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ABSTRACT

Export to the cytoplasm is a key regulatory junction for both protein-coding mRNAs and long noncoding RNAs (lncRNAs),
and cytoplasmic enrichment varies dramatically both within and between those groups. We used a new computational ap-
proach and RNA-seq data from human and mouse cells to quantify the genome-wide association between cytoplasmic/
nuclear ratios of both gene groups and various factors, including expression levels, splicing efficiency, gene architecture,
chromatinmarks, and sequenceelements. Splicing efficiencyemergedas themainpredictive factor, explainingup to a third
of the variability in localization. Combinationwith other features allowed predictivemodels that could explain up to 45%of
the variance for protein-codinggenes andup to34% for lncRNAs. Factors associatedwith localizationwere similar between
lncRNAs and mRNAs with some important differences. Readily accessible features can thus be used to predict RNA
localization.
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INTRODUCTION

Subcellular localization, and particularly whether RNAs are
exported to the cytoplasm or retained in the nucleus, plays
a key role in the biology of long RNAs. Many long noncod-
ing RNAs (lncRNAs) act in the nucleus, some of them while
tethered to the chromatin (Ulitsky and Bartel 2013), and so
their proper function requires pathways that ensure they
are not exported. Messenger RNAs (mRNAs) of protein-
coding genes (PCGs) are translated in the cytoplasm,
and their retention in the nucleus can regulate the amount
of protein produced from each mRNA, thus allowing tight
temporal regulation of translation (Ninomiya et al. 2011;
Mauger et al. 2016; Naro et al. 2017), or buffering of pro-
tein levels from bursty transcription (Bahar Halpern et al.
2015; Battich et al. 2015).
LncRNAs have been reported to be more nuclear on av-

erage than mRNAs (Derrien et al. 2012; Mukherjee et al.
2017), but the determinants of this difference are largely
unknown. Since there are no known pathways for import
of long RNAs, the cytoplasmic/nuclear (Cyto/Nuc) ratios
of RNAs are likely dictated by a combination of the rate
of their export and the stability of the RNA molecules
in the different compartments. The decay of aberrant
RNAsmostly occurs in the nucleus via quality controlmech-
anisms (Bresson et al. 2015), whereas properly processed
RNAs decay with varying rates in the cytoplasm (Garneau
et al. 2007). How the nuclear export of long RNAs is

regulated remains poorly understood. Specific sequences
regulating nuclear retention have been identified in indi-
vidual lncRNAs (Miyagawa et al. 2012; Zhang et al. 2014;
Carlevaro-Fita et al. 2019), and more recently using mas-
sively parallel screens (Lubelsky and Ulitsky 2018; Shukla
et al. 2018; Yin et al. 2018), but most RNAs retained in
the nucleus do not contain any sequence elements associ-
ated with a known effect on nuclear export.
Intron retention (IR) is a widespread form of alternative

splicing (Wang et al. 2008; Braunschweig et al. 2014),
and it is regulated in various systems (Wong et al. 2013;
Shalgi et al. 2014; Boutz et al. 2015; Dvinge and Bradley
2015; Mauger et al. 2016; Pimentel et al. 2016; Middleton
et al. 2017). Retained introns have been associated with
weaker splice sites, shorter length and higher G/C content
(Galante et al. 2004; Sakabe and de Souza 2007; Yap et al.
2012; Braunschweig et al. 2014; Boutz et al. 2015; Mukher-
jee et al. 2017); higher intronic sequence conservation
(Boutz et al. 2015); and alternative splicing of their flanking
exons (Boutz et al. 2015; Mukherjee et al. 2017). A combi-
nation of such features can quite reliably predict which in-
trons will undergo IR (Braunschweig et al. 2014; Mukherjee
et al. 2017).
Protein-coding transcripts with retained introns that are

exported to the cytoplasm can be subject to nonsense-
mediated decay (NMD) (Chang et al. 2007), but only a
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minority of genes with IR appear to be NMD substrates
(Braunschweig et al. 2014; Boutz et al. 2015), possibly
because many potential targets do not reach the cyto-
plasm. Genes with IR were indeed reported to be enriched
(or “detained”) in the nuclear fraction (Braunschweig et al.
2014; Boutz et al. 2015), but this phenomenon, the extent
of nuclear enrichment of mRNAs and lncRNAs that can be
explained by differences in splicing efficiency, and the rel-
ative contributions of other factors, have not been system-
atically evaluated.

The incompletely spliced transcripts can have various
fates. Some accumulate in the nucleus and can be spliced
and exported either slowly, or upon specific cues; others
have been shown to be degraded by various pathways
(Pendleton et al. 2018), involving hyperpolyadenylation
and PABPN1 (Bresson and Conrad 2013; Bresson et al.
2015), or the exosome (Houseley et al. 2006). IR is also as-
sociated with lower expression level of the host gene and
with increased accumulation of Pol2 on the intron (Braun-
schweig et al. 2014). Inhibition of transcription results in
increased IR, supporting the connection between tran-
scription efficiency and splicing (Braunschweig et al. 2014).

LncRNAs typically accumulate to levels substantially
lower than mRNAs (Cabili et al. 2011; Mukherjee et al.
2017), are somewhat less stable (Clark et al. 2012), and
are less efficiently spliced than mRNAs (Tilgner et al.
2012; Melé et al. 2017; Mukherjee et al. 2017), but the dif-
ference in splicing efficiency could not be explained by
presence of exonic splicing enhancers (ESEs) or U1 binding
sites, and was only mildly correlated with pyrimidine track
and branch point sequences (Melé et al. 2017). Nuclear
lncRNAs were also shown to be less stable than the ones
enriched in the cytoplasm (Clark et al. 2012). A recent study
revealed extensive alternative splicing of lncRNAs, with nu-
merous alternative isoforms discovered at increasing se-
quencing depths, more so than in mRNAs (Deveson et al.
2018). Differences in splicing efficiency can thus explain
some of the differences in subcellular localization between
lncRNAs and PCGs.

Here we study RNA-seq data from cytoplasmic and
nuclear fractions, and characterize the features that are
associated with subcellular localization of lncRNAs and
PCGs. We find that inefficient splicing, transcript length,
sequence composition, and chromatin features all inde-
pendently contribute to nuclear localization of subsets of
lncRNAs and PCGs, and that their combination can be
used to predict the subcellular localization of transcripts,
with a substantially higher accuracy in PCGs. These fea-
tures also contribute to lower expression levels of the inef-
ficiently spliced transcripts, as those are subject to nuclear
decay pathways. We further find that inefficient splicing is
well conserved in evolution for PCGs, and that splicing and
localization are strongly correlated also in mouse cells, and
thus splicing efficiency impacts function through localiza-
tion in both lncRNAs and PCGs.

RESULTS

Gene-level quantification of splicing efficiency
and specificity

Quantification of IR using RNA-seq data is challenging,
and can rely either on readsmapping to introns or on reads
covering splice junctions (Vanichkina et al. 2017). The latter
approach compares numbers of reads spanning exon–
exon and intron–exon junctions and requires substantial
sequencing depth, but does not suffer from the difficulties
of uniquely mapping reads to repeat-rich intronic se-
quences (Vanichkina et al. 2017). We therefore opted for
this scheme for quantifying splicing efficiencies in deeply
sequenced data from human cell lines obtained by the
ENCODE project (Tilgner et al. 2012).

Previous studies have considered IR on the level of indi-
vidual introns (Braunschweig et al. 2014), or used just the
longest transcript isoform of each gene (Melé et al. 2017),
which appears suboptimal. Splicing and localization should
ideally be studied on the level of all splicing isoforms of the
gene, and then combined into gene-levelmetrics basedon
their relative abundances. Unfortunately, quantification of
levels of individual transcripts is notoriously inaccurate
and nonrobust when using short-read RNA-seq data
(Merino et al. 2017). In our experience, subtle changes in
read mapping between samples often result in substantial
changes in relative isoform abundance estimates. It is
therefore difficult to obtain robust isoform-specific expres-
sion and Cyto/Nuc ratio estimates. Further, as isoforms
typically share most of their introns, computation of tran-
script-level splicing efficiency heavily relies on the accuracy
of relative isoform abundance estimates, which is needed
for “distributing” the splicing efficiencies of individual in-
trons across the host isoforms. Another challenge is that
the comprehensive GENCODE annotation contains many
rarely spliced introns, and those can appear as commonly
retained, skewing the splicing efficiency estimates of their
host genes.

To address these challenges, we opted to develop a ro-
bust method for directly computing gene-level splicing ef-
ficiency (Fig. 1; Supplemental Fig. S1). Our approach (see
Materials andMethods) starts with selecting a set of introns
with confident support for their splicing when considering
the full data set (whole-cell extract [WCE] RNA-seq from
nine ENCODE cell lines in this study). We then count the
reads overlapping exon–exon and exon–intron junctions
to evaluate the splicing efficiency of each intron, defining
splicing efficiency as in (Mukherjee et al. 2017), as the ratio
between the exon–exon reads and the sum of the exon–
exon and exon–intron reads. We consider two possible
metrics for gene-level splicing efficiency—the average
splicing efficiency across the confident introns, and the
splicing efficiency of the intron with the worst efficiency,
as splicing of that intron is presumably the rate-limiting
step for full transcript maturation (Supplemental Data 1).
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We also used the consensus set of introns to compute
gene-level splicing specificity, which is ameasure of the ex-
tent of alternative splicing that reflects the frequency in
which splicing events in the gene correspond to a single
set of annotated and nonoverlapping introns (Supplemen-
tal Data 1, see Materials and Methods).

Splicing efficiency is prominently associated with
localization of lncRNAs and PCGs

Wequantifiedexpression levels,Cyto/Nuc ratios, andsplic-
ing efficiency and specificity of 13,513 lncRNAs and 20,073
PCGsannotated inGENCODEv26 inninecell linesprofiled
by the ENCODE project. Consistently with previous stud-
ies, we found that lncRNAs accumulate to lower levels
(Fig. 2A; Supplemental Fig. S2A), are more enriched in
the nucleus (Fig. 2B; Supplemental Fig. S2C), and exhibit
substantially lower splicing efficiencies and specificities
than mRNAs in all ENCODE cell lines (Fig. 2C,D; Supple-

mental Fig. S2D,E). Further, we found
that splicing specificity, a measure of
the prevalence of a dominant splicing
pattern, was also significantly lower in
lncRNAs compared to PCGs, that is,
lncRNAswere substantiallymorealter-
natively spliced than mRNAs. Consis-
tently with previous studies (Tilgner
et al. 2012), splicing efficiencies were
substantially lower in the nucleus
than in the cytoplasm for both PCGs
and lncRNAs (P<10−50). Remarkably,
splicing specificities were similar in
the cytoplasmic and nuclear fractions
for both gene classes (Fig. 2C,D; Sup-
plemental Fig. S2D,E). This suggests
that while IR plays a potentially promi-
nent role in regulating nuclear export,
alternative splicing rarely affects sub-
cellular localization.

Previous studies have shown that
lncRNAs are shorter and contain fewer
introns than PCGs (Cabili et al. 2011;
Hezroni et al. 2015). LncRNAs also
have shorter exons and slightly shorter
introns as compared to PCGs (Sup-
plemental Fig. S2B). These features
may underlie some of the differences
in localization and splicing between
lncRNAs and PCGs. We therefore
generated cell-type–specific sets of
lncRNAs and PCGs matched for ex-
pression and exon number (Supple-
mental Fig. S2F; Materials and
Methods). In this controlled setting,
lncRNAs were still more enriched in

the nucleus and less efficiently and less specifically spliced
than mRNAs (Supplemental Fig. S2C–E). The vast major-
ity of lncRNAs are classified by GENCODE as either
“lincRNA” or “antisense,” based on their genomic posi-
tions, with a minority of lncRNAs labeled as “processed
transcripts.” We evaluated length parameters, expression
levels, splicing values and subcellular localization of these
subgroups and found only minor differences between the
two major classes in all cell lines, except for splicing effi-
ciencies that were slightly higher for lincRNAs compared
to antisense genes in most cell lines (Supplemental Fig.
S3). Together, these results suggest that factors beyond
gene architecture, genomic position and expression levels
underlie the differences between PCGs and lncRNAs.
Strikingly, splicing efficiency was strongly associated

with cytoplasmic localization of PCGs in all ENCODE cell
lines (Figs. 3A, 4; Supplemental Fig. S4A), suggesting
that splicing status substantially contributes to subcellular
localization of protein-coding transcripts (though other

FIGURE 1. Outline of themethodology for computing gene-level splicing efficiency and spec-
ificity. Data for the GAS5 lncRNA in ENCODE RNA-seq data for MCF7 cells are shown. All in-
trons annotated in GENCODE were first considered and those poorly supported by spliced
reads were discarded. Among the remaining introns, a nonoverlapping set of introns with the
most confident support was selected and used for quantification. The method used for quan-
tifying splicing efficiency and specificity at intron- and gene-level is illustrated at the bottom.
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explanations are also possible, see Discussion). This
correlation was significantly weaker for lncRNAs (Fisher Z-
transformation P-value <2×10−16), despite their presum-
ably similar processing and export mechanisms (Fig. 3B;
Supplemental Fig. S4C, top). Splicing efficiency of the
least efficiently spliced intron was correlated with localiza-
tion better than the average efficiency across all introns,
explaining up to ∼37% of the variance in Cyto/Nuc
ratios for PCGs, but only ∼12% for lncRNAs (Fig. 3C,D;
Supplemental Fig. S4B,C, bottom). Further, when compar-
ing different cell lines, increased relative splicing effi-
ciencies and, to a lesser extent, specificities were typically
correlated with increased relative cytoplasmic enrichment
for PCGs and in some cases also for lncRNAs (Fig. 3E;
Supplemental Fig. S4D). These results suggest that regula-
tion of splicing and particularly IR may underlie the tran-
scriptome-wide differences in subcellular localization
across different cell types. The milder yet significant corre-
lation of splicing and subcellular localization of lncRNAs
(Figs. 3B,D, 4; Supplemental Fig. S4C) and several stronger
correlations of differential values between cell lines (Fig.
3E) suggest that at least some lncRNAs are subject to reg-
ulation of their localization state by splicing efficiency, sim-
ilarly to PCGs.

The association between localization, splicing,
and Pol2 pausing is not explained by expression
levels or gene architecture

Wethen looked at the correlation betweenCyto/Nuc ratios
and other factors and found that cytoplasmic localization
was also consistently positively correlated with expression

levels, splicing specificity, Pol2 occupancy on introns, and
Pol2 pausing index for PCGs as well as for both major clas-
ses of lncRNAs (Fig. 4; Supplemental Fig. S5A). The associ-
ation of localization with splicing remained significant also
when controlling for expression levels and gene architec-
ture (number of exons and exonic/intronic length, Supple-
mental Fig. S5B). In contrast, the association of localization
with Pol2 occupancy on introns and pausing index had a
variable and smaller effect for PCGs, but not for lncRNAs,
where it remained significant after controlling for other fac-
tors (Supplemental Fig. S5B). Decreased Pol2 elongation
rate is known to be associatedwith lower splicing efficiency
(Kornblihtt 2006; Braunschweig et al. 2014), and here we
found that promoter-proximal pausing is surprisingly asso-
ciated with increased export in lncRNAs, in an expression
level–independent way, perhaps because it allows for im-
proved association of export factors with Pol2 (see Dis-
cussion). Pausing index was also significantly lower in
lncRNAs compared to PCGs (Supplemental Fig. S5C). To
better understand these results, we tested whether splic-
ing-related sequence features may underlie the effect
of Pol2 pausing on subcellular localization. To this end,
we divided the lncRNAs expressed in HepG2 cells to
equal-size subgroups, based on various sequence features
of the splice sites in their first intron. Splitting lncRNAs
based on splice-site strength measures, such as Senapathy
and maxEnt scores, did not show any significant effect on
the correlation (not shown). However, lncRNAs with highly
conserved splice-site sequences exhibited significantly
(Fisher Z-transformation P=0.0021) lower correlation
between Pol2 pausing and localization as compared to
lncRNAs with low conservation scores, when considering

BA

C D

FIGURE 2. Differences between PCGs and lncRNAs in K562 cells. (A–D) Distributions of expression levels (A), Cyto/Nuc ratios (B), splicing effi-
ciencies (C ), and specificities (D), for PCGs and lncRNAs. (∗) P-value<10−16 (Wilcoxon rank sum test).
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either 5′ or 3′ splice sites. For the lncRNAs with highly con-
served splice sites, the correlation between Pol2 pausing
and localization resembled the correlation for PCGs (Sup-
plemental Fig. S6). Together, these results suggest that
Pol2 promoter-proximal pausing may play a role in modu-
lating localization of lncRNAs with poorly conserved
splice sites (which might also be less effective, but this dif-
ference does not appear to be captured by the splice-site
scores that we tested). In contrast, pausing has a limited ef-

fect in lncRNAs and PCGs which bear highly conserved
splice sites.
We also observed aweaker, yet consistent, negative cor-

relation between cytoplasmic localization and exonic
length, and variable correlations with number and lengths
of introns—in PCGs longer transcription unitswithmoreex-
ons were typically correlated with nuclear enrichment,
whereas in lncRNAs such correlations were either absent
or weaker (Fig. 4). Particularly long genes are expected to

E

BA

C D

FIGURE 3. Association between splicing efficiency and RNA localization. (A,B) Correlation between splicing efficiency, averaged across all in-
trons, and localization of PCGs (A) and lncRNAs (B) in HepG2 cells. Coloring indicates local point density. Regression line is shown in bold.
(C,D) Correlation between the splicing efficiency of the least efficient intron and localization of PCGs (C ) and lncRNAs (D) in HepG2 cells.
Coloring indicates local point density. Regression line is shown in bold. (E) Correlations between difference in splicing efficiency and differences
in localizationwhen comparing the indicated pairs of cell lines for PCGs (top triangle) and lncRNAs (bottom triangle). Numbers indicate correlation
coefficients. (∗) P<0.05. Correlation coefficients and P-values computed using Spearman’s correlation.
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yield transcripts that spend a long time in the nucleus, as
just the transcription of hundreds of kbs can take hours.
The difference between PCGs and lncRNAs in the associa-
tion between gene length and transcript localization pre-
sumably results from the scarcity of particularly long loci
among lncRNAs—in our data set there were 2444 PCGs
with loci longer than 100 kb and with >10 exons (12% of
PCGs), compared to just 56 lncRNAs (0.4% of lncRNAs).
Still, when the various factors related to gene architecture
are considered, the strongest correlation with Cyto/Nuc ra-
tios was observed for measures of splicing efficiency
(Supplemental Fig. S5B).

Preference for C-rich hexamers is associated
with nuclear enrichment

We recently reported that C-rich sequences in internal ex-
ons contribute to nuclear enrichment of lncRNAs and
mRNAs through association with HNRNPK (Lubelsky and
Ulitsky 2018), andC-richmotifs were also foundas enriched
in nuclear RNAs byothers (Shukla et al. 2018).We therefore
examinedwhether there is correlation between localization

and the prevalence of hexamers enriched for each nucleo-
tide (a hexamerwasdefinedas enriched for baseX if at least
four of its six bases were X). To account for potential contri-
bution of general G/C content, we also computed the
“preference” for C-rich and A-rich hexamers (preference
for C was the difference between densities of C-rich and
ofG-rich hexamers, andpreference forAwas thedifference
between densities of A-rich and of T-rich hexamers). For
PCGs, we also computed the preference for a particular
base in the third positions of codons, when accounting
for overall codon usage (see Materials and Methods).
Across these metrics, C-centric metrics universally sig-
nificantly associatedwith nuclear enrichment in PCGs (Sup-
plemental Fig. S7A), whereas A-centric metrics had a
somewhat weaker and inverse effect. These effects were
generally stronger in PCGs than in lncRNAs, perhaps
because their exonic sequences are better defined, or
because mRNAs are more likely to be found in regions of
the nucleus where the relevantmachinery is active (seeDis-
cussion). The more general correlation of export efficiency
with G/C content was highly variable across cell lines, po-
tentially reflecting differences in RNA-seq library quality,

FIGURE 4. Association of different factors with localization of coding and noncoding RNAs in ENCODE cell lines. Correlation between the in-
dicated parameters and Cyto/Nuc ratios in the indicated cell lines. Numbers indicate correlation coefficients. (∗) P<0.05. Correlation coefficients
and P-values are computed using Spearman’s correlation.
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which can be affected by G/C content (Risso et al. 2011).
Significant correlations were found between hexamer con-
tent and splicing efficiency (Supplemental Fig. S7B). The
association of G/C content with splicing wasmuch less var-
iable across cell lines. The association between localization
and preference for C-rich hexamers remained significant in
PCGs when we controlled for splicing efficiency (Sup-
plemental Fig. S7C), suggesting a splicing-independent
contribution, and consistent with our previous report
(Lubelsky and Ulitsky 2018).

Weak association between
chromatin features and splicing
efficiency and localization

As different chromatin features have
been associated with splicing efficien-
cy and with interactions with nuclear
pores (Capelson et al. 2010; Luco
et al. 2011), we next evaluated the cor-
relation between chromatin marks, in
the cell lines where those were mea-
sured, and localization and splicing,
while controlling for expression levels.
We considered separately the cover-
age of histone marks on the exon
junctions and within introns (Supple-
mental Fig. S8). The observed trends
in junctions and introns were similar
with stronger correlations when con-
sidering the splice junctions. Here, in
contrast to the general positive associ-
ation of splicing efficiency and Cyto/
Nuc ratios, we found that marks associ-
ated with active regulatory elements,
H3K27 acetylation, and H3K4 di-/tri-
methylation were positively correlated
with cytoplasmic enrichment and neg-
atively correlatedwith splicing efficien-
cy. The presence of chromatin marks
can be related to increased dwelling
time of Pol2, which was also positively
correlated with cytoplasmic enrich-
ment (Fig. 4) and negatively correlated
with splicing efficiency (see below).

Prediction of subcellular
localization from genomic
and splicing features

As different features were associated
with subcellular localization to varying
degrees, and potentially redundantly,
we asked whether a combination of
the features can be used to predict

the gene-level subcellular localization.We first built a linear
regression model based on 15 features of gene architec-
ture, splicing, Pol2 occupancy, chromatin marks, and hex-
amer occurrences (Supplemental Data 6). This model
could explain ∼45% of the variability in localization among
PCGs, and15%–30%of variability among lncRNAs (Fig. 5A;
Supplemental Fig. S9A). We then evaluated the contribu-
tion of each feature and feature group to localization in
the context of the model by comparing the regression co-
efficients and by considering the change in R2 when a
group of features was omitted from the model (Fig. 5B;
Supplemental Fig. S9B). Splicing-associated features

BA

C

FIGURE 5. Predictive models for localization in HepG2 and K562 cells. (A) Coefficients of the
indicated factors in the linear regression of localization. (∗) P<0.05, (∗∗) P<0.001, (∗∗∗) P<
0.0001. Error bars represent standard errors of the coefficient estimates. Adjusted R2 is indicat-
ed for each cell line separately for PCGs and lncRNAs. (B) Changes in the adjusted R2 of the
regression following omission of different factor groups: expression, Pol2 (Pol2 pausing and
Pol2 over introns), histone marks (the four H3 modifications in A), gene structure (number of
exons, exonic length, and intronic length), and hexamers (C-rich preference and A-rich prefer-
ence). (C ) AUC, precision and recall of random forest classifiers trained and tested with the in-
dicated group of genes on data from the indicated cell line. Error bars indicate SD in a repeated
10-fold cross-validation analysis (see Materials and Methods).
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had the strongest contributions in predicting localization
of PCGs, whereas Pol2 pausing and chromatin marks had
a more prominent and partially redundant contribution in
predicting localization of lncRNAs. Gene architecture had
a consistent effect for PCGs and lncRNAs, whichwas not re-
dundant with expression or splicing features, as we ob-
served prominent reduction in R2 when we excluded the
three architectural features (number of exons and total ex-
onic and intronic lengths). The contribution of hexamers
was most variable across cell types, in agreement with
our previous observations that the HNRNPK-mediated nu-
clear enrichment is more active in some cell types than oth-
ers (and specifically more active in HepG2 over K562 cells)
(Lubelsky and Ulitsky 2018).

To further evaluate the predictive ability of different fea-
tures toward subcellular localization, we binned the genes
into three groups based on their Cyto/Nuc ratios [using a
threshold of log2 (Cyto/Nuc)=±1] and trained Random
Forest classifiers using the sameset of 15 features.Ourmod-
els showed very low predictive capacity for cytoplasmic en-
richment of lncRNAs, which was not surprising given the
scarcity of cytoplasmic lncRNAs (7%–17% in all cell lines),
their relatively inefficient splicing, and low exon counts.
We therefore grouped the “cytoplasmic” and “intermedi-
ate” classes together for lncRNAs and evaluated perfor-
mance in a repeated 10-fold cross-validation setting
separately for PCGs and lncRNAs (Fig. 5C; Supplemental
Data 7A; seeMaterials andMethods). The classifier showed
good predictive ability with typical precision and recall val-
ues of >60% for both PCGs and lncRNAs. Area under the
curve (AUC) values for the cytoplasmic and nuclear classes
(calculated separately in the case of PCGs) were higher
than for the intermediate class, and typically close to 0.9, in-
dicating better performance of the classifiers in more ex-
treme cases. The nuclear class had a good precision but
low recall in someof the cell lines, suggesting that additional
features not captured by our model might account for
nuclear retention of a substantial subset of RNAs (see be-
low). Similarly good performance was observed for both
PCGs and lncRNAs upon training the classifiers on data
from one cell line and predicting localization in another
(SupplementalData7B), suggesting that similar rulesdictate
most of the Cyto/Nuc localization variability across the cell
lines profiled by ENCODE. In contrast, classifiers trained
ononegeneclass (PCGsor lncRNAs) and testedontheother
showed low predictive capacity (data not shown), consistent
with the different contributions of features to classifier per-
formance in the two gene classes, as described above.

Gene-level splicing efficiency and subcellular
localization are highly conserved between human
and mouse protein-coding genes

Features that are important for function are expected to be
conserved in evolution.We therefore testedwhether local-

ization and splicing of PCGs andmRNAs are conserved be-
tween human andmouse. Since limited data on subcellular
fractionations are available in mouse, we focused our com-
parison on the mouse liver (Cyto/Nuc RNA-seq data from
Bahar Halpern et al. 2015 and WCE from ENCODE;
Supplemental Data 8) and human liver carcinoma cell line
HepG2 (ENCODE data). Splicing efficiency, specificity,
andCyto/Nuc ratioswere significantly correlated fororthol-
ogous PCGpairs between the two species, and splicing ef-
ficiency was as conserved for lncRNAs as for PCGs (Fig. 6).
However, splicing specificity and localization values for
lncRNAs in human and mouse were not significantly corre-
lated (Fig. 6B,C, right). It is possible that the difficulty in cor-
rectly assigning orthologs for lncRNAs, in which regions of
sequence similarity are typically quite short (Hezroni et al.
2015), limits our ability to detect conservation in this con-
text. Notably, when we examined the entire mouse liver
data set, we observed similar correlations for PCGs and
somewhat stronger correlations for lncRNAs (Fisher Z-trans-
formation P=0.017) between splicing efficiency and local-
ization as compared to HepG2 (Supplemental Fig. S10). To
test whether similar features are predictive of RNA localiza-
tion in human and mouse, we trained our random forest
classifiers on human data (either HepG2 or K562) and test-
ed the performance on the mouse liver data set and vice
versa (Supplemental Data 7C). Classifiers performed as
well as for the different human cell lines (compare to
Supplemental Data 7B), supporting the conservation of lo-
calization-controlling mechanisms. Notably, for lncRNAs
the classifiers were not as successful when training on
mousedata and testingonhumandata. Together, these re-
sults further suggest that efficiency of splicing plays impor-
tant roles in modulating subcellular localization of PCGs
and lncRNAs; however, the localization of the conserved
lncRNAs subpopulation (and perhaps of some of the other
lncRNAs) is mostly under control of other factors.

Inefficiently spliced transcripts are targets of nuclear
degradation pathways

We next evaluated whether the inefficiently spliced
and nuclearly enriched transcripts are regulated by known
decay pathways. We first compared the half-lives of
genes in various groups using half-life data from HeLa
(Ke et al. 2017) and MCF7 cells (Fig. 7A; Schueler et al.
2014). Genes enriched in the nucleus were generally less
stable than other genes (consistently with previous studies
on lncRNAs [Clark et al. 2012]), regardless of splicing
efficiency.

To evaluate which decay pathways act on transcripts en-
riched in the nucleus, we analyzed RNA-seq data sets ob-
tained following siRNA knockdowns (KD) in HeLa cells of:
(i) components of the NMD pathway SMG6, SMG7, and
UPF1 (Colombo et al. 2017); (ii) common exosomal com-
ponents RRP40, RRP6, and DIS3 (Tseng et al. 2015); (iii)
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components of the Nuclear EXosome Targeting (NEXT)
complex ZCCHC8 and RBM7 (Meola et al. 2016); and (iv)
components of the PolyA tail eXosome Targeting (PAXT)
pathway PABPN1, PAP, and ZFC3H1 (Fig. 7B; Meola
et al. 2016). Comparison of genes grouped by their splic-
ing efficiency and localization revealed significant changes
in their regulation. Subsets of both efficiently and ineffi-
ciently spliced nuclearly enriched transcripts were up-reg-
ulated following inhibition of NMD, but those subsets
were generally small—only 66 of the 918 nuclearly en-
riched (>twofold) and inefficiently spliced genes were

up-regulated by >twofold following
either UPF1 or SMG6/7 KD. This sug-
gests that for the vast majority of the
nuclearly enriched transcripts, NMD
is not the major cause for nuclear en-
richment. Inefficiently spliced and nu-
clear transcripts were preferentially
targeted by components of the
exosome, and specifically the NEXT
complex, and less so by the PAXT
complex which was specifically linked
to degradation of fully processed
transcripts (Meola et al. 2016). As ex-
pected, there was no correlation be-
tween the susceptibility of transcripts
to NMD (combined SMG6 and
SMG7 KD) and the exosome (RRP40
KD) (Fig. 7C), suggesting that those
pathways act on distinct groups of
genes, determined at least in part by
the efficiency of their splicing. We
note that we could test a only a subset
of the possible decay pathways, for
which comparable data are available
in HeLa cells, and it is possible that
other pathways, including transla-
tion-related degradation (Carlevaro-
Fita et al. 2016) preferentially affect
subsets of lncRNAs that differ in their
maturation status.

Nuclear-retained genes are
enriched for signaling pathways
and membrane proteins

Based on our observation that splic-
ing efficiency differences are associat-
ed with differential localization when
comparing pairs of the ENCODE
cell lines (Fig. 3E), we were interested
to characterize the biological process-
es that are preferentially affected
by the splicing-localization pathway.
GO term analysis revealed no signifi-

cant enrichment of any particular biological process
among inefficiently spliced genes (see Materials and
Methods). However, signaling processes and cytoplasmic
membrane transport pathways were enriched among nu-
clear-retained genes in most ENCODE cell lines (Fig. 8;
Supplemental Data 10). Notably, many of the genes with
strongest nuclear enrichment are characterized by low
abundance, which does not allow reliable splicing quanti-
fication. Therefore, it is difficult to concludewhether nucle-
ar retention of these particular genes is accompanied by
inefficient splicing.

B

A

C

FIGURE 6. Conservation of splicing and localization between human and mouse liver cells.
(A–C) Correlation between splicing efficiency (A), splicing specificity (B), and localization
(C ) in mouse liver and human liver carcinoma cells HepG2. Regression line is shown in bold.
Coloring indicates local point density. Indicated coefficient and P-values computed using
Spearman’s correlation.
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DISCUSSION

We describe here an attempt to use the existing informa-
tion about the maturation level, chromatin marks, gene ar-
chitecture and sequence features to predict the simplest
dimension of subcellular localization of long RNAs in
cells—nucleus versus cytoplasm. This attempt comple-
ments the recent development of machine learning ap-
proaches that attempt to predict subcellular localization

using sequence features alone (Cao
et al. 2018; Gudenas and Wang
2018; Su et al. 2018). Our study and
others are based on ENCODE data,
which include very high-quality RNA-
seq on subcellular fractions, but is
presently limited to human cancer
cell lines. An important future pros-
pect is to test and further develop
the approach for primary cells and
tissues, in which factors that influence
localization might differ, though our
preliminary analysis shows that a
classifier used using human cancer
cell lines works well when applied to
mouse liver data (Supplemental Data
7C). Another present limitation is
that we rely on gene models from
GENCODE, which while being state-
of-the-art in manual gene annotation,
do suffer from occasional gene model
incompleteness and potential errors
in annotation of splice structures.
Importantly, the new approach for cal-
culatinggene-level splicing thatwe in-
troduced here helps address some of
these challenges by first selecting for
each gene a set of confident introns
and then using only these introns for
quantifying splicing efficiency and
specificity.
Our results suggest a strong corre-

lation between the efficiency of splic-
ing and cytoplasmic localization. The
two main underlying explanations for
nuclear enrichment are slow nuclear
export or cytoplasmic degradation
(Bahar Halpern et al. 2015). The ma-
jority of inefficiently spliced genes
do not appear to be sensitive to
NMD that can recognize improperly
spliced transcripts in the cytoplasm,
and so the nuclear enrichment we ob-
serve for the inefficiently spliced
genes is likely mostly due to ineffi-
cient export or nuclear degradation.

Splicing was shown to dramatically improve export of
model genes (Luo and Reed 1999; Valencia et al. 2008;
Mor et al. 2010; Akef et al. 2015). It nevertheless remains
uncertain if there is a direct genome-wide causal relation-
ship between inefficient splicing and nuclear enrichment,
that is, it is unclear how much of the nuclear enrichment
across the transcriptome is caused by inefficient splicing.
The canonical life cycle of an exported long RNA begins
at the site of transcription on chromatin, continues to

CA

B

FIGURE 7. Susceptibility to cytoplasmic and nuclear decay factors. (A) Half-lives of genes in
the indicated groups: efficiently spliced (“Eff.”, worst intron splicing efficiency >0.8) and cyto-
plasmic (“Cyt.”, Cyto/Nuc ratio >1); efficiently spliced and nuclear (“Nuc.”, Cyto/Nuc ratio
<0.5); inefficiently spliced (“Ineff.”, worst intron splicing efficiency <0.5) and nuclear; and all
other. (∗) P-value=6.4×10−5, (∗∗) P-value<2×10−16 (Wilcoxon rank sum test).
(B) Expression changes of genes in the indicated group following KD of the indicated factors
using siRNAs in HeLa cells, each compared to the nontargeting control from the same study.
(∗) P-value<0.01, (∗∗) P-value<10−6 (Wilcoxon rank sum test). (C ) Effect of KD of SMG6 and
SMG7 versus KD of RRP40 on gene expression in HeLa cells. Coloring indicates local point
density.
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processing and maturation, that are believed to take place
mostly in the nuclear speckles (Galganski et al. 2017), and
then proceeds to the nuclear pore for export. Much of the
splicing happens already on chromatin (Tilgner et al.
2012), perhaps more so for genes whose sites of transcrip-
tion overlap the nuclear speckles (Galganski et al. 2017).
The TREX export pathway was associated with transition
of transcripts from the speckles to the nuclear pore (Dias
et al. 2010), but other aspects of intra-nuclear transitions,
and the points at which unprocessed transcripts are de-
layed or degraded are largely unknown.
The association between splicing and nuclear export

can therefore result from various scenarios: (i) sequestra-
tion of RNA at chromatin, which may preclude its process-
ing (indeed, highly insoluble transcripts are unspliced
[Chujo et al. 2017]); (ii) limited spliceosome binding may
prevent recruitment to the speckles (Dias et al. 2010); (iii)
inefficient processing may increase time spent at the
speckles; (iv) incompletely processed transcripts may be
degraded following the release from speckles en route
to or at the nuclear pore; or (v) nuclear pore may prevent
export of incompletely processed transcript. It is probable
that the global correlations we observe are due to a com-
bination of signals from different transcript groups that are
affected at different steps. It is possible to identify the rel-
evant step for individual transcripts through reporter as-
says or genome editing, but classifying transcripts on a
global level is challenging. Perturbations that affect splic-
ing also affect cell viability, and so the perturbed cells
can only be studied for short time windows, introducing
transcript stability as a substantial confounding factor.
Indeed, when we re-analyzed data from changes in Cyto/
Nuc ratios following inhibition of splicing for 6 h using
spliceostatin A (Yoshimoto et al. 2017), we found that tran-
script stability in unperturbed cells was strongly associated
with changes in splicing efficiency, with the vast majority of
affected transcripts having half-lives shorter than 5 h
(Supplemental Fig. S11E–G). Transient metabolic labeling
of just the newly produced transcripts may help overcome
some of these issues (Meola et al. 2016; Wlotzka et al.
2017). Further difficulty in distinguishing between the
models is that it is not possible to isolate RNAs found at

specific subnuclear compartments, such as nuclear speck-
les or nuclear pores. The recently introduced methods for
mapping of transcripts found in proximity to specific or-
ganelles, such as APEX-RIP (Kaewsapsak et al. 2017)
have the potential of overcoming this difficulty, by labeling
and sequencing RNAs found in proximity to proteins en-
riched in different compartments. Until such data become
available, based on our analysis, it is tempting to speculate
that nuclear enrichment of lncRNAs is driven more by fea-
tures of their transcription (e.g., reduced association of
Pol2 CTD with splicing and/or export factors), whereas
PCGs are typically retained during maturation, as their nu-
clear enrichment was more associated with inefficient
splicing, exonic structure and C-rich sequences (Fig. 4;
Supplemental Figs. S5–S7). HNRNPK, which binds C-rich
sequences, and some of its targets are enriched in the
nuclear speckles, also contributes to nuclear sequestration
of many transcripts in a splicing-independent manner
(Lubelsky and Ulitsky 2018). However, our models for pre-
dicting nuclear localization, trained on all mentioned fea-
tures and gene architecture exhibit relatively low recall
for nuclear PCGs and lncRNAs (Fig. 5C; Supplemental
Data 7), indicating that additional uncharacterized mecha-
nisms act to prevent nuclear export.
The strong correlation between inefficient splicing and

nuclear enrichment helps explain why lncRNAs, which are
substantially less efficiently spliced than PCGs, are also
more nuclear, but leaves open the question of why
lncRNAs are substantially less spliced. When we evaluated
the correlation between different genomic, sequence, and
transcriptional features and splicing efficiency, we found
that, as reported previously (Galante et al. 2004; Sakabe
and de Souza 2007; Yap et al. 2012; Braunschweig et al.
2014; Boutz et al. 2015; Melé et al. 2017; Mukherjee
et al. 2017), longer introns and splice-site sequences closer
to the consensus andmorehighly conservedareassociated
with higher splicing efficiencies (Fig. 9). These features dif-
fer significantly between lncRNAs and PCGs, though the
effect sizes of the difference for individual features are usu-
ally modest (Supplemental Figs. S2B, S11). Interestingly,
expression levelswere strongly correlatedwith better splic-
ing in PCGs, but not in lncRNAs (Fig. 9), presumably

FIGURE 8. GO enrichment of nuclear-retained genes. GO analysis of ranked K562 Cyto/Nuc localization values. Bars indicate −log10 FDR-
corrected P-values for the respective GO-terms cluster (see Materials and Methods).
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because most abundant mRNAs need to be efficiently ex-
ported, whereas many abundant lncRNAs act in the nucle-
us. Consistently with the other analyses, increased Pol2
occupancy on introns was associatedwith reduced splicing
efficiencies, in particular in lncRNAs (Fig. 9). Surprisingly,
decreased Pol2 occupancy in promoter-proximal regions
was associated with nuclear enrichment for lncRNAs (Fig.
4; Supplemental Figs. S5A,B, S6), suggesting that the ef-
fects of Pol2 dynamics on export of lncRNAs are likely not
mediated by effects on splicing efficiency.

The functions, if any, of the vast majority of lncRNAs re-
main unknown, but an increasing number of reports link
lncRNAs to activity in the nucleus, which requires repres-
sion of their export to the cytoplasm. Inefficient splicing
may help place lncRNAs at different subnuclear compart-
ments and poise them for specific activities. Conversely,
splicing itself is reported to be important for the functions
of at least some lncRNAs (Engreitz et al. 2016; Gil and
Ulitsky2018; Tanet al. 2018). Regulated splicing can further
assist in “releasing” the RNA fromone compartment to an-
other, allowing precise timing of its functional activity. For
instance, a recent study has found that release from chro-
matin is essential for function of lncRNA A-ROD (Ntini
et al. 2018). For PCGs, regulated nuclear retention through
regulation of splicing has been shown to orchestrate trans-

lationandprotein accumulation in sev-
eral contexts (Ninomiya et al. 2011;
Mauger et al. 2016; Naro et al. 2017).
As complex regulatory networks for
regulating splicing are in place in eu-
karyotic cells, the coupling of splicing
with export has therefore significant
regulatory potential for both coding
and noncoding RNA.

MATERIALS AND METHODS

ENCODE RNA-seq data analysis

We downloaded publicly available RNA-
seq data from nine ENCODE human cell
lines [GSE30567; poly(A)+, WCE, cytosol
and nucleus samples from GM12878,
HeLa-S3, HepG2, HUVEC, IMR90, K562,
MCF7, NHEK, and SK-N-SH]. Splicing
analysis was based on mapping the reads
to the human genome (hg19 assembly) us-
ing STAR (Dobin et al. 2013) and GEN-
CODE v26 annotations. Expression levels
in various fractions were quantified using
RSEM (Li and Dewey 2011) and Bowtie2.
We classified genes using the “gene_
type” field, and defined all genes with
gene type “protein_coding” as “PCGs”
and all genes with either of “lincRNA”
(n=7471), “antisense” (n=5511), “proc-

essed_transcript” (n=523), or “bidirectional_promoter_lncRNA”
(n=8)gene types as “lncRNAs.”Geneswith a transcript_type con-
taining “pseudogene” or “intronic” values were excluded. Cyto/
Nuc ratios were computed using DESeq2 (Love et al. 2014) based
on the RSEM quantifications. Average TPM values across repli-
cates were used as the final expression values, and we considered
in each cell line only genes with expression levels of >0.5 TPM.

To generate expression- and length-matched cell-type–specif-
ic sets of PCGs and lncRNAs, we classified all expressed lncRNAs
into 12 groups of equal size based on their exon counts (two bins)
and expression levels (WCE, six bins). PCGs were classified using
the bin thresholds set for lncRNAs. For each bin, we randomly
sampled the larger group (either PCGs or lncRNAs) to generate
two groups of equal size that match in their expression and
exon counts distributions. Total n numbers for all bins are as
follows: Localization (Supplemental Fig. S2C): GM12878—1126;
HeLa-S3—1101; HepG2—1030; HUVEC—816; IMR90—
754; K562—1131; MCF-7—1077; NHEK—894; SK-N-SH—
1038. Splicing (Supplemental Fig. S2D–E): GM12878—888;
HeLa-S3—791; HepG2—787; HUVEC—568; IMR90—603; K562
—815; MCF-7—838; NHEK—715; SK-N-SH—876 (see also Sup-
plemental Fig. S2F).

Splicing quantification at gene level

In order to quantify splicing on the gene level, we used the follow-
ing two-step algorithm that was applied separately to each

FIGURE 9. Factors associated with splicing efficiency. Correlation between the indicated fea-
tures and splicing efficiency in PCGs and lncRNAs in K562 cells, or averaged across the nine
cell lines (except for Pol2 occupancy, which is available in only six lines). Numbers indicate cor-
relation coefficients. (∗) P<0.05. Correlation coefficients and FDR-adjustedP-values computed
using Spearman’s correlation.
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multiexon gene in the GENCODE annotations. In the first step,
we identified confidently supported introns by using all the
BAM files from the ENCODE cell lines. We traversed the introns
annotated for the gene, and identified (using the “M” and “N”

CIGAR operators) reads that supported any of the splicing sites
and those that supported the splicing of the specific intron, that
is, reads that had consecutive segments mapping in the two flank-
ing exons of the intron. Reads containing insertions or deletions
were ignored. We discarded introns supported by less than three
reads, and those supported by less than Nspliced/(K × Nmaxintrons

)
reads, whereNspliced is the total number of reads with splice sites;
Nmaxintrons

is the number of introns in the isoform of the gene that
had the most introns; and K is a parameter aimed to exclude in-
trons that had relatively poor support compared to other introns
in the same gene, that is, we aim to ignore introns that have
K-times less reads that the average intron of the same gene
(we used K=25 in this study).

The second phase was applied separately to each cell type,
considered only introns that were kept in the first phase, and iter-
ated over the reads overlapping the intron. For each intron we
computed: Spliced (S)—the number of spliced reads supporting
the intron; Unspliced (U )—the number of reads not containing a
splicing event and overlapping one of the splice junctions;
One-end (E)—number of spliced reads supported either the 5′

or the 3′ end of the intron; and Other (O)—number of spliced
reads not overlapping either splice site (Supplemental Fig. S1).
We then summed these counts over all the samples (e.g., nuclear,
cytoplasmic, and WCE of the specific cell line), and considered
further only introns with specificity S/(S+E+O) > 0.1. We then
discarded introns that overlapped another intron that had better
specificity or the same specificity butmore reads.We then consid-
ered just the remaining introns and computed the efficiency of in-
dividual introns as (S+E+O)/(S+U+E+O) and the efficiency of
the gene as Σ(S + E + O)/Σ (S + U + E + O) across all kept in-
trons. Gene- and intron-level values for efficiency and specificity
were averaged across replicates of corresponding samples
(Supplemental Data 1 and 2).

To evaluate differences in splicing efficiency and specificity be-
tween cell lines (Fig. 3E), we re-analyzed all cell lines together as
described above, to ensure that we quantify the same set of in-
trons in all cell lines, thus making the efficiency and specificity val-
ues comparable.

Enrichment of hexamers

We first used all the coding sequences annotated in GENCODE
to compute overall codon usage. We next considered for each
gene only the isoform that had the most introns used in the splic-
ing analysis. We then counted the normalized number of occur-
rences (“dense.” in Supplemental Fig. S7) of hexamers
containing at least four X bases for X=A, C, G, and T, considering
separately instances overlapping internal and terminal exons
(Supplemental Data 5). In addition, we evaluated the preference
of A-hexamers over T-hexamers and the preference of C-hexam-
ers over G-hexamers by subtracting the density values (“A-rich
pref.” and “C-rich pref.” respectively in Supplemental Fig. S7).
For coding sequences, we counted the number of codons which
ended with base X, and compared that number to the number ex-
pected given the amino acid sequence and the global codon us-

age, to compute the preference for usage of codons ending with
X (“codon pref.” in Supplemental Fig. S7).

Pol2 and histone modifications ChIP-seq analysis

We downloaded available Pol2 ChIP-seq data for six ENCODE
cell lines (GSE31477; bigWig files for GM12878, HeLa-S3,
HepG2, HUVEC, IMR90, and K562) and applied the bigWigAver-
ageOverBed tool with BED files containing regions of interest
based on GENCODE v26 annotation.
We defined a Pol2 pausing (Supplemental Data 3) index as:

Pausing index = coverage of +300 bp from TSS
coverage of −300 to+2000 bp from TSS

.

For coverage, we used the “sum” output of bigWigAverage-
OverBed. Pausing index was calculated only for loci longer than
2000 bp, and gene-level pausing index was defined as the max-
imum value across isoforms.
To assess Pol2 occupancy over introns (Supplemental Data 4),

we used our splicing quantification tool to generate a unique,
nonoverlapping list of introns supported by the RNA-seq data.
For each cell line separately, we used bigWigAverageOverBed
with those introns. To account for length differences, we used
the “mean0” values (with noncovered bases counting as zeroes)
for each intron and gene-level coverage was defined as mean
across all introns of the gene.
To explore histone modifications over introns and exon–intron

junctions, we downloaded available ChIP-seq data for seven
ENCODE cell lines (GSE29611—Gm12878, HeLa-S3, HepG2,
HUVEC, K562, and Nhek. Antibodies targeting H3K27ac, H3K27
me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2,
and H3K9me3; GSE31755—MCF-7. Antibodies targeting H3K2
7ac, H3K27me3, H3K36me3, and H3K9me3). Read coverage
over introns was calculated like for Pol2 occupancy over introns.
Histone marks coverage over exon–intron junction was calculated
by generating a set of intervals file with ±50 bp sequence of all
5′ and 3′ splice sites defined by the cell-specific intron set and ap-
plying the bigWigAverageOverBed tool to it. Gene-level values
were defined as mean of mean0 values of all splice sites.

Correlations with sequence parameters at gene level

To correlate gene-level localization and splicing values with
length parameters and exon counts, we used maximal value
among all gene isoforms for each of: locus length, number of ex-
ons, transcript length, total length of introns, mean exon length,
and mean intron length. 5′ and 3′ Senapathy and PSSM scores
were computed as in Schwartz et al. (2009) and MaxEnt scores
as in Yeo and Burge (2004). PhyloP conservation scores for the
100-way vertebrate whole-genome alignment were obtained
from the UCSC genome browser, and averaged for positions
−3.. + 4 and −11.. + 1 for the 5′ and 3′ splice-site conservation
scores, respectively. H3K27Ac regions were obtained from the
ENCODE project (wgEncodeSydhHistoneMcf7H3k27acUcdPk).
All intron-level parameters were converted to gene-level using

a list of unique, nonoverlapping introns generated by analyzing
the RNA-seq data sets from all cell lines together. Considering
only these introns, we defined gene-level maxEnt scores, 5′ss
Senapathy score, 3′ss PSSM score and average ss conservation
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as mean across all introns for a given gene. Numbers and total
lengths of H3K27ac peaks and of PhastCons100way peaks were
aggregated into gene-level using sum of all intron-level values.
For hexamer enrichment analysis, we selected the isoform that
contains the maximal amount of supported introns generated
by analyzing the RNA-seq data sets.

Combining the cell-specific splicing and localization values for
Supplemental Fig. S8 was performed using the median value
across cell lines for each gene (Supplemental Data 5).

Linear models and machine learning

For multiple regression analysis of localization determinants, we
trained separate linear models for PCGs and lncRNAs using
only expressed genes in each cell line. Genes with missing values
for any of the parameters were omitted. The features used for
training the models are listed in Supplemental Data 6.

Machine learning analysis to predict subcellular localization us-
ing the same set of parameters that we used for linear models
was performed by discretization of the continuous Cyto/Nuc
into three groups: cytoplasmic [log2(Cyto/Nuc) > 1], intermediate
[−1< log2(Cyto/Nuc) < 1], and nuclear [log2(Cyto/Nuc) <−1]. For
lncRNAs, we merged the “intermediate” and “cytoplasmic” clas-
ses. We then trained a Random Forest classifier from the RWeka
R package (Hornik et al. 2007) separately on PCGs and on
lncRNAs, and tested it on the same data with a 10-fold cross val-
idation using the evaluate_Weka_classifier function, which pro-
vides AUC, precision and recall values for each localization
class (RWeka package). This analysis was repeated 100 times to
evaluate the error in AUC, precision, and recall values. We also
trained the random forest classifier on data from either HepG2
or K562 cells and tested it on all other cell lines separately for
PCGs and lncRNAs using the predict function. Precision and re-
call were calculated manually from the confusion matrix, which
was generated by the confusionMatrix function from the caret
package.

All AUC, precision, and recall values are summarized in
Supplemental Data 7.

Conservation analysis

To characterize the conservation of splicing efficiency and speci-
ficity and subcellular localization, we downloaded RNA-seq data
sets of mouse liver WCE from ENCODE (GSE36025; adult,
8-wk-old mice), as well as RNA-seq data sets of cytosolic and nu-
clear fractions of mouse liver from (Bahar Halpern et al. 2015)
(GSE73977). We analyzed these data sets the same way we did
with human ENCODE cell lines, using WCE data for expression
and splicing quantification and cytosol/nucleus data for subcellu-
lar localization (Supplemental Data 8). Orthologs of human and
mouse PCGs were obtained from Ensembl Compara database
(version 30). Orthologs of lncRNAs were obtained by applying
the methods described in Hezroni et al. (2015) to the human
and mouse GENCODE transcripts (versions 26 and M13, respec-
tively), and considering pairs of human and mouse lncRNA genes
supported by both sequence similarity and synteny. Orthologs
available in Supplemental Data 9. Using these orthologs lists,
we compared mouse liver data with human HepG2 data.

GO analysis

We evaluated enrichment for biological processes in our data us-
ing the ranked list option in GOrilla web tool (Eden et al. 2009).
For cell-specific splicing, we ranked based on the splicing effi-
ciency values of the worst intron for each gene. For localization,
we ranked genes by cell-specific Cyto/Nuc ratios, smallest
(most nuclear) first. The obtained FDR-corrected P-values were
clustered by REVIGO (Supek et al. 2011). Splicing analysis re-
vealed no significant enrichment (FDR<0.01) for all cell lines.
The results of localization analysis for all cell lines are presented
in Supplemental Data 10.

Additional data sets

We obtained RNA-seq data from various perturbations in HeLa
cells from GEO database, accession GSE84172, GSE86148,
GSE73678, andGSE73776. These data sets were processed using
the same RSEM/DESeq2 pipeline as the other data sets. Half-lives
in HeLa and MCF-7 cells were obtained from GSE86336 and
GSE49831 (Schueler et al. 2014; Ke et al. 2017), respectively.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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