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Vascular calcification (VC), characterized by hydroxyapatite crystal depositing in the vessel wall, is a common pathological
condition shared by many chronic diseases and an independent risk factor for cardiovascular events. Recently, VC is regarded as
an active, dynamic cell-mediated process, during which calcifying cell transition is critical. Mesenchymal stem cells (MSCs),
with a multidirectional differentiation ability and great potential for clinical application, play a duplex role in the VC process.
MSCs facilitate VC mainly through osteogenic transformation and apoptosis. Meanwhile, several studies have reported the
protective role of MSCs. Anti-inflammation, blockade of the BMP2 signal, downregulation of the Wnt signal, and antiapoptosis
through paracrine signaling are possible mechanisms. This review displays the evidence both on the facilitating role and on the
protective role of MSCs, then discusses the key factors determining this divergence.

1. Introduction

Vascular calcification (VC) is a pathological accumulation of
calcium phosphate crystal depositing in the medial and inti-
mal layers of the vessel wall. This common pathologic hall-
mark is shared by multiple chronic diseases. For example,
atherosclerosis and its comorbidities, such as diabetes and
chronic kidney disease (CKD), display this feature. Calcifica-
tion is a major risk factor for cardiovascular mobility and
mortality [1]. However, the exact mechanisms underlying
VC are poorly characterized. Reliable clinical therapies are
in high demand. However, there are no effective treatments
currently able to reverse calcium deposition. Recently, VC
is considered an active process regulated by cellular pathways
resembling those participating in bone morphogenesis. Some
cell types consisting of the arterial wall would reprogram
their genetic expression patterns, transform into osteoblast-

like cells, and initiate the mineralization of the extracellular
matrix (ECM) in response to multiple stimulations, involving
cyclic strain overload [2], inflammation [3], and metabolic
disorder [4, 5]. The interaction between the bone and cardio-
vascular system gives rise to tremendous interest among
researchers. For example, Cianciolo et al. and Fadini et al.
found that bone marrow-derived cells could immigrate from
circulation into vessels, transform into osteogenic cells, and
then facilitate VC [6, 7]. One subpopulation of those bone
marrow-derived cells is CD34+ (marker of hematopoietic
stem cells) cells including endothelial precursor cells (EPCs)
and calcifying myeloid cells. While the other is CD34-
mesenchymal stem cells (MSCs) [6, 8].

Mesenchymal stem cells, also known as marrow stromal
cells, bone marrow fibroblasts, or skeletal stem cells, are typ-
ically defined as follows: (1) MSCs must be plastic-adherent
when maintained in standard culture conditions, (2) MSCs
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must express CD105, CD73, and CD90 and lack the expres-
sion of CD45, CD34, CD14 or CD11b, CD79α or CD19,
and HLA-DR surface molecules, and (3) MSCs must differ-
entiate into osteoblasts, adipocytes, and chondroblasts
in vitro [9]. Based on their source and location, they could
be classified as bone marrow- (BM-) MSCs, peripheral
blood-MSCs, or pericytes [10]. As has been observed previ-
ously, MSCs are well demonstrated to exhibit remarkable
immune regulation and anti-inflammation capacities such
as angiogenesis in regenerative medicine [11]. Therefore, it
is likely that MSCs are candidates to contribute to the allevi-
ation of VC. According to Zhu et al., coculture of vascular
smooth muscle cells (VSMCs) with BM-MSCs could inhibit
vascular calcification via the Wnt signaling pathway [12].
However, Cho et al. calculated the calcium accumulation
level of arteries in an atherosclerosis model and found it to
be increased significantly after injecting MSCs [13].

For now, the role of MSCs in the VC process still remains
unclear and controversial. Whether MSCs facilitate or inhibit
VC is a pending question yet to be identified.

This review begins with a brief description of the physio-
logical functions of MSCs and definition of VC, followed by a
discussion of recent studies of MSCs in VC and their under-
lying pleiotropic mechanism.

2. Physiological Roles of MSCs in the
Vascular System

Blood vessels are the most widely distributed tissue in the
human body and are vital for the development, normal phys-
iology, and most, if not all, human diseases. As one type of
vascular progenitor cells, MSCs serve as essential participants
in the formation, repair, and remodeling of arterial vessels
[14]. It is widely accepted that MSCs could differentiate into
endothelial cells, VSMCs, or pericytes [15–17]. Besides,
MSCs have the capacity to promote angiogenesis by secreting
proangiogenic factors or producing extracellular vesicles in
a paracrine-dependent manner [18]. In addition, studies
proved that MSCs are able to govern immunity and restrain
inflammation. BM-MSCs could suppress T cell proliferation
by secreting soluble factors with immunosuppressive activity,
including indoleamine 2,3-dioxygenase (IDO), prostaglandin
E2 (PGE2), interleukin 10 (IL-10), IL-6, and IL-17 [19]. All of
these promising effects make them a potential therapy
required for vascular repair and regeneration.

3. Characters of Vascular Calcification

VC refers to ectopic deposits of hydroxyapatite with a high
degree of crystallization in the wall of vessels. VC frequently
occurs in atherosclerosis, hypertension, diabetes, CKD, and
aging [20]. Morphologically, VC can be divided into intimal
and medial calcification. Calcification of the intimal layer
usually occurs in large- and medium-sized elastic arteries
[21]. It was considered a feature of advanced atherosclerosis
and may be responsible for coronary ischemic events. How-
ever, some other research reported that most calcified pla-
ques may be more stable and that the plaques that are most
vulnerable to rupture may be those which have a mixed

composition of calcified and noncalcified tissue [22]. Intimal
VC is more relevant to vascular senescence and chronic
inflammation [23]. Medial calcification, with pathological
characteristics of nonocclusive and preferential development
along elastic fibers, is dramatically increased in chronic kid-
ney disease-mineral and bone disorder (CKD-MBD) [24].
Disturbances of calcium and phosphate metabolism, a per-
turbation of the bone vascular axis, and reduction of calcifi-
cation inhibitors are all considered potential mechanisms.

Cells from all layers of the vessel wall could transform
into osteoblast-like cells. Taking calcified VSMCs for exam-
ple, they lost parts of their contractile phenotype, which
is supported by downregulation of α-smooth muscle actin
(α-SMA) and SM-22. Meanwhile, they are featured by
abnormal increasing expression of the osteogenesis gene,
for instance, Runt-related transcription factor 2 (Runx2),
osterix, osteopontin (OPN), and osteocalcin (OCN) [3].

VC was initiated by matrix vesicles (MVs), which are
produced by osteoblast-like cells and act as sites for hydroxy-
apatite crystal precipitation. Meanwhile, elastin is degraded
due to the overexpression of matrix metalloproteinase by
calcified cells, which in turn promotes VSMCs losing their
contractile markers. Taken together, phenotypic transition
is the driving factor during the calcification process.

4. Evidence of the Facilitating Role of
MSCs in VC

As discussed above, osteoblast-like cells are the key contribu-
tor of VC. Owning the potential of osteogenic differentiation
and recruitment to injury vessels, MSCs play a critical role in
the “circulating calcifying cell theory”; in other words, they
may act as a source of osteoblast-like cells.

Several in vitro studies provided direct evidences on the
ability of MSCs to differentiate into osteoblast-like cells in
VC cultured osteogenic media. When treated with dexa-
methasone, β-glycerophosphate (β-GP), and L-ascorbic acid,
murine MSCs can be induced to osteoblast-like cells that
have strong expression of type I collagen and bone morpho-
genetic protein-2 (BMP2) and are positive in von Kossa
staining [25]. Uremic serum can induce a calcific phenotype
in human MSCs in a BMP2/4-dependent manner, accompa-
nied by matrix remodeling and calcification [26], which may
serve as a mechanism underlining CKD-related bone disor-
der. Moreover, MSCs isolated from ApoE-/- mice showed a
significant increase in in vitro osteogenesis and chondrogen-
esis in a cartilage intermediate, which indicates that MSCs
may contribute to the ectopic calcification of atherosclerotic
plaque [27].

Circulating MSCs can migrate through the blood stream
and reach the site of injury in the vessel wall. VC often
emerges as a secondary alteration of vessel damage, where
a similar recruitment process can be found. Several che-
mokines have been reported to be involved in the MSC
recruitment process of VC: the accelerating effect of trans-
forming growth factor (TGF-β) in VC has been widely
accepted [28–30]. Intravenous injection of recombinant
active TGF-β1 in uninjured mice rapidly mobilized MSCs
into circulation with an amplification effect by the cascade
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expression of monocyte chemotactic protein-1 (MCP-1)
[31, 32]. In a model of crossing LDLR-/- mice with trans-
genic mice, fed with high-fat western diets, in which all
the MSC-derived cells were fluorescently labeled, Wang
et al. reported that both active TGF-β1 mouse levels and
MSCs in circulating blood were upregulated at the same
time points when these cells appeared at the aortic tissue
and lately VC appeared severely. Immunohistochemistry
staining showed that the increased active TGF-β1 level
was seen throughout the whole wall of the aorta. [30].
As a potent mitogen and chemoattractant, a platelet-
derived growth factor (PDGF) has been found to disturb
the vascular homeostasis by inflammation, oxidative stress,
and phenotype transition, all of which accelerate the process
of VC [8]. PDGF-BB was found to be most effective in stim-
ulating MSC migration among other PDGF isoforms and
even TGF-β, BMP2, and SDF-α [33]. Interestingly, in Fiedler
et al.’s research about vascular calcifying progenitor cells, the
chemotactic effect of PDGF-AB exceeds that of PDGF-BB in
the case of primary osteoblasts, which reveals a subtype spec-
ificity. Under some pathological conditions such as renal
ischemia-reperfusion injury and inflammatory cardiomyop-
athy, stromal cell-derived factor 1 (SDF-1) promotes homing
of MSCs to injury sites and enhances the retention of infused
cells [34–37]. Wu et al. demonstrated that sympathetic
denervation could increase bone formation in distraction
osteogenesis. Norepinephrine promotes in local vessels the
secretion of SDF-1, which attracts MSCs staying in vessels
instead of migrating to the lesioned bone [38]. Parathyroid
hormone (PTH), which is unregulated pathologically in
CKD, induces an increased expression of SDF-1 through
the downregulation of dipeptidylpeptidase IV [39]. Here,
we summarize the potential chemokines of MSCs in Table 1.

More directly, Cho et al. calculated the calcium accumu-
lation level of arteries in an atherosclerosis model and found
it to be increased significantly after injecting calcifying
progenitor cells [13]. Transplantation of BM-MSCs induced
vascular remodeling and calcification after balloon angio-
plasty in hyperlipidemia rats [40]. Another previous study
showed increased intramyocardial calcification that resulted
from MSC homing after direct transplantation of unselected
BM cells [41]. In heterotypical transplantation of MSCs with
an established three-dimensional collagen-based skeleton to
rat models of CKD, aortas and MSC-containing collagen gels
showed distinct similarities in the calcification and upregula-
tion of the osteolytic markers and ECM remodeling with
increased expression of osteopontin, collagen I/III/IV, fibro-
nectin, and laminin [42]. To assess the intrinsic calcification
capacity of MSCs and the effect of the atherosclerotic envi-
ronment, a similar experiment where MSCs loaded on
collagen-glycosaminoglycan scaffolds were implanted subcu-
taneously to ApoE-/- was conducted [27]. From above, it is
disappointing to find that VC can be a potential side effect
of MSC therapy. However, more frustratingly, MSCs are also
reported to be involved in VC under many pathological
stages in vivo. A research described the biological behavior
of adventitial Gli1+ MSCs in ApoE-/- mice with CKD: MSCs
migrated into the media in both CKD and sham groups. Dur-
ing 16 weeks after nephrectomy, where severe calcification

occurred, they differentiate into VSMCs firstly but eventually
lost the expression of VSMC markers and turn to osteoblast-
like cells that have strong costaining for Runx2 and are
located within calcium tracer-positive areas. This research
proposed that MSCs are a major source of osteoblast-like
cells during VC [43]. Chlamydia pneumoniae infection may
promote VC by indirectly stimulating the phenotypic con-
version of MSCs [44].

5. Evidence of the Protective Role of MSCs in VC

MSCs have been identified as an effective agent for applica-
tion in various diseases/complications including VC. Wang
et al. have proved that the bioactive substance secreted by
MSCs could retard murine VSMC calcification induced by
β-GP with conditioned medium from MSCs (MSC-CM)
[45, 46]. Consistent with the above study, Zhu and her
colleagues established the indirect coculture system of
VSMCs and MSCs with Transwell. Calcification of VSMCs
in the lower layer with osteogenic medium was significantly
decreased [12].

According to previous evidence, there are four potential
pathways involved in MSCs protection of VC.

5.1. Inhibition of Inflammation. The MSC-CM is well known
to be a rich source of autologous cytokines, based on which
cell-free stem treatment was developed. Various factors
derived from MSC-CM such as IL-4, IL-6, and IL-1RA are
capable of expressing an anti-inflammatory effect [47, 48],
which have been proven to play a role in lung injury, myocar-
dial infarction, and corneal wound [46]. For myocardial
infarction, a novel research reports that MSC-derived exo-
somes can improve the microenvironment contributing to
angiogenesis and anti-inflammation [49]. The close associa-
tion of VC with inflammation has been summarized by many
excellent papers [50–52]. Directly, TNF-α, IL-1β, and IL-6,
which play crucial roles in the initiation and progression of
VC, were found to be suppressed when treated with MSC-
CM[45]. NF-κB is a crucial pathway in vascular inflammation
[53]. It was downregulated when MSCs’ paracrine function
was enhanced in lipopolysaccharide-induced inflammation.

5.2. Blockade of the BMP2-Smad1/5/8 Signaling Pathway.
Wang et al. firstly demonstrated that MSC-CM suppression
of calcification may be mediated by the expression of bone
morphogenetic protein-2 (BMP2) and the BMP2 receptor-
Smad1/5/8 signaling pathway [46]. BMPs are a superfamily
of transforming growth factor-beta (TGF-β) and secretory
growth factor, which play a role in bone formation. As
described above, BMPs are reported to be expressed strongly
in VC and accelerated atherosclerotic intimal calcification in
BMP2 transgenic/ApoE-knockout mice [25, 26, 54]. Unfor-
tunately, howMSCs suppress the BMP2 signal is still unclear.

5.3. Downregulation of the Canonical Wnt Signaling
Pathways. Three Wnt pathways have been described: the
Wnt/β-catenin (canonical pathway) [55], the Wnt/Ca2+
noncanonical pathway, and the noncanonical planar cell
polarity pathway (PCP), all of which have been implicated
in human cardiovascular diseases [56]. The crucial role of
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Wnt signaling pathways in VC has already been proven by a
large number of researches [57, 58], which will be further dis-
cussed in the following part. In the indirect coculture study,
the activities of canonical and noncanonical Wnt ligands
(Wnt5a), receptor tyrosine kinase-like orphan receptor 2
(Ror2), and β-catenin were downregulated [12]. Similarly,
how this suppression works remains unknown.

5.4. Inhibition of Apoptosis. Cell apoptosis is regulated by the
expression of caspase-3 and the ratio of the antiapoptotic fac-
tor Bcl-2 to the proapoptotic factor Bax. This ratio of VSMCs
is rescued by MSC-CM in a β-GP-induced VC model [45].
Apoptotic bodies of VSMCs have the capacity to concentrate

and crystallize calcium to initiate VC [59]. More directly,
bone-targeted overexpression of Bcl-2 in mouse osteoblasts
suppressed calcification in vitro [60].

To sum up, the protective role of MSCs in VC is mainly
in a paracrine-dependent manner. Autologous cytokines
secreted by MSCs regulate VSMC biological behavior in the
process of VC. However, further exploration is needed.

6. Possible Mechanisms Determine the Role of
Mesenchymal Stem Cells in VC

MSCs differentiate to osteoblast-like cells then promote
VC. However, they lead the protective role in a paracrine

Table 1: Chemokines of MSCs.

Factors Main characters Reference

TGF-β

(1) TGF-β can be released by the damaged vessel cells and lesioned artery and
involved in vascular regeneration and VC

(2) TGF-β couples bone resorption with formation by inducing MSC migration and
participates in bone and cartilage metabolism. Subchondral bone MSCs activated
by TGF-β seem to initiate osteoarthritis

(3) TGF-β promotes homing of BM-MSC in a tissue lesion, for example, renal
ischemia-reperfusion injury

(4) TGF-βmay regulate the SDF-1/CXCR4 axis and MCP-1 to induce MSC homing

[30–32, 36, 82–87]

PDGF-BB

(1) PDGF has the highest effect among other cytokines (SDF-1a, CXCL16, MIP, etc.),
and PDGF-BB is the most strong one among PDGF isoforms in vitro

(2) PDGF-BB has been proven to be involved in myocardial and lung functional
tissue regeneration, angiogenesis, and VC by recruiting MSCs

(3) PDGF-BB has been applied for bone regeneration and proven to recruit MSCs to
the scaffolds

[13, 33, 82, 88–92]

PDGF-AA

(1) PDGF-AA’s chemotaxis effect is lower than that of PDGF-BB, but stronger in
recruiting osteogenic differentiated progenitor cells

(2) PDGF-AA can promote MSC proliferation and differentiation
(3) The effect of PDGF-AA can be blocked by TGF-β

[82, 93–95]

SDF-1

(1) SDF-1 can be released by the endothelium and ischemic myocardium in
myocardial infarction, inflammatory cardiomyopathy, and vascular injury. This
cytokine also correlated with the severity of calcification

(2) In inflammatory bone destruction, SDF-1 was found to be upregulated, which
could possibly enhance fracture healing in osteoporotic patients by recruiting
MSCs. And it also improves the vascularization of bone

(3) SDF-1 promotes MSCs to repair liver injury, expanded skin, and even cancer
(4) Serum SDF-1 can be increased by hypoxemia

[34, 35, 37, 88, 96–104]

BMP2/4/7 It has only been proven in vitro [82, 89]

FGF In vivo researches of FGF chemotaxis mainly focus on pulmonary fibrosis [82, 88, 105, 106]

VEGF

(1) Chemotactic activity of VEGF has been proven in vitro. And VEGF can be
released by multiple myeloma and glioma cells to improve vascularization

(2) VEGF plays a role in bone regeneration
(3) PDGFR-α is required

[82, 89, 107–110]

G-CSF
(1) In vivo chemotactic activity of G-CSF is controversial
(2) It may work via CXCR4/SDF-1

[100, 111–113]

TNF-α/IL-1β/IL-6
These cytokines are associated with inflammation and work through the NF-κb
pathway. And several researches show that they inhibit instead of promoting
migration

[88, 114–118]

IGF-1 Chemotactic activity of IGF-1 is not so assuring. Pretreatment seems more reliable [89, 119–122]

PTH PTH can improve osteoporosis in mice and men and spine injuries [39, 123]

The table shows chemokines of MSCs with a brief introduction of their characters. TGF: transforming growth factor; PDGF: platelet-derived growth factor;
SDF: stromal cell-derived factor; BMP: bone morphogenetic protein; FGF: fibroblast growth factor; VEGF: vascular endothelial growth factor; G-CSF:
granulocyte colony-stimulating factor; TNF: tumor necrosis factor; IL: interleukin; IGF: insulin-like growth factor; PTH: parathyroid hormone.
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manner. That is a brief summary of the role of MSCs in
VC. However, it is not clear enough what determines the
ultimate effect of VC. The potential factors will be dis-
cussed as follows.

6.1. The Microenvironment of the Vessel. Early on, scientists
learned the importance of the microenvironment (also called
niche) in the fate of stem cells, in both retaining stemness and
differentiation. Plenty of studies indicate that differentiated
cells could influence MSC differentiation. Direct coculture
of MSCs with endothelial cells (ECs) resulted in an increase
in α-smooth muscle actin mRNA and protein of MSCs but
also a comprehensive disruption of α-smooth muscle actin
filament organization [61]. For VC, cell components change
a lot. Take VC in atherosclerosis as an example, there are
many pathological differentiated cell types, such as foam
cells, osteogenic phenotype VSMCs, and ECs with a decrease
in physiological vessel cells. Using an in vitro cell-cell cocul-
turing system, Xin et al. observed that MSCs directly interact
with normal or calcified VSMCs. Osteosynthesis-inducing
medium (OS) treatment did not promote the generation of
an osteoblast phenotype in cultured MSCs. However, MSCs
exhibited an osteoblast phenotype when MSCs were cocul-
tured in direct contact with calcified VSMCs whether with
or without OS treatment [62]. That is completely opposite
to the aforementioned indirect coculture research [12].

Regrettably, this study did not give us a contact-related
explanation. Instead, the results are reported in a Wnt
signaling-dependent manner. LRP5, a receptor of the canon-
ical Wnt pathway, was upregulated, while Ror2, the receptor
of the noncanonical pathway, was downregulated in MSCs
[62, 63]. Canonical Wnt/β-catenin signaling is a significant
pathway in VC. In phosphorus-induced calcification, this
signal was upregulated [58]. Another in vitro model of
human VSMC calcification was induced by exposure to high
glucose. The Wnt signaling molecules including Wnt3a,
Wnt7a, and Fzd4 were highly expressed, and the phosphory-
lation of β-catenin was increased, which can be inhibited by
Dkk1, a Wnt signaling inhibitor [57]. As for the downstream
genes, many osteogenesis genes, such as osteocalcin type I
collagen, Runx2, osteopontin, and autophagy, upregulate
type III Na-Pi cotransporters (PiT1), and lymphoid
enhancer-binding factor (LEF) has been proven to be the
target genes [64–67]. Actually, the Wnt signal was reported
earlier in MSC osteogenic transformation in physiological
bone and cartilage formation [68–70]. It is not surprising to
find a similar effect in VC. When the canonical Wnt signal
is suppressed in MSCs by sFRP2, interestingly, MSCs’ self-
renewal capacity is enhanced, which promotes engraftment
and myocardial repair [71]. Taken together, inappropriate
activation of the Wnt signal in the microenvironment may
result in both VSMC and MSC osteogenesis transformations
to facilitate VC.

More recently, one study provides comprehensive evi-
dence that osteoblast-derived small extracellular vesicles in
the culture environment were of critical importance. The
extracellular vesicles were successfully applied to induce
BM-MSC differentiation towards a mineral phenotype [72].

Going through the researches associated with the protec-
tive role of MSCs, we found that they all kept the MSCs away
from the calcified vascular microenvironment. That means
that MSCs can exert the protective effect only when they
maintain the ability of stemness. Neither MSC transplanta-
tion therapy nor endogenous recruitment can avoid MSCs
being affected by the pathological condition. As a result, they
facilitate VC (see Figure 1).

6.2. Low Survival Rate of MSCs. It has been reported that less
than 1%MSCs survive for more than one week after systemic
administration [73, 74], which is a huge challenge in stem cell
therapy. The reasons are complicated, one of which is the
overload of oxidant stresses. Environmental stress induces
excessive production of reactive oxygen species (ROS), which
are capable of initiating oxidation and causing a variety of cel-
lular responses, such as DNA damage [75]. Oxidant pressure
from hyperlipidemia is a potential common etiology of VC,
atherosclerosis, and osteoporosis [76]. After being recruited,
MSCs will be continuously exposed to oxidants under the
pathological microenvironment and induced to necrosis and
apoptosis [77, 78].

However, the story for facilitating VC is quite different.
Dead MSCs still have a residual effect to promote VC.
Recently, exosomes secreted by osteoblasts or osteoblast-
like cells, which are characterized by decreased calcifying
inhibitors and increased phosphatidylserine and annexin
A6 content, can initiate calcification by acting as crystalli-
zation cores [79, 80] and their capacity to concentrate and
crystallize calcium as well [59]. That was partly confirmed
by Fujita and his collages: apoptosis and necrosis occurred
in an osteogenic culture of MSCs and cell death preceded
calcification. Spontaneously dead cells by osteogenic culture
and exogenously added necrotic cells were surrounded by
calcium deposits [81]. Besides, antioxidants (tiron and
N-acetylcysteine) inhibited cell death and calcification.
This could be partly confirmed by ineffective efferocytosis,
which is the main mechanism operating in fibroatheroma
[21]. The accumulation of apoptotic bodies established a
vicious circle with inflammatory response. However, it has
been described that under an in vitro osteogenic microenvi-
ronment, MSCs derived from the human arterial wall are able
to release exosomes with high affinity for hydroxyapatite
crystal, which indicates that viable MSCs facilitate VC as
well [21].

Compared with an in vitro experiment, an in vivo model
preferably mimics the in-suit environment which is generally
harder for MSCs to survive [73, 74]. The residual effect of
dead MSCs may partly account for the procalcification
effect found in vivo. However, further studies are still needed
(see Figure 2).

7. Conclusions

Over the years, it is apparent that VC occurs in a wide range
of vascular pathologies and is a tightly regulated process.
MSCs, a natural “repairman” and promising stem cell
therapy agent, may lose part of their beneficial effects and
promote VC [7]. MSCs facilitate VC mainly through
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osteogenesis differentiation. Even necrotic or apoptotic
MSCs have the capacity to concentrate and crystallize cal-
cium as well. However, the protective role only acts through
a paracrine mechanism which required high cell vitality. The
mechanism remains rarely known. The crosstalk between

MSCs and inflammatory mediators has been proven to deter-
mine the procalcific remodeling of human atherosclerotic
aneurysm [50]. However, not only inflammation but also
the alternation of the microenvironment is a driving factor,
which impacts the differentiation fate and function of MSCs.

SDF-1
TGF-β
PDGF-α

Recruitment

Infiltrate 

Differentiation

Anti-
inflammatory

factors
Infiltrate 

From adventitia

Osteoblast-like cell

VSMCs

ECs

Blockade of the
BMP2 pathway

Downregulating
the canonical Wnt

Anti-apoptosis
properties

MSCs

Figure 1: A brief illustration of MSCs and VC and alternation of the microenvironment. In the damaged vessel under the calcification
process, SDF-1, PDGF, and TGF-β are released to recruit MSCs from bone marrow and circulation. (a) In this microenvironment,
damage of the vessel wall is slight and the effect of oxidative stress and inflammation is very minimal. In addition, fewer VSMCs have
been induced to osteoblasts. MSCs are viable and inhibit VSMC osteogenesis differentiation by a paracrine mechanism. (b) In this
microenvironment, the vessel is damaged a lot by heavy oxidative stress and inflammation. Several phenotypic transformations of VSMCs
have taken place. MSCs tend to undergo apoptosis and differentiate into osteoblast-like cells, which facilitate the VC progress.
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The survival rate of MSCs is a huge challenge that not only
limits the beneficial effect but also enhances the membrane
fraction of necrotic cells and apoptotic bodies. With more
clues being discovered, the role of MSCs in VC progression
is increasingly clear, which is helpful to illuminate the under-
lying mechanism of VC.
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