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Key messages

What is the key question?
►► While pathways relating to fibrosis have been 
associated and studied in-depth in idiopathic 
pulmonary fibrosis (IPF), other pathways, in 
particular involving the immune response or 
honeycombing have not been well identified or 
characterised in genomic studies.

What is the bottom line?
►► Pathways identified using gene coexpression 
network analysis were able to determine a 
regulatory framework for IPF and association 
with survival.

Why read on?
►► This study provides novel insight into the 
biological pathways in IPF and identified 
several pathways which warrant further 
research including dysfunctions in the immune 
response and blood vessel formation. Moreover, 
the epithelial signature could be detected in the 
blood and was related to survival.

Abstract
Background I diopathic pulmonary fibrosis (IPF) 
is a severe lung disease characterised by extensive 
pathological changes. The objective for this study was 
to identify the gene network and regulators underlying 
disease pathology in IPF and its association with lung 
function.
Methods L ung Tissue Research Consortium dataset 
with 262 IPF and control subjects (GSE47460) was 
randomly divided into two non-overlapping groups for 
cross-validated differential gene expression analysis. 
Consensus weighted gene coexpression network analysis 
identified overlapping coexpressed gene modules 
between both IPF groups. Modules were correlated with 
lung function (diffusion capacity, DLCO; forced expiratory 
volume in 1 s, FEV1; forced vital capacity, FVC) and 
enrichment analyses used to identify biological function 
and transcription factors. Module correlation with miRNA 
data (GSE72967) identified associated regulators. 
Clinical relevance in IPF was assessed in a peripheral 
blood gene expression dataset (GSE93606) to identify 
modules related to survival.
Results C orrelation network analysis identified 16 
modules in IPF. Upregulated modules were associated 
with cilia, DNA replication and repair, contractile fibres, 
B-cell and unfolded protein response, and extracellular 
matrix. Downregulated modules were associated with 
blood vessels, T-cell and interferon responses, leucocyte 
activation and degranulation, surfactant metabolism, and 
cellular metabolic and catabolic processes. Lung function 
correlated with nine modules (eight with DLCO, five with 
FVC). Intermodular network of transcription factors and 
miRNA showed clustering of fibrosis, immune response 
and contractile modules. The cilia-associated module was 
able to predict survival (p=0.0097) in an independent 
peripheral blood IPF cohort.
Conclusions  We identified a correlation gene 
expression network with associated regulators in IPF that 
provides novel insight into the pathological process of 
this disease.

Background
Idiopathic pulmonary fibrosis (IPF) is a severe and 
complex lung diseases characterised by fibrous 
destruction of the parenchyma and presence of usual 
interstitial pneumonia with honeycomb changes in 
the basal and peripheral regions of the lung. While 
fibrosis is the main feature of this disease and has 
been examined extensively in transcriptomic and 
histological studies, other pathways associated with 
IPF have not been well characterised.

Several studies on IPF have used transcriptome 
analysis that provided important insight into this 
disease.1–3 The methods used in these studies have 
generally been to test genes individually, while in 
vivo, genes function via networks of coexpressed 
genes with similar biological function. We hypoth-
esised that identifying these coexpression patterns 
would provide additional insight into disease-asso-
ciated biological pathways.

The present study aimed to apply weighted 
gene coexpression network analysis (WGCNA),4 a 
systems biology approach for identifying gene inter-
actions in transcriptomic datasets, on differentially 
expressed genes in IPF previously generated by us 
(GSE47460)5–7 and stored on the Gene Expression 
Omnibus (GEO). These data were derived from 
lung tissue obtained through the National Institutes 
of Health - National Heart, Lung, and Blood Insti-
tute (NIH-NHLBI) funded Lung Tissue Research 
Consortium (LTRC) and consists of samples from 
IPF and control subjects who had undergone lung 
resection or transplantation. Lung function was 
correlated with gene modules and enrichment anal-
yses used to determine biological function as has 
been reported in several studies on lung disease.8–10 
Encode ChIP-seq enrichment was used to deter-
mine transcription factors associated with each 
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Figure 1  Flow chart of methodologies used in this study. GSE47460 was divided into two non-overlapping datasets for cross-validated differential 
gene expression analysis. This was followed by applying a consensus WGCNA on the two IPF groups using the differentially expressed genes as input. 
Identified modules were then analysed by association with lung function and enrichment analyses for biological function and transcription factor 
regulators. Samples in GSE72967 were matched to the IPF groups and correlated with the module eigengene to determine association with that 
module. GO, gene ontology; IPF, idiopathic pulmonary fibrosis; WGCNA, weighted gene coexpression network analysis.

module and miRNA expression (LTRC dataset GSE72967) was 
correlated with each module. Finally, the clinical relevance of 
these pathways was determined by an IPF peripheral blood RNA 
dataset (GSE93606) to identify modules related to survival.

Methods
Study population
All data were obtained from GEO datasets GSE47460, 
GSE72967 and GSE93606 (​www.​ncbi.​nlm.​nih.​gov/​geo). Lung 
tissue samples were composed of 268 patients who had under-
gone thoracic surgery. IPF samples (n=160) were from patients 
with interstitial lung disease (ILD) diagnosed with IPF by clin-
ical history, CT scan and surgical pathology. Control samples 
(n=108) were from patients who had surgery for a suspected 
lung nodule but who otherwise had no diagnosis for chronic 
lung disease by CT or pathology. Blood samples comprised an 
independent cohort of 57 patients with IPF with follow-up 
until transplantation/death or forced vital capacity (FVC) 
decline  >10% over a 6-month period. Available demographic 
data included age, sex, smoking status and lung function (diffu-
sion capacity for carbon monoxide  % predicted (DLCO), forced 
expiratory volume in 1 s % predicted (FEV1), and forced vital 
capacity % predicted (FVC).

The IPF and control lung tissue samples were randomly 
divided into two non-overlapping groups (IPF group 1, IPF 
group 2, control group 1 and control group 2) for cross-vali-
dated data analysis. The overall schematic of methods used in 
this study is shown in figure 1.

Differential gene expression analysis
Microarray data were normalised using cyclic loess approach as 
previously described11 with the probe with the highest average 
signal selected per gene. A total of 15 180 genes per sample 
were available for analysis in the online matrix file. Hierar-
chical clustering of samples was used to identify outliers in each 
group (online supplementary figure S1). Differentially expressed 

genes were determined by comparing each IPF group to both 
control groups using a multivariate linear model controlling for 
age, sex and smoking status. Data were corrected for multiple 
comparisons by false discovery rate (FDR) adjustment and genes 
with FDR adjusted p values<0.05 in all four comparisons were 
considered differentially expressed. Principal component anal-
ysis of differentially expressed genes was performed to show 
clustering of disease and control samples.

Weighted gene coexpression network analysis
Consensus WGCNA was conducted using R/Bioconductor to 
determine coexpressed genes between the two IPF groups using 
only differentially expressed genes. Analysis setting included 
biweight midcorrelation (corType=‘bicor’) to account for 
outliers, sign of correlations between neighbours (TOMtype and 
networkType=‘signed’), and a more sensitive module detection 
parameter (deepSplit=3). Modules were identified by number 
according to module size. Module classification was applied to 
control data and showed good preservation of groupings based 
on module preservation statistics. Module eigengene (ME) was 
calculated as the first principal component of gene expression 
for the module and inter-relatedness of each module by eigen-
gene network clustering (online supplementary figure S2). Up or 
downregulation of each module was determined by fold change 
of each gene, calculated as mean gene expression in IPF divided 
by mean gene expression in control.

MEs were compared with demographic data using Spearman’s 
correlation corrected for sex, age and smoking status and p values 
were adjusted for multiple comparisons by FDR. Consensus 
modules were defined as modules significantly correlated to lung 
function in both IPF groups and in the same direction (positive 
or negative correlation). Control MEs were correlated to lung 
function data as per the other datasets. Module membership, a 
measure of the association of a gene to its module, was deter-
mined by Pearson correlation of gene expression to ME and used 
to rank module connectivity.
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Table 1  Demographic data for all subjects used in this study

Control (tissue) IPF (tissue) IPF (blood)

Group 1 Group 2 Group 1 Group 2 –

N 51 53 79 79 57

Age (years) 64.5±10.5 64.0±11.4 65.1±8.0 63.4±8.6 67.4±8.0

Sex (%)

 � Female 29 (57) 26 (49) 23 (29) 26 (33) 19 (33)

 � Male 22 (43) 27 (51) 56 (71) 53 (67) 38 (67)

Smoking status (%)

 � Never 12 (24) 17 (32) 26 (33) 32 (41) – 

 � Former 32 (63) 31 (58) 49 (62) 45 (57) – 

 � Current 2 (4) 0 (0) 0 (0) 2 (3) – 

 � DLCO (% predicted) 80.8±14.4 87.4±18.6 48.5±16.6 46.9±19.0 39.2±14.1

 � FEV1 (% predicted) 92.6±10.6 97.7±14.1 70.8±17.9 71.2±18.4 – 

 � FVC (% predicted) 92.6±11.4 96.2±14.9 63.5±16.5 64.8±17.1 72.2±20.3

Data are presented as mean±SD.
FEV1, forced expiratory volume in one second; FVC, forced vital capacity; IPF, idiopathic pulmonary fibrosis. 

Enrichment analysis for biological function and transcription 
factors
Module biological function was determined using gProfiler12 to 
determine enrichment for Biological Process gene ontology (GO) 
and Reactome pathways followed by enrichment mapping in 
Cytoscape (V.3.5.1) to define each functional cluster. Enrich-
ment of cell types was determined by Enrichr using the Human 
Gene Atlas library.13

Transcription factors for each module were identified by iReg-
ulon V.1.3 plugin in Cytoscape with a minimum Normalised 
Enrichment Score (NES) of 4.014 using data from 1120 ChIP-seq 
tracks in the Encode database. For each transcription factor, we 
show the number of genes regulated by that transcription factor 
identified within each module in the online supplementary table 
S1. The regulatory network of modules and transcription factors 
was plotted in Cytoscape to identify common regulators shared 
between modules.

miRNA correlation analysis
Subjects in both GSE47460 and GSE72967 were used to deter-
mine microRNA  (miRNA) association. A total of 111 subjects 
were matched, 57 in IPF group 1 and 54 subjects in IPF group 
2. MEs were correlated to the 338 miRNAs in the dataset using 
Pearson’s correlation with adjustment for multiple compar-
isons by FDR. Adjusted p  values<0.005 in both groups were 
considered significant. Target genes associated with miRNAs for 
each of these modules were identified using the validated target 
dataset (miRTarBase) in the multi-miR database (http://​multimir.​
ucdenver.​edu/) and listed in the online  supplementary table S2.15

Validation of datasets
Validation of differentially expressed genes in IPF was 
performed on two independent lung tissue datasets (GSE53845, 
GSE110147). The differently expressed genes were also used to 
show separation of IPF samples from control samples and other 
lung diseases, including chronic obstructive pulmonary disease 
(COPD), hypersensitivity pneumonitis, non-specific interstitial 
pneumonia and respiratory bronchiolitis ILD, that comprised 
the complete LRTC dataset.

Survival analysis
Clinical relevance of each module was determined using periph-
eral blood samples from patients with IPF at time of diag-
nosis with available RNA gene expression and survival data 
(GSE93606). Genes matched to each module were used to 
cluster patients into two groups using reversed graph embedding 
(DDRTree), a graph structure learning data reduction algorithm 
suited for ordering transcriptomic data by progressive changes16 
and k-means clustering. A univariate Cox’s proportional-hazards 
model with Bonferroni correction for multiple comparisons was 
used to determine modules related with survival. Multivariate 
Cox’s proportional-hazards model, including FVC, age and sex, 
was then applied to the significant modules to determine the 
effects of confounding variables on module survival prediction.

Results
Demographic data
IPF and control tissue samples were divided into two groups 
for cross-validated analysis. Following removal of outliers, 51 
and 53 samples remained in each control group and 79 samples 
remained in both IPF groups. Age and sex were matched in all 
groups, lung function was also matched in both IPF groups. 
Demographic data on these subjects are presented in table 1.

Differential gene expression analysis
Cross-validated comparison of IPF and control groups identified 
6425 differentially expressed genes in IPF (figure 2A). Principal 
component analysis of these genes showed overlap of samples 
within the IPF or control groups and good separation between 
IPF and control (figure 2B). Differentially expressed genes were 
also used to plot the separation between control and IPF samples 
in two independent datasets as well as the complete LTRC 
dataset to show separation of IPF from other disease phenotypes 
such as COPD (online supplementary figure S3).

WGCNA module identification
Consensus WGCNA identified 16 modules in the IPF cohort, 6 
modules were upregulated in IPF and 10 were downregulated 
(figure 2C). The five most connected genes for each module are 
presented in table 2.
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Figure 2  (A) Euler diagram of the number of differentially expressed genes identified as significant (FDR adjusted p<0.05) for the cross-validated 
comparisons. Of 15 180 genes, 10 237 were identified as significant in at least one comparison and 6425 genes were significant in all four 
comparisons. (B) Principal component plot of the 6425 genes showing overlap between samples in each of the IPF or control groups and separation 
between disease and control. (C) Plot of fold change of genes in each module to determine overall upregulation or downregulation of the module. 
Labelled genes are those that have been shown to have a known association with IPF or with the biological function of that module. IPF, idiopathic 
pulmonary fibrosis.

Lung function correlated with nine modules in both IPF 
groups. DLCO was negatively correlated with ME3, ME4, ME5 
and ME14 and positively correlated with ME2, ME10, ME13 
and ME16. FVC was negatively correlated with ME4, ME5 
and ME9 and positively correlated with ME10 and ME16. 
No significant correlations were present in control samples. 
Heatmap of correlated modules is shown in figure 3 (complete 
module–trait comparisons are in online supplementary figures 
S4–S7).

Module biological function
Modules were grouped by pathway enrichment into several cate-
gories: immune response (ME5, ME7, ME9, ME11, ME12); 
extracellular matrix or contractile fibres (ME3, ME6, ME13, 
ME14); developmental pathways of specific lung structures 
(ME1, ME2); cell division, DNA replication and DNA repair 
(ME4); cellular metabolic and catabolic processes (ME8, ME15, 
ME16) and surfactant metabolism (ME10). Biological function 
enrichment for these categories is presented in table 3 and key 
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Table 2  List of top five genes by connectivity within each module

Module Top five connected genes

ME1 DNAJA4 SPA17 SPATA18 RBKS C11orf70

ME2 NDRG4 KIAA1462 EPAS1 CCDC85A MYZAP

ME3 IGF1 COL14A1 STEAP1 COL15A1 CTHRC1

ME4 CDCA5 MELK CCNB2 TPX2 CEP55

ME5 FKBP11 SSR4 STARD5 PIM2 SPAG4

ME6 COL1A2 LOXL2 COL3A1 HEPH GLI2

ME7 TRPV2 DOK2 CSF2RA FLVCR2 FCGR3A

ME8 ARAF TYK2 FXR2 EDC4 PQLC1

ME9 GADD45B IL6 MAFF CSRNP1 FOSL2

ME10 CACNA2D2 PLA2G4F LGI3 ABCA3 HPN

ME11 HLA-E BIN2 PSMB9 IL12RB1 PRF1

ME12 PKN1 DBNL CNPPD1 KLC1 AP1M1

ME13 KANK2 AOC3 RECK PGR FZD1

ME14 ACTA2 CNN1 ACTG2 TPM2 HSPB7

ME15 DLGAP4 FMR1 C6orf106 PTPN14 EXOC3

ME16 PRKCZ NEDD4L VSIG2 RASSF7 PPP1R9A

Figure 3  Consensus modules for both IPF groups that were 
significantly correlated with DLCO (top) or FVC (bottom). No 
significant correlations were found in the control group. Number is 
the R-value for each correlation. Number in parenthesis is the FDR 
corrected p value. DLCO, diffusion capacity; FVC, forced vital capacity; 
IPF, idiopathic pulmonary fibrosis; ME, module eigengene.

Table 3  Representative biological functions for each module based 
on enrichment map clustering of gene ontology: biological process and 
Reactome terms

Module
Expression in 
disease

No genes in 
module Biological function

ME1 UP 1579 Cilia organisation

ME2 DOWN 1404 Blood vessel development

ME3 UP 396 Extracellular Matrix organisation

ME4 UP 380 Cell division/DNA replication/DNA 
repair

ME5 UP 371 B-cell activation/unfolded protein 
response

ME6 UP 207 Extracellular Matrix organisation

ME7 DOWN 204 Leucocyte activation/degranulation

ME8 DOWN 188 Cellular metabolic process

ME9 DOWN 163 Response to bacteria/apoptosis/RNA 
transcription

ME10 DOWN 158 Surfactant metabolism

ME11 DOWN 116 T-cell activation/Major 
histocompatability complex (MHC) 
class I activity/interferon response

ME12 DOWN 107 Leucocyte activation/degranulation

ME13 DOWN 80 Muscle contraction/organ 
development

ME14 UP 75 Contractile fibre/cell-extracellular 
matrix interactions

ME15 DOWN 58 Cellular protein catabolic mechanism

ME16 DOWN 39 Cell-cell junction organisation

modules are summarised below. We confirmed the validity of 
GO pathway identification of modules by localising the most 
highly connected genes of each module to specific cluster of cells 
that match its respective GO pathway using a single cell lung 
tissue dataset we had previously generated17 (online supplemen-
tary figure S8).

Immune response
Modules related to the immune response displayed specific 
inflammatory pathways and gene atlas cell types. Down-
regulated modules include ME7, ME12 and ME11. ME7 
was enriched for leucocyte activation (GO:0045321, 
p=2.55×10−10), degranulation (GO:0043299, pP=4.75×10−8) 
and CD14 +monocytes (p=7.96×10−11) and CD33 +myeloid 
cells (p=6.08×10−7). ME12 was enriched for myeloid leuco-
cyte activation (GO:0002274, p=8.31×10−4) and leucocyte 
degranulation (GO:0043299, p=0.00171) but was not associ-
ated with a specific cell type by gene atlas. ME11 was related 
to T-cell activation (GO:0042110, p=2.53×10−8), interferon 
signalling (REAC:913531, p=1.38×10−15), response to virus 
(GO:0009615, p=9.0×10−9) and Class I MHC mediated antigen 
processing and presentation (REAC:  983169, p=2.34×10−5), 
suggestive of a T-cell-mediated antiviral phenotype. Human 
gene atlas showed enrichment for CD56  +Natural Killer 
cells (p=7.32×10−18), CD8  +T cells (p=2.5×10−8) and 
CD4 +T cells (p=4.32×10−6).

ME9 was downregulated in IPF but was the only module 
that showed a reverse trend in relation to lung function with 
increased ME9 associated with a decline in FVC. It was enriched 
for response to bacterium (GO:0009617, p=5.52×10−7), 
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Figure 4  Network of enriched transcription factors (white) and correlated miRNA (yellow) with each module. Modules upregulated in disease 
are shown as rectangles and modules downregulated in disease are shown as hexagons. Increased normalised enrichment scores are denoted by 
increased edge thickness. Biological function was categorised for immune response (blue) and fibrosis (green), with remaining modules labelled 
purple. The transcription factor EP300 (red lines) and TCF12 (orange lines) were highlighted as forming a network linking the fibrosis and immune 
response associated modules.

apoptotic process (GO:0006915, p=7.2×10−6), regulation 
of gene expression (GO:0010468, p=8.75×10−6) and the 
CD33 +myeloid cell type (p=2.46×10−9).

The only immune response module that was increased in 
disease and negatively correlated with DLCO and FVC lung func-
tion measurements was ME5, which was associated with B-cell 
activation (GO:0042113, p=3.95×10−5) and the unfolded 
protein response pathway (REAC:381119, p=2.64×10−6). 
Gene atlas identified this module as enriched for CD19 +B cells 
(p=5.95×10−5) and included genes associated with develop-
ment of B-cells into germinal centres and plasma cells such as 
POU2AF1 and MZB1.

Fibrotic response
Extracellular matrix organisation pathway was enriched in ME3 
(REAC:1474244, p=5.11×10−11) and ME6 (REAC:1474244, 
p=3.34×10−7). ME6 was composed of the collagen markers 
COL1A2 and COL3A1 while ME3 included COL14A1, 
COL15A1 and TGFB3. While both modules were upregu-
lated in IPF, only ME3 was negatively correlated with decline 
in DLCO. Closely associated to the ECM modules by eigengene 
clustering was ME14 which was associated with muscle contrac-
tion (REAC:397014, p=4.56×10−8) and alpha-smooth muscle 
actin. The combination of contractile fibres and extracellular 
matrix suggest these modules are related to a myofibroblast 
signature.

Developmental response
ME2 associated with vasculature development (GO:0001944, 
p=5.39×10−15) and cholesterol biosynthesis pathways 
(REAC:191273, p=0.00701). This module was downregulated 
in IPF and positively correlated with DLCO. A large number of 
genes was identified for this module including DISP1, required 
for effective hedgehog signalling which is an important pathway 
in angiogenesis,18 and CAV1, which regulates VEGF stimu-
lated angiogenesis.19 This module also included the WNT genes 
WNT3A and WNT7A.

ME1 was upregulated in IPF and was strongly associated 
with cilium organisation (GO:0044782, p=9.88×10−43). Cilia 
in the lungs is mainly present on ciliated bronchial epithelial 
cells suggesting this module may be related to airway pathology 
including the development of the bronchiolar structures in 
honeycomb cysts.20 Interestingly, this module was also enriched 
for genes related to viral gene expression (GO:0019080, 
p=6.24×10−6).

Module regulators
The 16 modules were enriched for 25 transcription factors and 
21 miRNAs (figure  4). The strongest enrichment scores were 
for transcription factors associated with the downregulated 
viral immune response module ME11, STAT2 (NES=9.068) 
and IRF1 (NES=9.789), the upregulated cilia-related module 
ME1, ZBTB7B (NES=9.935) and the DNA replication module 
ME4, E2F4 (NES=10.072). Several transcription factors were 
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Figure 5  (A) Discriminative dimension reduction (DDR) graph of GSE93606 IPF peripheral blood RNA data using module ME1 (cilia) gene list. 
K-means clustering was used to separate samples into two groups (yellow and purple). (B) Heatmap of gene expression sorted by DDR score. (C) 
Kaplan-Meier curves for groups defined by DDR k-means clustering of ME1 genes in peripheral blood dataset. Multivariate Cox’s proportional hazard 
modelling of module groups, FVC, sex and age showed ME1 had significant association with survival (p=0.0097). IPF, idiopathic pulmonary fibrosis; 
ME, module eigengene.

also included in their associated module suggesting a positive 
feedback loop; these regulators include FOXM1 (ME4), MYBL2 
(ME4), IRF1 (ME11), STAT1 (ME11) and TCF12 (ME14). 
Overall, these transcription factors are able to directly regulate 
44% of the genes identified in these modules (online supplemen-
tary table S1).

Module ME1 had the greatest number and strongest correla-
tions of miRNAs of all modules. These correlated miRNAs were 
mainly from two families, miR-34/449 (miR-34b: p=1.91×10−8, 
r=0.80, miR-34c-3p, miR-34c-5p, miR-449a, miR-449b) and 
miR-200/429 (miR-200a: p=6.00×10−9, r=0.80; miR-200b: 
p=5.55×10−13, r=0.86; miR-429: p=7.49×10−8, r=0.73). 
The miRNAs miR-205 (p=8.86×10−10, r=0.84) and miR-31 
(p=3.09×10−9, r=0.82) were also strongly correlated and 
linked this module with ME2 (miR-205: 3.83×10–3, r=−0.68; 
miR-31: p=6.76×10−4, r=−0.66). The miR-30s correlated 
with ME2 (miR-30a: p=1.87×10−6, r=0.68; miR-30b: 
p=1.10×10−4, r=0.72), ME3 (miR-30a: p=3.19×10−4, 
r=−0.62; miR-30b: p=3.19×10−4, r=−0.66) and ME5 
(miR-30a: p=2.47×10−4, r=−0.59; miR-30b: p=2.47×10−4, 
r=−0.70), further supporting a link between fibrosis and B-cells. 
The contractile fibre module ME14 was also correlated with 
two miRNAs (miR-133b: p=1.08×10−4, r=0.77 and miR-143: 
p=2.65×10−3, r=0.64).

We found many of these regulators have been shown in 
previous studies to have a significant role with their associ-
ated modules. With regard to module ME1, these models have 
confirmed an important role for the miR-34/449 family in cilio-
genesis and the miR-200/429 family as being upregulated under 
hypoxic conditions.21 22 Module ME14 was enriched for tran-
scription factors SRF and TCF12 that have both been found to 
be required for myofibroblast differentiation and contractile 
activity in fibroblasts.23 24 Of particular note is the transcription 
ZBTB7B which was strongly enriched as a regulator for module 
ME1. This gene is normally associated with lineage commitment 
of T-cells to the CD4 phenotype25 but not has not been previ-
ously shown to regulate the epithelium. Examining the human 
protein atlas, we found ZBTB7B to be highly expressed in all 
epithelial cells types (skin and digestive tract) and the protein 
highly expressed in bronchial epithelial cells. Furthermore, 
examination using the lung single cell dataset found ZBTB7B to 
be highly expressed in epithelial cells further supporting its role 
in epithelial cell development (online supplementary figure S9).

Survival analysis
Clinical relevance of these modules was evaluated using an inde-
pendent cohort of 57 patient with IPF peripheral blood RNA 
expression profiles with multivariate Cox’s proportional-hazard 
modelling used to evaluate the influence of each module in 
predicting survival. Median gene expression for genes comprising 
each module was assessed to determine if gene signature was 
detectable in the blood samples (online  supplementary  figure 
S10). Of the 16 modules we identified, four modules were 
found to be significantly associated with survival after Bonfer-
roni adjustment for multiple comparisons (ME1 p=0.038, ME8 
p=0.008, ME9 p=0.042, ME12 p=0.041). Multivariate Cox’s 
proportional-hazards model to adjust for FVC, age and sex was 
applied to these four modules and showed ME1 had the greatest 
association with survival with an overall concordance of 0.777, 
an adjusted log-rank test p value of 0.001, and a ME1 HR of 
2.73 (95% CI 1.28 to 5.87; p=0.0097) (figure 5).

Discussion
Consensus network analysis was used to identify differentially 
expressed modules with associated biological function and tran-
scriptional regulators expressed in IPF with relation to decline 
in lung function. Similar to previous studies that have used 
high-throughput datasets to examine IPF, these modules were 
enriched for pathways related to the immune response, fibrosis 
and development. Regulators cross-linking these modules 
include the transcriptional coactivator p300 and TCF12, as well 
as the miRNAs miR-205 and miR-30s.

Several observations can be derived from these data. For the 
first, IPF is shown to have a dysfunctional immune response 
highlighted by the decrease in interferon, MHC class I presen-
tation, and T-cell activation and decrease in pathways related 
to activation and degranulation of leucocytes. Interestingly, 
while the module related to detection of bacteria was down-
regulated in IPF, it was negatively correlated with lung func-
tion decline. It has been shown that patients with a more 
rapid decline in lung function have an increased lung bacterial 
burden26 which suggests that despite a downregulated antibac-
terial immune response, the lung is responding to the presence 
of these micro-organisms. Viral infections have also thought to 
be involved in IPF but evidence are lacking.27 28 Overall, the 
dysfunctional immune responses may be related to the poor 
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clearance of micro-organisms resulting in their increased pres-
ence in IPF. These downregulated immune responses would also 
be exacerbated by treatment with anti-inflammatory drugs and 
may explain the increased mortality in patients with IPF when 
treated with corticosteroids.

Despite a general downregulation in the immune response, the 
humoral immune response was upregulated, specifically related 
to activation of B-cells. This is supported by the previously 
reported increased presence and number of B-cells and tertiary 
lymphoid follicles in IPF29 as well as a transcriptomic study where 
increased B-cell but not T-cell activation in IPF was observed.30 
While the role of B-cells in IPF remains unknown, the plasma 
cell marker, MZB1, has been associated with numerous fibrotic 
diseases.31 Further supporting a link between B cells and fibrosis 
are the miR-30s which were correlated with the B cell module 
and ME3, one of the extracellular matrix associated modules. 
These miRNAs have been shown to be involved in both fibrosis 
and epithelial–mesenchymal transition32 and repressing B-cell 
activating factor (BAFF) expression in B-cells.33

Second, our data show that  two parallel fibrotic processes 
are active. The most highly connected genes in module ME6 
are collagen 1 and 3 (COL1A2 and COL3A1), which form the 
primary structures in the ECM. ME3 was highly connected 
with collagen 14 (COL14A1) which has a role in cross-linking 
collagen 1 and the development of more advanced fibrotic struc-
tures. While both modules were upregulated in IPF, only ME3 
was correlated (negatively) with lung function decline. It remains 
unknown which of these pathways are affected by antifibrotics, 
warranting further research in this area.

Finally, the largest module was associated with cilia (ME1). 
Previous studies have identified a cilia signature in IPF and found 
it to be related with microscopic honeycombing.1 3 In comparing 
our modules with an independent dataset, we showed ME1 
as significantly improving survival models in patients with 
IPF. Serum protein epithelial biomarkers have previously been 
reported to predict survival in patients with IPF.34–36 However, 
this is the first report that we are aware of that used an RNA 
epithelial signature in the blood as a biomarker in IPF. While 
the detection of an epithelial signature in the blood may seem 
counter-intuitive, there is precedence in cancer studies where 
circulating epithelial cancer cells are present in blood samples.37 
Circulating epithelial cells have also been detected in chronic 
inflammatory bowel diseases suggesting a similar process may be 
present in IPF.38

One limitation of the study was that while we performed a 
cross-validated analysis between two non-overlapping groups of 
samples, it was not truly independent. Our dataset consisted of 
160 IPF lung tissue samples and there does not exist a dataset 
of equal size to use for a proper replication cohort with most 
datasets composed of less than 15 samples. (See online supple-
mentary table S3 for complete listing of IPF-related datasets.) 
Rather, we believe that our cross-validated and consensus-based 
approach provides sufficient validation to be considered robust. 
Also, while our study was able to identify a number of novel 
pathways in IPF, it was limited by the available clinical data and 
biases inherent in enrichment analyses. Lung function data were 
available for most samples, but smoking history was limited to 
smoking status (never, current or ever-smoker) without regard 
to pack-years. Enrichment analysis (GO or Human Cell Atlas) 
was also limited in identifying pathways or cell-types as it is 
based on validated gene lists that result in over-representa-
tion of well-characterised pathways. This may be reflected in 
the number of immune response modules we have identified 
warranting further studies to validate the role of these pathways 

in IPF and to determine its functional significance in disease 
progression.

In conclusion, these data demonstrate several pathways in 
IPF consistent with current knowledge of the pathology of this 
disease. We believe that this hypothesis generating study provides 
novel insight into the biological pathways in IPF and identifies 
several candidate regulators as targets for intervention.
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