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Abstract

Whole-room indirect calorimeters are capable of measuring human metabolic rate in conditions 

representative of quasi-free-living state through measurement of oxygen consumption (VO2) and 

carbon dioxide production (VCO2). However, the relatively large room size required for patient 

comfort creates low signal-to-noise ratio for the VO2 and VCO2 signals. We proposed a wavelet-

based approach to efficiently remove noise while retaining important dynamic changes in the VO2 

and VCO2. We used correlated noise modeled from gas-infusion experiments superimposed on 

theoretical VO2 sequences to test the accuracy of a wavelet based processing method. The wavelet 

filtering is demonstrated to improve the accuracy and sensitivity of minute-to-minute changes in 

VO2, while maintaining stability during steady-state periods. The wavelet method is shown to have 

a lower mean absolute error and reduced total error when compared to standard methods of 

processing calorimeter signals.

I. Introduction

INDIRECT calorimetry is the current gold standard for assessing minute-to-minute changes 

in human metabolic rate. This process relies on the measurement of a subject’s oxygen 

consumption (VO2) and carbon dioxide production (VCO2) to compute his/her energy 

expenditure (EE) from the standard equation [1;12]: EE (kcal/min) = 3.941VO2 

+ 1.106VCO2. Whole-room indirect calorimeters (metabolic chambers) measure human EE 

by continually measuring the changing composition of the air contained in a respiratory 

chamber with limited, tightly controlled air inflow and outflow. These devices are useful for 
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measuring a wide range of metabolic states and the large room size increases patient 

comfort, permitting longer studies (up to several days).

However, the accurate measurement of “near free-living” human metabolism using the 

metabolic chamber is not without its challenges. For instance, the size of a typical metabolic 

chamber (15,000-30,000 L) is large when compared to the amount of O2 consumed by an 

average individual at rest (0.2-0.4 L/min). Electromagnetic noise from other devices also 

corrupts the electronic output of the gas analyzers used to measure room O2 and CO2 

composition. For these reasons, the response time and accuracy of the whole-room system is 

reduced, making it difficult to study rapid changes in EE caused by activity, pharmacology, 

or diet [11]. Consequently, it is necessary to implement some form of software-based 

algorithm to suppress noise associated with EE measurement using whole-room 

calorimeters.

Precise calculation of the rate of O2 depletion and CO2 accumulation in the room air 

composition has the most substantial influence on the accuracy of EE measurement in 

whole-room calorimetery [11]. This requires estimating the derivative of the measured room 

air concentrations of O2 and CO2 over time. What in theory appears to be a simple 

calculation, in practice has two major obstacles: (1) The rate of gas accumulation/depletion 

changes each time the subject changes metabolic state (e.g. from sitting to standing and then 

walking) and (2) The derivative calculation is made much more difficult when measurement 

of the O2 and CO2 concentration is corrupted by noise.

To overcome these challenges, we propose a wavelet-based approach to efficiently remove 

noise while retaining important dynamic changes in VO2 and VCO2. We have used 

correlated (colored) noise modeled from real gas-infusion experiments in an indirect 

calorimeter superimposed on theoretical VO2 sequences with both dynamic and steady-state 

periods to test the accuracy of a wavelet based processing method. The wavelet filtering is 

demonstrated to improve the accuracy and sensitivity of minute-to-minute changes in VO2, 

while maintaining stability during steady-state periods. The wavelet method is shown to 

have a lower mean absolute error and reduced total error when compared to standard 

methods of processing calorimeter VO2 signals.

II. Experimental Procedure

A. Calorimeter Design

The experimental portion of this project was carried out in the three newly-constructed 

metabolic chambers housed in the National Institutes of Health (NIH) Metabolic Clinical 

Research Unit in Bethesda, MD. Each chamber consists of an 11.5’ × 11’ × 8’ air-tight room 

enclosed with aluminum faced doors surround by an isolated U-shaped corridor (buffer 

region) that serves as fresh air plenum. Air is actively pulled out of the chamber from 

equidistant points around the room at a constant flow rate (~60 LPM) maintained by a 

voltage-controlled blower (Ametek, Windjammer). The air drawn from the chamber is then 

passively replaced by fresh air from the positive pressure buffer region which enters through 

a small 2 inch opening, thus creating an open-circuit system. The chamber is otherwise 

sealed and isolated from the outer environment. The precise outflow rate is measured by a 
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mass flowmeter (Teledyne-Hastings, Inc) and digitally recorded for further calculations. A 

small quantity of air (1 LPM) is drawn separately from both the effluent chamber air stream 

and the buffer region air supply. Both samples are continuously passed through a condenser 

(ABB SCC-C and F series cooler and feed unit) which cools the air to 1°C and eliminates 

water vapor moisture before pumping them at a constant pressure to the differential CO2 

(ABB AO2000 near-infrared CO2 analyzer, range 0-1 %) and O2 (Siemens Oxymat 6E 

Paramagnetic O2 analyzer, range 20-21%) analyzers, which measure the respective gas 

concentrations to within 0.001%. Each chamber is equipped with a separate air-handling unit 

to ensure a stable internal temperature (±0.2°C), relative humidity (30-50%), and thorough 

mixing of the air. A GE Optica unit was responsible for measuring the temperature (0.1°C), 

humidity (0.1%), and barometric pressure (0.1mmHg) inside the chamber once each minute.

B. Calculation of VO2

Oxygen consumption (VO2) and carbon dioxide production (VCO2) in a metabolic chamber 

can be modeled using first order differential equations, the derivations of which are shown in 

detail elsewhere [7]. Since the measurement of O2 has a higher noise level than CO2 [11] 

most likely due to differences in the measurement mode of the two analyzers (paramagnetic 

versus near-infrared), we have elected to present data related to VO2 only, but the process of 

computing the VCO2 is identical. The VO2 was computed using the following equation:

VO2 = − F f O2
o − f O2

i H−1 + Vc
d
dt ( f O2

o ) (1)

H =
1 − f O2

i − f CO2
i

1 − f O2
o − f CO2

o (2)

where F is the outflow rate and Vc is the air volume of the chamber, both corrected for 

standard temperature, pressure, and dry (STPD) conditions. H is commonly referred to as 

the “Haldane correction”. The concentrations of O2 and CO2 in the inlet air ( f O2
i  and f CO2

i ) 

are assumed to be constant at 20.930% and 0.03%. The concentration of O2 and CO2 in the 

outlet air ( f O2
o  and f CO2

o ) are measured by the respective analyzer.

C. Simulated Signals

Gas infusion tests were performed to identify the steady-state noise characteristics of the 

metabolic chamber. Dried, compressed gas from one bottle of N2 (UHP Grade, 99.99% pure, 

Roberts Oxygen Inc) and one bottle of CO2 (SFC Grade, 99.9% pure, Matheson Tri-Gas 

Inc) was simultaneously infused into the three metabolic chambers at a constant, controlled 

rate for three hours. The rate of infusion of each gas into each chamber was controlled using 

separate thermal mass flow controllers (MKS Instruments, 1179a) connected to a mass flow 

programmer (MKS Instruments, 647C). During the infusion, the voltage output of the O2 
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and CO2 analyzers was digitized (National Instruments, NI9215) and recorded at 120 

samples/sec using a Labview program, yielding f O2
o  and f CO2

o  signals. The f O2
o  and f CO2

o

were resampled posthoc at 1 sample/sec. This process was repeated in the three chambers on 

five consecutive days, with constant flow rates ranging from 0.149 - 0.265 LPM for CO2 and 

0.74 - 1.32 LPM for N2.

Once all gas infusion data was collected, the f O2
o  and f CO2

o  collected from each chamber 

during each day (N = 15 total) were detrended by subtracting off the best-fit quadratic 

polynomial. This resulted in an error sequence. Since the length of the error sequence was 

generally too short for an appropriate simulation (3 hours), an autoregressive (AR) model 

was created using the Burg method [10]. The order of the model was determined using the 

Akaike’s Final Prediction Error [10]. The model coefficients were then used to filter 

randomly generated white noise to yield a sequence of colored noise (n) used during the 

simulation. The variance of the simulated colored noise sequence was set to the variance of 

the error sequence to provide a realistic signal-to-noise ratio.

To generate an appropriate set of test data, separate theoretical sequences for oxygen 

consumption and CO2 production (VO2
T and VCO2

T) were created for each of the 15 

sequences. Each VO2
T and VCO2

T sequence was approximately 24 hours long and 

incorporated rates that corresponded to various metabolic states, including rest, exercise, and 

post-meal response. The sequences also contained 1 and 2 minute impulse increases in VO2 

and VCO2, to test the sensitivity of each method. The theoretical O2 concentration sequence, 

f O2
T , was then back computed from the ideal VO2

T and VCO2
T sequences by inverting Eq. (1) 

and letting d f O2
T ∕ dt = f O2

T k − f O2
T k − 1 .

f O2
T [k] = 1

(VC + FΔt) f O2
i Δt(F + VO2 − VCO2) −

VO2Δt + VC f O2
T [k − 1]

(3)

In Eq. (3), Δt is the time between steps k-1 and k, in minutes. The noise sequences are then 

added to the theoretical f O2
T  sequences and the resultant noisy simulated signals, f O2

n , are 

used to test the following processing algorithms.

f O2
n = f O2

T + n (4)
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D. Standard Processing Methods

Several methods have been implemented to compute the rate of change in the O2 

concentration, d f O2
o ∕ dt, during noisy measurement conditions. The two most widely used 

are the Henning algorithm [3; 8] and the central difference method [7; 11].

The Henning algorithm finds the piecewise fit of two exponential functions in each 30 

minute sliding window of f O2
n  data which minimize the squared error. The fits take on the 

form:

f O2
o = A1 + B1 exp −t F

Vc t = 0 bpt
+

A2 + B2 exp −t F
Vc bpt + 1 29

(5)

where bpt is the breakpoint between the first and second exponential fit. The derivative of 

the fits can then be used to compute the VO2.

The central difference method (CDM) is a discrete time derivative that follows the form 

presented by Sun, et. al. [11].

d f O2
n

dt [i] = 1
L ∑

k = l

L
f O2

n i + k − ∑
k = l

L
f O2

n i − k . (6)

In this case, a 3 minute central difference was used; meaning the f O2
n  value of minute 1 was 

subtracted from the f O2
n  of minute 3, yielding d f O2

n ∕ dt of minute 2.

E. Wavelet Correction of Central Difference Method

The main obstacle in calculating VO2 during indirect calorimetry is the low signal-to-noise 

ratios in the gas concentrations, particularly for O2, which can be exacerbated during 

calculation of their derivative over time (see central difference method in Fig. 1). To 

algorithmically reduce the amount of system (colored) noise corrupting d f O2
n ∕ dt we chose 

to use a mathematical technique known as wavelet de-noising [2;4;5]. In wavelet de-noising, 

the noisy derivative sequence is mathematically decomposed into several frequency sub-

bands using a series of filters whose structures are dependent on the choice of an initial 

“Mother Wavelet”. A unique, pre-determined mathematical threshold is applied to each 

frequency sub-band in order to suppress the noise (underneath the threshold) and retain 

important details (above the threshold) specific to each frequency range. It is important to 

note that the thresholds for each frequency range are not fixed, but rather they are flexible 

and based on the statistical characterization of the system noise. The derivative sequence can 
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then be reconstructed with the thresholded sub-band information. The advantage of the 

wavelet de-noising technique is that unwanted noise is suppressed while important 

information is retained with limited smoothing of detail [6]. This quality is essential to 

detect dynamic changes in VO2 while reducing system noise.

For the problem presented here, we applied the wavelet de-noising technique to the 

derivative calculated using the central difference method (Fig. 1). A stationary wavelet 

transform [9] with a Haar Wavelet [5] was used to decompose the d f O2
n ∕ dt into the three 

frequency subbands. The universal threshold rule for colored noise [4] was used (Eq. 7).

T j = σ j 2 loge(N) (7)

Here N is the number of discrete samples in the signal being decomposed. The term σj is a 

robust estimate of the noise-level in each wavelet frequency sub-band (j), which is computed 

as the median absolute deviation from the mean divided by 0.6745 [4].

F. Analysis of Performance

All three methods were used to compute the VO2 in 15 of the noisy different f O2
n  signals. 

The resultant VO2 from each method was compared to the respective theoretical VO2
T

sequence. The mean absolute error (MAE) was used to quantify minute-to-minute errors in 

the VO2 calculations and total daily error was used to assess the long term performance of 

each method. Total daily error was defined as the sum of all the minute-to-minute 

differences between the theoretical VO2
T sequence and the calculated VO2 sequence.

III. Results

Representative results from the three VO2 processing methods are demonstrated in Fig. 2. 

The Henning method (Fig. 2, top row) appears to follow the theoretical VO2 during steady-

state periods >30 minutes. However, during short impulses of 1 to 2 minutes (left column), 

and longer pulses of 10 – 30 minutes (right column) the Henning method oversmoothes the 

data, and thus yields inaccurate results on a minute-to-minute basis. In contrast, the VO2 

computed using the Central Difference Method (CDM, Fig. 2, middle row) captures short 

term changes in the theoretical VO2, but is noisy during the steady-state periods >30 

minutes. When the wavelet transform is applied to the central difference (Fig. 2, bottom 

row), the detailed shortterm changes are retained, but the steady-state noise is smoothed, 

yielding a computed VO2 which is closer to the theoretical VO2.

The quantitative results from the 24-hour simulation experiments (N=15) is displayed in 

Table 1. The mean absolute error for the wavelet method of computing VO2 (0.021 ± 0.006 

LPM) was significantly lower (p<0.001) than both the Henning VO2 (0.066 ± 0.005 LPM) 

and the CDM VO2 (0.058 ± 0.015 LPM). This suggests that the wavelet denoising improved 

the minute-to-minute calculation of VO2. The total daily error was highest for the Henning 
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Method (3.605 ± 1.850 L/day, p<0.001 compared to the other two methods). The Wavelet 

method increased the total daily error from the CDM, but the increase was not significant 

(0.061 ± 0.244 vs. 0.075 ± 0.144 L/day, p=0.85).

IV. Conclusions

We investigated the performance of three processing methods on simulated 24-hour VO2 

signals with a wide range of dynamic and steady-state metabolic activities corrupted by 

additive, correlated noise modeled from gas infusion experiments. The Henning Method, 

which determines the two best fit exponential equations to each 30 minute sliding window of 

f O2
n  data, appeared to work well on steady-state (>30 min) VO2 periods (Fig. 2), which were 

incorporated to simulate changes to basal energy expenditure, exercise bouts longer than 30 

minutes, and post-meal responses. However, the minute-to-minute performance of the 

Henning Method during durations of 10 – 30 min. (Fig. 2, top row, right col.), meant to 

simulate physical activity of daily living, and short impulses (1 – 2 min., Fig. 2, top row, left 

col.) was poor. Overall, this method had the largest MAE and under-predicted the daily VO2 

by an average of 3.6 L/day. On the other hand, the Central Difference Method (CDM) was 

able to identify very sharp changes in VO2 over time, but did not demonstrate stability 

during steady-state periods (Fig. 2, middle row). When Wavelet De-noising was applied to 

the Central Difference Method, the wavelet processing appeared to balance features of the 

other two methods, by demonstrating similar steady-state stability and retaining the detail 

during both the long and short pulse sequences (Fig 2, bottom row). The combination of 

CDM and wavelet-de-noising demonstrated an MAE which was nearly 1/3 of both the other 

two methods without a significant increase in the total daily error.

In conclusion, wavelet-based noise removal appears to improve the accuracy of calculated 

VO2 values during simulation. Further testing is required to optimize the process for real-

time calculations.
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Fig. 1. 
The derivative of a simulated room O2 concentration, d(fO2)/dt, corrupted by colored noise. 

The Central Difference method of calculating the d(fO2)/dt (red line) captures sharp 

changes, but contains significant noise during the steady-state period (>150 min). Applying 

the wavelet transform to the central difference (green line) reduces the noise while retaining 

sharp features.

Brychta et al. Page 9

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2019 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Methods of calculating VO2 from noisy fO2 data. The Henning Method (blue line, top row), 

Central Difference Method (CDM, red line, middle row), and Central Difference Method 

with Wavelet De-noising (green line, bottom row) were tested with various theoretical VO2 

sequences, such as short (1 and 2 minute) pulses (left column) and longer (10-30 minute) 

pulses (right column).
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TABLE I

24-Hour Simulation Results (N=15)

Method MAE in VO2 (LPM) Total Error in VO2 (L/day)

Henning
0.066 ± 0.005 3.605 ± 1.850

2

(0.057, 0.075) (−0.415, 6.112)

CDM
0.058 ± 0.015 0.061 ± 0.244

(0.037, 0.082) (−0.314, 0.588)

CDM + 0.021 ± 0.006
1 0.075 ± 0.144

Wavelet (0.010, 0.029) (−0.187, 0.379)

Values reported in Mean ± SD (Min, Max)

1
Significantly lower than both Central Difference and Henning

2
Significantly larger than both Wavelet and Central Difference Methods
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