Skip to main content
. 2019 Mar 27;15(3):e1006269. doi: 10.1371/journal.pcbi.1006269

Table 6. Performance of DAPPER framework for VGG backend network, and classifier heads (FCH, SVM, RF) on KIMIA24 dataset.

The average cross validation MCC (K24-MCCt), and ACC (K24-ACCt) with 95% CI, as well as MCC (K24-MCCv), and ACC (K24-ACCv) on external validation set are reported.

Model K24-MCCt K24-MCCv K24-ACCt K24-ACCv
VGG+FCH 0.317 (0.306, 0.327) 0.207 34.4 (33.2, 35.2) 23.8
VGG+SVM 0.446 (0.439, 0.454) 0.409 47.1 (46.4, 47.8) 43.4
VGG+RF 0.457 (0.449, 0.465) 0.409 48.0 (47.3, 48.8) 43.4