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Abstract

Cycloaddition reactions provide direct and convergent routes to cycloalkanes, making them 

privileged targets for the development of synthetic methods. Whereas six-membered rings are 

readily accessible from Diels–Alder reactions, cycloadditions that generate five-membered rings 

are comparatively limited in scope. Here, we report that dinickel complexes catalyze [4 + 1]-

cycloaddition reactions of 1,3-dienes. The C1 partner is a vinylidene equivalent generated from the 

reductive activation of a 1,1-dichloroalkene in the presence of stoichiometric Zn. Intermolecular 

and intramolecular variants of the reaction are described, with high levels of asymmetric induction 

achieved in the intramolecular cycloadditions using a C2-symmetric chiral ligand that stabilizes a 

metal–metal bond.

One Sentence Summary:

Dinickel catalysts promote [4 + 1]-cycloadditions of vinylidenes and 1,3-dienes to form 

cyclopentenes.

Natural products display a variety of carbocyclic structures that are readily assembled within 

the active sites of cyclase enzymes but are challenging to prepare de novo in the laboratory 

(1). It is also common for synthetic molecules to incorporate ring systems in order to impose 

geometric constraints or to arrange functional components at well-defined positions in three-

dimensional space. For these reasons, methods that provide convenient access to common 

cycloalkanes are of substantial value to synthetic chemists. Whereas six-membered rings 

may be prepared using the Diels–Alder reaction, no cycloaddition of equivalent generality is 

available for the synthesis of five-membered rings. Current leading approaches include 
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transition metal-catalyzed [2 + 2 + 1]-cycloadditions, such as the Pauson–Khand reaction 

(2), and [3 + 2]-cycloadditions using trimethylenemethane equivalents (3).

It is attractive to consider an alternative route to five-membered rings (4, 5) that would rely 

on a [4 + 1]-cycloaddition between a 1,3-diene and a suitable C1 partner (fig. 1A). A major 

impediment to realizing such a reaction by a concerted mechanism is the competing [2 + 1]-

cycloaddition, which is often favored and generates vinylcyclopropanes as products (fig. 

1B). Quantum mechanical models for the reaction between singlet methylene and 1,3-

butadiene attribute this selectivity to excessive closed-shell repulsion between the carbene 

lone pair and the filled Ψ1 orbital of the diene in the symmetry-allowed transition state 

geometry (6–8). As a consequence, direct [4 + 1]-cycloadditions are exceedingly rare 

beyond specialized classes of substrates (9–11). A viable alternative is to carry out a 

sequential [2 + 1]-cycloaddition followed by a vinylcyclopropane 1,3-rearrangement; 

however, preparatively useful variants of this process require an activating substituent, an 

additional strain element, or a catalyst to accelerate the rearrangement step (12–17)—the 

rearrangement of the parent vinylcyclopropane molecule occurs at >300 °C and has an 

activation energy of approximately 50 kcal/mol (18, 19). In light of these challenges, 

transition metal-catalyzed [4 + 1]-cycloadditions have also been explored, culminating in the 

discovery of methods that allow for the addition of CO to various cumulene-containing 

dienes (20–23).

We recently reported a dinickel catalyst that promotes the [2 + 1]-cycloaddition of 

vinylidenes and alkenes to form methylenecyclopropane products (24). 1,1-Dichloroalkenes, 

which are conveniently prepared in a single step from the corresponding aldehyde or ketone, 

serve as vinylidene precursors (25), and Zn is used as a stoichiometric reductant. 

Experiments using stereochemically labelled alkenes were suggestive of a stepwise 

mechanism for cyclopropane formation. The intermediacy of a metallacycle generated from 

the addition of a Ni2(C=CHR) species to the alkene could account for this observation. 

Subsequent C–C reductive elimination would then close the three-membered ring. We 

reasoned that such a process might be adapted to 1,3-dienes as a means of circumventing the 

electronic constraints of the pericyclic [4 + 1]-cycloaddition pathway. In this scenario, the 

partitioning between vinylcyclopropane and cyclopentene products would be dictated by the 

relative facility of the two possible C–C reductive eliminations. Here, we report that dinickel 

catalysts induce highly selective [4 + 1]-cycloadditions of vinylidenes and simple 1,3-dienes, 

providing a direct synthetic entry into polysubstituted cyclopentenes.

The Ni2 catalyst 3 was previously shown to promote the reductive 

methylenecyclopropanation reaction and thus served as a starting point for our investigations 

of a model [4 + 1]-cycloaddition (fig. 1C). In an initial survey of reaction parameters, the use 

of a polar solvent such as N-methyl-2-pyrrolidone was found to promote high conversions of 

the 1,1-dichloroalkene. The catalyst generated from Ni(1,2-dimethoxyethane)Br2 (10 mol%) 

and L3 (5 mol%) afforded cyclopentene product 2 in up to 52% yield. The steric profile of 

the catalyst proved to be a critical determinant of reaction efficiency. When the i-Pr 

substituents of the flanking N-aryl groups were replaced with Me or Et (L1 or L2, 

respectively), the yield of 2 decreased to <22%. Conversely, the more hindered cyclopentyl-

substituted ligand (L4) provided a near-quantitative yield of 2. There was no competing [2 
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+ 1]-cycloaddition to generate a vinylcyclopropane, nor did the catalyst isomerize the 

skipped diene of product 2 into conjugation. The importance of the dinuclear catalyst 

structure was examined by comparing the efficiency of catalysts generated using related 

mononucleating ligands (L5–L9). In no case did we observe significant yields of 

cyclopentene 2 using a mononickel catalyst.

The substrate scope of the reductive [4 + 1]-cycloaddition reaction is summarized in Fig. 2. 

A variety of common functional groups are tolerated, including thioethers, trifluoromethyl 

groups, nitriles, esters, ethers, protected amines, epoxides, acetals, and boronate esters. 

Products containing exocyclic vinyl ethers (20) are accessible, albeit in moderate yield due 

to competing reductive decomposition of the alkoxy-substituted 1,1-dichloroalkene. Aryl 

bromides (7), which are often employed in Ni-catalyzed cross-coupling reactions, are left 

untouched in the cycloaddition due to the comparatively rapid oxidative addition of the 1,1-

dichloroalkene by the catalyst. Butadiene is a viable substrate (22–24), and the relatively 

unhindered alkene in the product is not susceptible to a secondary 

methylenecyclopropanation. 1,1-Dichloroethylene provides a source of the parent vinylidene 

fragment (25–26), yielding cyclopentene products with no substituents on the exocyclic 

methylene. Products containing tetrasubstituted alkenes are generated using ketone-derived 

1,1-dichloroalkenes (27–28). Representative 1-substituted (32), 2-substituted (33), 1,2-

disubstituted (34), and 1,3-disusbstituted (35) dienes were found to react efficiently with a 

model 1,1-dichloroalkene. In the case of 1,3-disubstituted dienes (35–40) the cycloadditions 

proceeded with high E selectivity (9:1 to >20:1 ratio of stereoisomers).

In order to explore the synthetic utility of this method, the 4-methylene-1-cyclopentene 

products were converted into other classes of cyclopentane derivatives commonly featured in 

organic and organometallic compounds (fig. 3A). The direct products of the [4 + 1]-

cycloaddition possess the same degree of unsaturation as a cyclopentadiene motif. 

Accordingly, deprotonation of 41 with n-BuLi afforded a cyclopentadienyl anion equivalent 

that was quenched with FeBr2 (0.6 equiv) to yield a hexasubstituted ferrocene (42). 

Additionally, the two trisubstituted alkenes in 41 could be readily differentiated in a reaction 

with BH3•SMe2, which adds to the ring alkene but leaves the exocyclic alkene intact. Next, 

the 2-siloxy substituted diene 44 was subjected to the standard catalytic cycloaddition 

conditions to afford a silyl enol ether product. Subsequent silyl deprotection and alkene 

isomerization yielded cyclopentenone 45. Finally, the disubstituted diene 46, containing a 

free alcohol, proved to be a viable substrate for the cycloaddition. A directed hydrogenation 

of both double bonds in the resulting cycloadduct afforded saturated trisubstituted 

cyclopentane 47.

Intramolecular [4 + 1]-cycloadditions were carried out using substrates in which the two 

reacting partners were connected by a two- or three-atom tether (fig. 3C). For example, 

substrate 56 reacts under standard catalytic conditions to provide 5,6-bicyclic amine 57, 

which is a substructure found in several terpene alkaloid natural products (26). Heteroarenes 

may be incorporated into the tether without loss in reaction efficiency (50 and 52). The 

intramolecular cycloaddition is also amenable to the formation of 5,5-bicyclic systems (55).
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We next turned our attention to demonstrating a catalytic asymmetric variant of the [4 + 1]-

cycloaddition reaction. The imine substituents of the naphthyridine–diimine ligand presented 

the most straightforward opportunity for the incorporation of chirality, and a series of chiral 

catalysts was prepared by condensing commercially available α-secondary amines with 2,7-

diacetyl-1,8-naphthyridine. The ligand derived from (S)-1-cyclohexylethylamine ((S,S)-
L10) afforded enantiomeric excesses of up to 90% for the intramolecular [4 + 1]-

cycloaddition reaction (fig. 3B). Additionally, substrate 54, which was prepared in 

enantiomerically enriched form from a carbohydrate precursor, reacted with high 

diastereoselectivity (18:1 dr) using (S,S)-L10.

In order to examine the chiral environment presented by the (S,S)-L10 ligand, its 

corresponding [NDI]Ni2Br2 complex ((S,S)-58) was prepared by a comproportionation route 

using Ni(COD)2 (1.0 equiv) and Ni(dme)Br2 (1.0 equiv). The pre-synthesized dinickel 

complex (S,S)-58 exhibits the same enantioselectivity as the catalyst generated in situ using 

Ni(dme)Br2 and (S,S)-L10 for the cycloaddition of 48. In the solid state, catalyst (S,S)-58 
adopts a C2-symmetric geometry (fig. 3B). The stereogenic N-(1-cyclohexylethyl) 

substituents are in a 1,3-allylic strain-minimized orientation, which places the C–H bond in 

an eclipsing geometry relative to the C=N bond of the imine. This conformation projects the 

larger cyclohexyl groups and smaller methyl groups in opposing quadrants of the substrate 

binding pocket, suggesting a steric rationale for the high degree of asymmetric induction 

imparted by this catalyst design.

Our initial mechanistic studies were aimed at distinguishing between a direct [4 + 1]-

cycloaddition pathway and a tandem [2 + 1]-cycloaddition followed by a vinylcyclopropane 

1,3-rearrangement (fig. 4A). To address this question, we synthesized vinylcyclopropanes 60 
and 61 (mixture of stereoisomers), which would correspond to the putative intermediates of 

this stepwise process. Under standard catalytic conditions, the [4 + 1]-cycloaddition between 

1,1-dichloroalkene 1 and diene 59 proceeded efficiently to form 41 in 76% yield. Neither 

vinylcyclopropane regioisomer was observed to form at partial conversions. When 

separately prepared 60 or 61 was subjected to the same reaction conditions, there was no 

detectable rearrangement after 24 h of reaction time at room temperature.

We next sought to determine whether Zn was playing a necessary role in the formation of 

the [4 + 1]-cycloadducts or simply serving as a terminal reductant. A single turnover 

experiment was carried out using the isolable [NDI]Ni2Cl complex (62), which is the most 

reduced form of the catalyst that is accessible at Zn potentials (fig. 4B). When [NDI]Ni2Cl 

complex 62 (3.0 equiv) was added to a solution containing 1,1-dichloroalkene 1 (1.0 equiv) 

and excess 2,3-dimethylbutadiene, it was rapidly oxidized to the green paramagnetic 

[NDI]Ni2Cl2 complex 63, and the cycloaddition product 2 was obtained in 49% yield. 

Decreasing the amount of [NDI]Ni2Cl (62) to 2.0 equiv leads to a precipitous decrease in the 

yield of 2 (7%). This reaction stoichiometry suggests that the high-yielding pathway for the 

[4 + 1]-cycloaddition is only accessible when two additional equivalents of the [NDI]Ni2Cl 

complex are present to serve as Cl abstractors.

A proposed catalytic mechanism based on these observations is shown in fig. 4C. Initial 

oxidative addition of the 1,1-dichloroalkene by the [NDI]Ni2Cl complex would generate a 
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high-valent species that can undergo one-electron reduction by Zn to generate the 

chloroalkenyl complex 64. A second reduction event, followed by C–Cl oxidative addition, 

then forms a reactive Ni2(vinylidene)(Cl) species (65). The pathway for cycloaddition from 

this intermediate was evaluated using computational methods (fig. 4D). According to DFT 

models, the diene first coordinates symmetrically across the Ni–Ni bond in an η4-fashion 

(66). This geometry permits the two Ni centers to stabilize the incipient allyl fragment as the 

diene undergoes migratory insertion (activation barrier = 7.1 kcal/mol). The resulting 

metallacycle 67 is structurally related to a Ni2 azametallacycle that we previously 

characterized from a vinylaziridine ring-opening reaction (27). The final C–C reductive 

elimination is calculated to have a barrier of 23.4 kcal/mol and generates the product 

complex, which is thermodynamically favored over intermediate 67 by 13.9 kcal/mol. A 

salient feature of the Ni2 active site is the ability of the two metals to cooperatively stabilize 

the π-systems in the reacting vinylidene and diene fragments as they undergo C–C bond 

formation. Collectively, these studies demonstrate that dinickel catalysts can take advantage 

of these unique interactions to provide an efficient pathway for cycloadditions that are 

challenging to achieve under thermal conditions.

Supplementary Material
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Fig. 1. Reaction development.
(A) Complementary cycloaddition routes to five- and six-membered rings from 1,3-dienes. 

(B) Pericyclic [4 + 1]-cycloadditions suffer from large electronic barriers due to repulsion 

between the carbene lone pair and the Ψ1 orbital of the 1,3-diene. (C) A dinickel-catalyzed 

reductive [4 + 1]-cycloaddition of 1,1-dichloroalkenes and 1,3-dienes. NMP, N-methyl-2-

pyrrolidone; rt, room temperature.

Zhou and Uyeda Page 8

Science. Author manuscript; available in PMC 2020 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Reaction scope.
Reactions were conducted on a 0.2 mmol scale, and isolated yields were determined 

following purification. Standard reaction conditions: 1,1-dichloroalkene (1.0 equiv), 1,3-

diene (2.0 to 3.0 equiv), Zn (3.0 equiv), Ni(dme)Br2 (10 to 20 mol%), L4 (5 to 10 mol%). 

See Supplementary material for experimental details. *Using catalyst 3. †Using Ni(dme)Br2/

L10.
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Fig. 3. Synthetic applications of the catalytic [4 + 1]-cycloaddition reaction.
A [4 + 1]-Cycloaddition approaches to the synthesis of cyclopentenones, stereodefined 

cyclopentanes, and cyclopentadienyl metal complexes. B Chiral dinickel catalyst using a C2-

symmetric ligand. C Intramolecular and asymmetric [4 + 1]-cycloaddition reactions 

(reaction times: 12 to 24 h; reaction temperatures: rt to 50 °C).
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Fig. 4. Mechanistic investigations.
A Distinguishing between direct [4 + 1]-cycloaddition and tandem [2 + 1]-cycloaddition/

1,3-rearrangement mechanisms. B Stoichiometric [4 + 1]-cycloaddition using an isolable 

low-valent [NDI]Ni2Cl complex. C Proposed catalytic mechanism. D DFT models for the 

stepwise migratory insertion–reductive elimination pathway. Energies are relative to that of 

66, and all structures are fully optimized at the M06-L/6–31G(d,p) level of DFT (S = 1/2 

spin state).

Zhou and Uyeda Page 11

Science. Author manuscript; available in PMC 2020 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	One Sentence Summary:
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.

