficiency on brown fat inflammation
in the HFD-fed males indicates generally reduced in-
flammatory responses to increased brown fat whitening
in the obese Siah2KO males, as we observed in the
male Siah2KO white adipose tissue. However, the pattern
is more nuanced in females where the brown fat mor-
phology is devoid of significant whitening or crown-like
structures although proinflammatory markers are tran-
scriptionally upregulated with Siah2 deficiency in the
HFD-fed females. The Siah2-dependent increase in mRNA
expression of the macrophage and proinflammatory che-
mokine markers in a setting of morphologically healthy
brown fat in the females is consistent with a role for Siah2
in estrogen-mediated accelerated resolution of high-fat-
induced inflammatory processes.

Minimal whitening of female brown fat was coupled
with robust upregulation of thermogenic genes with a
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corresponding increase in PGCla and UCP1 protein
levels in the Siah2-deficient HFD-fed females. This ef-
fect is absent in the male brown fat, indicating Siah2 in
brown fat suppresses diet-induced thermogenic re-
sponses in a sex-dependent manner. Estrogens are
well-described as acting centrally via estrogen receptor
alpha (ERa)-mediated inhibition of hypothalamic AMPK
activity to stimulate brown fat thermogenesis via up-
regulation of Ucpl and Pgcla mRNA [29]. While the
Siah2 deficiency model is a global deletion of Siah2,
expression of Siah2 is not detected in the hypothalamus of
wild-type C57BL/6 mice although it is found in the
olfactory bulb and cerebellum [52]. This suggests the
effect of Siah2 on thermogenic markers more likely
occurs peripherally. ERa is also expressed in male and
female brown fat, but there is less data on the direct
effects of estrogens on brown fat function.

The sex-related effect of Siah2 on thermogenic gene
expression in the female brown fat did not depend on
AMPK signaling in brown fat, and unexpectedly, loss of
Siah2 in the HFD-fed female brown fat substantially
reduced expression of ERa and ERRy proteins while
reductions in PPARy protein levels were not statistically
significant. Moreover, reduced PPARy protein expression
contrasts with the effect of Siah2 deficiency on PPARy
protein levels in white fat of HFD-fed obese male mice

[25] and (Additional file 4 E), suggesting both sex- and
fat depot-specific effects of Siah2 in nuclear receptor
protein levels. Nonetheless, Siah2 deficiency stimulates
expression of thermogenic genes while decreasing the
levels of the transcription factors that regulate thermo-
genic gene expression. This most likely occurs via a
post-transcriptional mechanism as ERa and ERRg gene
expression increased with loss of Siah2, consistent with
a feedback loop to maintain protein expression in the
context of accelerated receptor turnover [53].

In a series of studies, the O’Malley group established
that ligand-dependent activation of ERa is coupled to
proteasome-dependent degradation of the activated re-
ceptor [54, 55]. Our data demonstrates the enhanced
degradation of ERa and ERRy in the absence of Siah2.
This is unexpected given the existing paradigm for the
role of Siah2 as part of a nuclear receptor corepressor
complex that restrains the activity of nuclear receptors.
According to this scenario, Siah2 interacts with the
corepressor N-CoR and promotes ligand-dependent
nuclear receptor activity by targeting N-CoR for pro-
teasomal degradation [56]. If Siah2 were regulating ERa
and ERRy protein levels by dismissing a corepressor, loss
of Siah2 is expected to increase ERa and ERRy protein
levels as N-CoR remains bound to the receptor, disrupting
ligand-dependent activation and proteasome-dependent
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degradation of the receptors as well as N-CoR. Our result
suggests Siah2 acts by a different mechanism to restrain
activation and turnover of ERa and ERRy to control
brown fat thermogenesis in females.

However, our study has several limitations. While the
data supports a sex-related role for Siah2 in adaptive
thermogenesis, we did not directly assay thermogenesis
or energy expenditure and the ability to adapt to cold
temperatures in the wild-type and Siah2-deficient male
and female mice. We also did not carry out the studies
of Siah2 deficiency in the absence of either ERa or
ERRYy to provide conclusive evidence of a role for Siah2
in estrogen-mediated regulation of brown fat function.
As we show in this study, transcriptional changes may
not reflect (or may be inversely related to) post-tran-
scriptional levels of the encoded protein. Thus, tran-
scriptional changes in inflammatory markers or lipid
metabolism genes do not provide direct evidence of
changes in the levels or activity of the encoded protein.
We attempt to overcome this limitation by assaying the

mRNA expression of a range of inflammatory markers
coupled with morphological changes and selected pro-
tein expression to gain an understanding of a regulatory
pattern indicative of adipose tissue inflammation. Finally,
although our study is carried out in mice, the relatively
high levels of brown fat observed in the female mice
mirrors the higher levels found in women compared to
men. The female mice also show resilience to the meta-
bolic effects of adiposity that occur in premenopausal
women. These similarities suggest the mouse model of
Siah2 deficiency may provide important and relevant
mechanistic insights into sex-related differences in men
and women in response to obesity.

Conclusion

The ubiquitin ligase Siah2 is an important mediator of
the relationship between adipose tissue expansion via
hypertrophy, adipose tissue inflammation, and impaired
glucose tolerance in male and female mice that are
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Table 1 Summary of sex-related differences in Siah2KO adipose tissue
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Siah2KO phenotype

Females (compared to WT and HFD
unless otherwise noted)

Males (compared to WT and HFD
unless otherwise noted)

Body composition
Baseline fat mass (WT and KO)
Rate of gonadal fat mass gain (WT)
Rate of gonadal fat mass gain (KO)
Fat mass gain in BAT
BAT relative to body weight (WT and KO)
Adipocyte size
Percent fat mass at 4 months
Body weight, LFD
Body weight, HFD
Biochemical measurements
Glucose tolerance
Insulin tolerance
Fasting glucose
Fasting insulin, LFD
Fasting insulin, HFD
Circulating free fatty acids
Circulating triglycerides
Inflammation and fibrosis markers in gWAT
Crown-like structures
Adipose fibrosis
Macrophage marker (F4/80, CD68, CD11b)
M1-macrophage marker (CD11¢)
M2-macrophage marker (Ym1, Arg1, IL4)
Pro-inflammatory markers (TNFa, IL6, Ccl2, Ccr2)
Pai-1, Saa3 gene expression
Gdf3 gene expression
Thermogenesis markers in BAT
ER-0/ERR-y gene expression
ER-a/ERR-y protein expression
PCG1aq, Dio2, Ucp1 gene expression
PCG1aq, Dio2, Ucp1 protein expression

Higher than males
Lower than males
Higher than males
Higher
Higher than males
Larger
Higher than males
Higher
Attenuated vs. WT

Tolerant

Tolerant

Unchanged

Higher

Unchanged

Unchanged (LFD), lower (HFD)
Unchanged

Fewer
Lower
No change
Lower
Higher
Unchanged
Unchanged

Lower

Higher
Lower
Higher
Higher

Lower than females
Higher than females
Lower than females
Lower
Lower than females
Larger
Lower than females
Higher
Higher

Tolerant®

Tolerant®

Lower®”

Unchanged?®®

Lower®®

Lower”® (LFD and HFD)

Lower?

Fewer

Lower

Lower®
Lower®®

Higher (Arg1)23
Lower®
Lower?®

Lower?

No change
No change
No change

No change

BAT brown adipose tissue, gWAT gonadal white adipose tissue, LFD low-fat diet, HFD high-fat diet, KO Siah2 global knockout, WT wild-type

23Data reported in reference [23]

chronically over-fed with a high-fat diet. There are si-
milarities between the sexes in the impact of Siah2
deficiency on morphological evidence of white adipose
tissue inflammation. However, important sex-related
differences in expression of genes encoding markers of
inflammation suggest the underlying mechanism respon-
sible for reduced inflammation in the adipose tissue
differs between HFD male and females. The effect of
Siah2 deficiency on adipose tissue function extends to
brown fat with substantial sex-related effects of Siah2

on the regulation of thermogenic markers in the
brown fat of the HFD-fed mice. The stimulation of
thermogenic gene and protein expression and regu-
lation of ERa and ERRy protein levels only in the
Siah2-deficient females suggests that Siah2 restrains
the impact of ERa and ERRy proteins on brown fat
function in females, but not in male mice. This finding
further underscores the sex-dependent roles of Siah2
in key metabolic tissues when challenged with chronic
excess calorie intake.
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