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Abstract

Class switch recombination (CSR) requires activation-induced cytidine deaminase (AID) to

trigger DNA double strand breaks (DSBs) at the immunoglobulin heavy chain (IGH) in B

cells. Joining of AID-dependent DSBs within IGH facilitate CSR and effective humoral immu-

nity, but ligation to DSBs in non-IGH chromosomes leads to chromosomal translocations.

Thus, the mechanism by which AID-dependent DSBs are repaired requires careful exami-

nation. The random activity of AID in IGH leads to a spectrum of DSB structures. In this

report, we investigated how DSB structure impacts end-joining leading to CSR and chromo-

somal translocations in human B cells, for which models of CSR are inefficient and not read-

ily available. Using CRISPR/Cas9 to model AID-dependent DSBs in IGH and non-IGH

genes, we found that DSBs with 5’ and 3’ overhangs led to increased processing during

end-joining compared to blunt DSBs. We observed that 5’ overhangs were removed and 3’

overhangs were filled in at recombination junctions, suggesting that different subsets of

enzymes are required for repair based on DSB polarity. Surprisingly, while Cas9-mediated

switching preferentially utilized NHEJ regardless of DSB structure, A-EJ strongly preferred

repairing blunt DSBs leading to translocations in the absence of NHEJ. We found that DSB

polarity influenced frequency of Cas9-mediated switching and translocations more than

overhang length. Lastly, recombination junctions from staggered DSBs exhibited templated

insertions, suggesting iterative resection and filling in during repair. Our results demonstrate

that DSB structure biases repair towards NHEJ or A-EJ to complete recombination leading

to CSR and translocations, thus helping to elucidate the mechanism of genome rearrange-

ments in human B cells.

Author summary

The production of different classes of antibodies/immunoglobulins (IgM, IgG, etc.) is

essential for protection against diverse pathogens and effective immunity. This cellular

process is triggered by the enzyme activation-induced cytidine deaminase (AID). AID

mutates DNA predominantly in antibody genes, generating different types of DNA

breaks. Repair of DNA breaks initiated by AID leads to the production of different
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antibody classes. Erroneous repair of this damage can also lead to chromosomal transloca-

tions, a hallmark of lymphomas and other cancers. In this study, we used CRISPR/Cas9

technology to model the different types of DNA breaks physiologically produced by AID.

We found that the specific structure of these DNA breaks strongly influenced how they

were repaired. That is, different types of DNA breaks inform different modes of rejoining.

Our findings show that not all types of DNA breaks are treated equally by genome mainte-

nance machinery in the cell. These observations provide insight into the molecular mech-

anisms behind antibody-dependent immunity and lymphomagenesis.

Introduction

DNA recombination at the immunoglobulin heavy chain (IGH) locus is required for class

switch recombination (CSR), the process that changes the class of immunoglobulin expressed

by B cells, e.g., from IgM to IgG or IgA, etc. CSR increases diversity of immunoglobulin iso-

types, which is necessary for comprehensive humoral immunity. Recombination at the IGH
locus is initiated by activation-induced cytidine deaminase (AID) [1], which deaminates deox-

ycytidine to deoxyuridine mostly within WRC (W = A/T, R = A/G) motifs in IGH switch

regions. These switch regions comprise 3–4 kilobases of non-coding DNA enriched for WRC

motifs and are positioned upstream of each of the constant regions that encode immunoglobu-

lin isotypes. Removal of deoxyuridines by the base-excision and mismatch repair pathways

results in a DNA single strand break, or nick [2]. AID-dependent nicks on opposite DNA

strands can melt into a DNA double strand break (DSB). Ligation of DSBs in donor and accep-

tor switch regions places the acceptor constant region downstream of the rearranged VDJ

gene segment. Expression of the recombined VDJ-acceptor constant region sequence gives

rise to an immunoglobulin of a new isotype.

Most AID-dependent DSBs at the IGH locus are either repaired faithfully with no effect on

B cell receptor expression or in a productive manner leading to CSR. However, AID-depen-

dent DSBs in the IGH locus can sometimes ligate to DSBs in other chromosomes, leading to

chromosomal translocations that are hallmarks of B cell lymphomas [3–6]. Thus, characteriz-

ing the molecular mechanism of how AID-dependent DSBs are repaired within or between

chromosomes will help explain the basis of antibody diversification and lymphomagenesis.

DSB repair during CSR primarily relies on canonical non-homologous end-joining (NHEJ)

[7] and, to a lesser extent, alternative end-joining (A-EJ) [8,9]. NHEJ and A-EJ are largely dis-

tinguished by the extent of mutagenicity associated with repair. Broadly speaking, NHEJ

involves the ligation of blunt or nearly blunt DSB ends with little to no insertions/deletions

(indels). In contrast, A-EJ is characterized by exonuclease-driven deletions from the DSB end,

known as resection, to expose short tracts of homologous nucleotides between non-homolo-

gous sequences, known as microhomology, which are used to join DSB ends [10]. Evidence of

repair by A-EJ during CSR and other instances of DSB repair in mouse B cells has been best

characterized when NHEJ is defective or suboptimal [9,11].

CSR is an attractive model for studying DSB repair and identifying NHEJ factors because it

is a physiological, programmed process that is easily studied in mouse models. Primary mouse

B cells undergo CSR ex vivo in response to lipopolysaccharide and cytokines while the CH12

mouse B cell line robustly undergoes CSR in vitro upon cytokine stimulation [12]. However,

while overall CSR frequency is affected by mutation of putative NHEJ factors, the nature of the

switch regions are not conducive to assessing the detailed role of these same factors. This is

because AID can potentially act on thousands of deoxycytidines on both DNA strands in the
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switch regions, resulting in a mix of DSB structures, such as blunt ends or protruding 5’ or 3’

overhangs of varying length. Different factors or end-joining pathways might be needed to

rejoin different types of ends. Furthermore, the high density of WRC motifs in the switch

regions together with the seemingly random activity of AID make it difficult to determine the

precise points where nicks and rejoining occurred. We have previously described an experi-

mental system to work around these uncertainties. We used CRISPR/Cas9 and combinations

of single guide RNAs (sgRNAs) to make predetermined DSBs similar to those that are

expected from AID-mediated nicks to characterize DSB formation and repair in the CH12

mouse B cell line [13].

However, much less is understood about joining AID-dependent DSBs in human B cells,

mainly due to limited experimental material. The CL-01 human B cell line can undergo CSR

in vitro upon cytokine stimulation but at frequencies far below that of CH12 mouse B cells

[14]. B cell subsets from human tonsils can also express AID and undergo CSR ex vivo upon

cytokine stimulation [15], but these uncloned cells are difficult to experimentally manipulate

and are not suitable for detailed biochemical studies.

In this study, we have induced class switching and chromosomal translocations in the BJAB

human B cell line by creating predetermined DSB intermediates using CRISPR/Cas9. These

DSBs emulate DSB structures expected from physiological AID deamination, allowing us to

assess how DSBs of known structure are ultimately repaired. Thus, we are able to analyze the

mechanism of DSB repair leading to genome rearrangements in human B cells with the same

precision as in mouse B cells. By comparing how different DSB structures are repaired by

human B cells leading to switching or translocations, we found that DSB structure can bias

repair of distal DSBs towards NHEJ and A-EJ in human B cells.

Results

Cas9-mediated DSBs induce class switching from IgM to IgA in human B

cells

To characterize end-joining of distal, non-homologous loci in human B cells, we used the

BJAB human B cell line. BJAB cells are Burkitt’s lymphoma-derived cells that express surface

IgM but do not harbor the IGH-MYC translocation typical of Burkitt’s lymphoma [16]. These

properties allowed us to target the native IGH locus in BJAB cells with Cas9 and induce de
novo genetic rearrangements within chromosomes (i.e. class switching from IgM to IgA) and

between chromosomes (i.e. IGH-BCL6 chromosomal translocations).

Throughout this study, we generated DSBs with varied end structures at AID target loci

using Cas9 and single guide RNAs (sgRNAs) (Fig 1A). We first tested whether we could induce

Cas9-mediated switching in BJAB cells with blunt DSBs, as we had previously done in mouse

B cell lines [13]. To do so, we transiently transfected BJAB cells with two plasmids encoding

Cas9 and sgRNAs targeting either the region upstream of switch region μ (S’μ) or α (S’α) to

create DSBs (Fig 1A and 1B, S1 Table). We chose to target these regions in order to avoid the

repetitive sequences present in the switch regions. Recombination between DSBs in S’μ and

S’α replaces constant region μ (Cμ) with constant region α (Cα) downstream of the rearranged

VDJ gene segment, allowing for surface IgA expression (Fig 1B). Cells were harvested 5 days

post-transfection for flow cytometric detection of surface IgA (Fig 1C, S1 Fig). While a single

blunt DSB in S’μ was not able to induce Cas9-mediated switching, blunt DSBs in both S’μ and

S’α were able to induce Cas9-mediated switching in BJAB cells (Fig 1C). Therefore, CRISPR/

Cas9 is a suitable method of inducing DSBs at the native IGH locus leading to class switching.

The majority of AID-dependent DSBs are staggered formed by nicks on opposite DNA

strands [17]. Therefore, we next measured whether staggered DSBs in human B cells could
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Fig 1. Cas9-mediated switching in human B cells. (A) Schematic depicting Cas9 variants and orientation of sgRNAs required to generate blunt, 5’, and

3’DSBs. One sgRNA and wild-type Cas9 produces a blunt DSB, while paired sgRNAs and Cas9 D10A or Cas9 N863A give rise to 5’ or 3’DSBs, respectively.
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also trigger Cas9-mediated switching. To produce staggered DSBs in BJAB cells, we used the

Cas9 nickases, whereby a D10A or N863A substitution inactivate the Cas9 RuvC or HNH

nuclease domains, respectively [18]. Expression of the Cas9 D10A nickase with a pair of

sgRNAs produces a staggered DSB with a 5’ single-stranded DNA overhang (hereafter termed

a 5’DSB) (Fig 1A). Applying the same strategy with the same sgRNAs in combination with the

Cas9 N863A nickase gives rise to a 3’DSB (Fig 1A). Therefore, the position and overhang

length of a particular DSB can be predefined using particular sgRNA combinations (S2 Table).

By transfecting BJAB cells with four plasmids encoding either the Cas9 D10A or N863A

nickases and each of four sgRNAs, we produced 5’ and 3’ overhangs of 38 nucleotides in S’μ
and 63 nucleotides in S’α (Fig 1B). 5’DSBs with a 38 nt overhang in S’μ and a 63 nt overhang

in S’α were able to induce Cas9-mediated switching at a frequency slightly lower than that of

blunt DSBs, whereas 3’DSBs with identical overhang lengths were significantly poorer sub-

strates (Fig 1C, S1 Fig). These results suggest that 5’DSBs are better substrates for Cas9-me-

diated switching than 3’DSBs in human B cells (see Discussion for alternative possibilities).

To assess whether these staggered DSB overhang lengths resembled those triggered by AID

in vivo, we determined how far apart AID-mediated nicks are typically spaced during CSR. To

do so, we analyzed AID-mediated mutations at Sμ from Ung-/-Msh2-/- mice [2]. Mice that are

doubly deficient in UNG and MSH2 are unable to excise AID-mediated uridines or repair dU:

dG mismatches, respectively. Replication across these mismatches leads to mutations, >99%

of which are transition mutations [2]. Thus, the distance between dC!dT and dG!dA transi-

tion mutations serves as a proxy for the distance between deaminated dCs on opposite strands.

We found that the distance between dC!dT on opposite strands at Sμ from Ung-/-Msh2-/-

mice ranged from 0 to 360 nt, with an average of 38 nt and a median of 27 nt (S2 Fig, S3

Table). This result suggests that the lengths of staggered DSB overhangs we designed in the

IGH locus (38 nt in S’μ and 63 nt in S’α) are within the expected physiological range of AID-

mediated staggered DSBs.

It is important to note, however, that our analysis might underestimate the true distance

between AID-mediated nicks because the transition mutations included in our analysis were

unlikely to simultaneously arise or persist within a defined time-frame. At the same time, this

analysis of AID-dependent mutations might overestimate the true distance between AID-

mediate nicks as it was conducted 5’ of switch region μ, which contains less WRC motifs than

the proper switch region μ. Therefore, although we cannot conclude with absolute certainty

that the distance between transition mutations in the switch regions exactly represents dC

deamination density, it seems that the overhang lengths we chose in this study are at least

within what is caused by AID in mouse B cells.

We next analyzed S’μ-S’α junctions from blunt, 5’, and 3’DSBs to examine the footprint of

end-joining pathways used for repair. To this end, we sequenced S’μ-S’α junctions from trans-

fected cells and quantified the amount of resection and microhomology usage at S’μ-S’α

(B) Schematic depicting sgRNA target regions in the immunoglobulin heavy chain (IGH) locus on human chromosome 14 in normal BJAB cells and the

resulting chromosome after Cas9-mediated switching. The sgRNAs in this experiment target S’μ, a non-repetitive region between the rearranged VDJ gene

segment and the switch μ (Sμ) region. Cleavage at the S’μ_1 sgRNA target site with wild-type Cas9 produces a blunt DSB, while cleavage with the Cas9

nickases and sgRNAs S’μ_1 and _2 produces a staggered DSB with a 38 nt overhang. A similar strategy is applied using sgRNAs targeting S’α to produce

blunt DSBs or staggered DSBs with a 63 nt overhang. Schematic is not to scale. (C) Percentage of IgA+ BJAB cells from blunt, 5’, and 3’DSBs measured by

flow cytometry, 5 days post-transfection with Cas9/sgRNA plasmids. “-”, mock transfection. (D) Total resection of S’μ and S’α at S’μ-S’α junctions from

blunt, 5’, and 3’DSBs. Dotted line denotes the total overhang length in S’μ plus S’α (101 nt). (E) Microhomology usage at S’μ-S’α junctions from blunt, 5’,

and 3’DSBs. Black line denotes mean microhomology usage. (F) Percentage of IgA+ Ramos cells from blunt, 5’, and 3’DSBs measured by flow cytometry, 3

days post-transfection with Cas9/sgRNA plasmids. “-”, mock transfection. (G) Total resection of S’μ and S’α at S’μ-S’α junctions from blunt, 5’, and 3’DSBs

in Ramos cells. Dotted line denotes the total overhang length in S’μ plus S’α (101 nt). (H) Microhomology usage at S’μ-S’α junctions from blunt, 5’, and

3’DSBs in Ramos cells. Black line denotes mean microhomology usage. ^The vast majority of S’μ-S’α junctions from blunt DSBs that were sequenced

exhibited 0 nt of resection and 0 nt of microhomology, but had to be excluded from analysis for being non-unique.

https://doi.org/10.1371/journal.pgen.1008101.g001
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junctions to discern repair by NHEJ and A-EJ. We found that blunt DSBs led to S’μ-S’α junc-

tions with low amounts of resection (Fig 1D, S1 Appendix) and microhomology usage (Fig

1E), consistent with previous findings that blunt DSBs are primarily substrates for NHEJ [19].

In contrast, 5’DSBs led to S’μ-S’α junctions with more resection (Fig 1D) and microhomology

usage (Fig 1E) than blunt or 3’DSBs.

Interestingly, we observed that the median amount of 5’DSB resection coincided with the

sum length of S’μ and S’α overhangs, while the median amount of 3’DSB resection fell below

this sum length (Fig 1D, dotted line). This pattern was also evident by visualizing individual

resection of S’μ versus S’α overhangs from each unique junction (S3 Fig). This result suggests

that 5’ overhangs tend to be removed prior to end-joining, while 3’ overhangs tend to be filled

in.

To determine whether the S’μ-S’α end-joining patterns we observed in BJAB cells were a

general property of human B cells, we induced Cas9-mediated switching in Ramos cells,

another human B cell line. Blunt and 5’DSBs led to a greater frequency of Cas9-mediated

switching to IgA in Ramos cells than 3’DSBs (Fig 1F). Like we observed in BJAB cells, 5’DSBs

led to S’μ-S’α junctions in Ramos cells with increased resection compared to those from blunt

or 3’DSBs (Fig 1G). In Ramos cells, like BJAB cells, 5’DSBs tended to be resected to the sum

total overhang length in S’μ and S’α, while resection of 3’DSBs fell below this sum total (Fig

1G, dotted line), supporting the model that 5’DSBs are resected while 3’DSBs are filled in to

complete end-joining. Interestingly, we observed that 5’DSBs led to increased microhomology

usage at S’μ-S’α junctions compared to those from blunt DSBs but not 3’DSBs (Fig 1H).

Together, our results suggest that in human B cells, 5’ and 3’DSBs lead to more processing

during end-joining than blunt DSBs to complete Cas9-mediated switching. Our results suggest

that 5’DSBs lead to increased resection and increased microhomology typically associated with

A-EJ, while 3’DSBs may be processed by a DNA polymerase prior to end-joining.

DSB polarity influences end-joining properties more than sequence context

Previous reports have suggested that sequence context can influence Cas9 repair outcomes

[20,21]. One study found that sgRNAs that target the same sequence at multiple sites within

the genome lead to similar Cas9-mediated indel profiles [20]. Another recent study found that

a thymine in the fourth position after the protospacer adjacent motif (PAM) was more predic-

tive of single nucleotide indels than a guanine in the same position [21], suggesting that

sequence might play a role in dictating end-joining characteristics. The mechanism behind

this potential bias, however, remains unclear.

To determine whether the S’μ-S’α end-joining patterns we observed were due to the nature

of the sequence targeted by Cas9 rather than DSB polarity, we designed sgRNAs targeting a

slightly different region upstream of S’α, approximately 150 nt downstream of the original

sgRNA pair (S4 Fig). Using this new pair of sgRNAs targeting S’α (S2 Table), we generated

blunt, 5’, and 3’DSBs at S’μ and S’α to induce Cas9-mediated switching. Despite the different

sequence targeted in S’α, we observed similar end-joining patterns in BJAB cells based on DSB

structure. That is, 5’DSBs led to S’μ-S’α junctions with increased resection (S4 Fig) and micro-

homology (S4 Fig) than 3’DSBs. Again, we observed that the median amount of resection of

5’DSBs approached the sum total overhang length, while 3’DSBs tended to be resected below

this amount (S4 Fig). These results support the notion that DSB polarity triggers different

modes of end processing.

Although other studies have identified a role for sequence context in influencing DSB repair

outcomes, we did not find evidence that simply changing sequence context significantly

affected resection or microhomology at Cas9-mediated S’μ-S’α junctions. Rather, the polarity
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of a DSB within a given sequence had a more pronounced influence on end-joining

properties.

Cas9-induced 5’DSBs are preferential substrates for IGH-BCL6 (der3)

translocations

AID activity can potentially lead to chromosomal translocations between IGH and so-called

“off-target” genes. To determine whether DSB structure affects inter-chromosomal joining in

human B cells, we designed sgRNAs targeting S’μ on chromosome 14 and BCL6 on chromo-

some 3 (Fig 2A). Recombination between Cas9-induced DSBs at these sites results in the

IGH-BCL6 chromosomal translocation, hereafter termed “der3”, a marker of diffuse large B

cell lymphoma and follicular lymphoma [22,23]. Cas9-mediated der3 was detected and quanti-

fied using a nested PCR assay. Briefly, approximately 45,000 genome equivalents (150 ng of

human genomic DNA) were used for round 1 amplification of der3 by conventional PCR fol-

lowed by round 2 amplification by quantitative PCR (qPCR). The amount of der3 in a given

sample was normalized to the amount of a control genomic region on chromosome 13 ampli-

fied from total genomic DNA using a similar nested PCR assay.

By transiently transfecting plasmids encoding the relevant Cas9 enzymes and sgRNA com-

binations (S2 Table), we generated Cas9-induced der3 in BJAB cells with blunt, 5’, and 3’DSBs

(S1 Fig). As we observed in Cas9-mediated switching, blunt and 5’DSBs were better substrates

for Cas9-mediated der3 compared to 3’DSBs (Fig 2B, S1 Fig). Even though 3’DSBs led to the

lowest frequency of Cas9-mediated translocations, we were able to generate enough transloca-

tions from 3’DSBs for S’μ-BCL6 junction analysis with BJAB cells, which was previously not

the case using CH12 mouse B cells [13].

To analyze the relative contributions of NHEJ and A-EJ to der3 formation, we sequenced

S’μ-BCL6 junctions from BJAB cells. We found that the pattern of resection and microhomol-

ogy usage at S’μ-BCL6 junctions was similar to what we observed at S’μ-S’α junctions. 5’DSBs

led to S’μ-BCL6 junctions with more resection (Fig 2C) and microhomology usage (Fig 2D)

than blunt DSBs or 3’DSBs. We found that the median amount of resection for 5’DSBs was

equivalent to the sum total overhang length in S’μ and BCL6, while the median amount of

resection of 3’DSBs fell below the total overhang length (Fig 2D, dotted line, S3 Fig). This find-

ing mirrors our observation at S’μ-S’α junctions that 5’ overhangs are likely removed prior to

repair while 3’DSBs are filled in (Fig 1D, dotted line). Taken together, our data suggest that 5’

and 3’DSBs lead to more end processing than blunt DSBs leading to chromosomal transloca-

tions, with 5’DSBs leading to chromosomal translocation junctions exhibiting increased resec-

tion and microhomology usage.

The role of NHEJ in Cas9-induced switching and der3 depends on DSB

polarity in human B cells

CSR is thought to be largely driven by non-homologous end-joining (NHEJ) in human B cells.

Patients with mutations or deficiencies in the NHEJ factors DNA ligase 4 (LIG4) and

XRCC4-like factor (XLF) exhibit defects in CSR, as evidenced by low serum titers of IgG and

IgA [24,25]. To confirm that Cas9-mediated switching recapitulated the requirement for

NHEJ, we generated three LIG4-deficient BJAB clones using CRISPR/Cas9 gene editing (S5

Fig). We found that LIG4 deficiency reduced Cas9-mediated switching to IgA via blunt, 5’,

and 3’DSBs (Fig 3A–3C). This result suggests that Cas9-mediated switching, like AID-medi-

ated CSR, primarily relies on NHEJ.

We and others previously demonstrated that NHEJ deficiency leads to increased chromo-

somal translocations in mouse cells, suggesting that either NHEJ inhibits or A-EJ drives
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translocation in mouse cells [13,26–28]. Specifically, we showed that DNA ligase IV-deficiency

led to a significant increase in Cas9-induced translocations from blunt and 5’DSBs in CH12

mouse B cells [13]. In contrast, it has been suggested that chromosomal translocations in

human cells are NHEJ-dependent [29]. Ghezraoui et al illustrated that chromosomal transloca-

tions were significantly reduced in XRCC4- and LIG4-deficient human cells using 5’DSBs gen-

erated by zinc-finger nucleases, TALENs, and Cas9 D10A. The reason why A-EJ is more

important for chromosomal translocations than CSR in mouse B cells remains unknown.

To test whether our model system recapitulates this finding, we measured Cas9-mediated

der3 in LIG4-deficient BJAB cells. We found that LIG4-/- BJAB cells had reduced Cas9-me-

diated der3 using either 5’ or 3’DSBs (Fig 3E and 3F). We also confirmed that resection and

microhomology at S’μ-BCL6 junctions from 5’DSBs were both increased in the absence of

LIG4, as expected of repair by A-EJ (Fig 3G and 3H). Interestingly, we observed that Cas9-me-

diated der3 frequency was dramatically increased in LIG4-/- BJAB cells using blunt DSBs (Fig

3D). The significance of this finding is considered in the Discussion. Taken together, our

results suggest that the roles of NHEJ and A-EJ in rejoining chromosomal translocations in

human B cells is dependent on DSB structure. These findings also support the notion that

Fig 2. Cas9-mediated IGH-BCL6 translocations (der3) in human B cells. (A) Schematic depicting sgRNA target regions in IGH on human

chromosome 14 and BCL6 on human chromosome 3. Primer binding sites are denoted by arrows and their sequences are presented in S1 Table.

Cleavage at the S’μ_1 sgRNA target site with wild-type Cas9 produces a blunt DSB, while cleavage with the Cas9 nickases and sgRNAs S’μ_1 and _2

produces a staggered DSB with a 38 nt overhang. A similar strategy is applied using sgRNAs targeting BCL6 to produce blunt DSBs or staggered DSBs

with a 57 nt overhang. Recombination between sgRNA sites gives rise to derivative chromosome 3 (der3). Schematic is not to scale. (B) Frequency of

Cas9-mediated der3 from blunt, 5’, and 3’DSBs measured by qPCR. Cells were harvested 5 days post-transfection with Cas9/sgRNA plasmids for

genomic DNA isolation. “-”, mock transfection. (C) Total resection of S’μ and BCL6 at S’μ-BCL6 junctions from blunt, 5’, and 3’DSBs. Dotted line

denotes the total overhang length in S’μ plus BCL6 (95 nt). (D) Microhomology usage at S’μ-BCL6 junctions from blunt, 5’, and 3’DSBs. Black line

denotes mean microhomology usage.

https://doi.org/10.1371/journal.pgen.1008101.g002
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there are important differences in the molecular mechanism underlying chromosomal translo-

cations between mouse and human B cells.

Staggered DSB polarity influences Cas9-mediated switching more than

overhang length

DSB intermediates leading to CSR presumably arise from AID-mediated nicks on opposite

DNA strands that simultaneously persist. Since the switch regions are WRC motif-rich and

AID can theoretically trigger nicks at any deoxycytidine within WRC motifs, the length of

Fig 3. Effect of LIG4 deficiency on Cas9-mediated switching and der3 using blunt, 5’, and 3’DSBs in human B cells. (A) Percentage of IgA

+ wild-type (WT) or LIG4-/- BJAB cells using blunt, (B) 5’DSBs, or (C) 3’DSBs as measured by flow cytometry, 5 days post-transfection with Cas9/

sgRNA plasmids. (D) Frequency of Cas9-mediated der3 in WT or LIG4-/- BJAB cells using blunt, (E) 5’DSBs, or (F) 3’DSBs as measured by qPCR.

Cells were harvested 5 days post-transfection with Cas9/sgRNA plasmids for genomic DNA isolation. (G) Total resection of S’μ and BCL6 at der3

junctions from 5’DSBs generated in WT and LIG4-/- BJAB cells. Dotted line denotes the total overhang length in S’μ plus BCL6 (95 nt). (H)

Microhomology usage at S’μ-BCL6 junctions from 5’DSBs generated in WT and LIG4-/- BJAB cells. Black line denotes mean microhomology usage.

https://doi.org/10.1371/journal.pgen.1008101.g003
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staggered DSB overhangs likely ranges greatly from one recombination event to the next. We

previously demonstrated that nicks spaced 248 nt apart could induce Cas9-mediated switching

in mouse B cells if oriented to produce a 5’DSB, but not a 3’DSB [13]. It is unknown whether

these distal nicks require exonucleolytic processing to form a DSB.

We therefore tested whether increasing the distance between Cas9-mediated nicks, thereby

producing 5’ and 3’DSBs with longer overhangs, affects the frequency and nature of Cas9-me-

diated switching. To address this, we used two pairs of sgRNAs targeting S’α to create 5’ and

3’DSBs with either 63 nt (short) or 121 nt (long) overhangs (Fig 4A). The overhang length in S’μ
was kept constant at 38 nt. We did not observe changes in Cas9-mediated switching frequency

when S’α overhangs were short or long (Fig 4B). Furthermore, 5’DSBs were better substrates for

Cas9-mediated switching than 3’DSBs whether S’α overhangs were short or long (Fig 4B).

We next asked whether short or long overhangs affected resection and microhomology at

S’μ-S’α junctions. We found that longer 5’ overhangs in S’α did not affect total resection at S’μ-

S’α junctions, although longer 3’ overhangs in S’α did lead to a subtle increase in total resection

(Fig 4C, S3 Fig). Importantly, we still observed that 5’DSBs were resected more than 3’DSBs,

supporting the notion that 5’DSBs are resected while 3’DSBs are filled in, even when overhang

length is increased. Longer overhangs in S’α did not stimulate increased resection of S’μ (Fig

4D), suggesting that ligation of staggered DSBs does not require symmetrical resection. We

did not observe significant changes in microhomology at S’μ-S’α junctions whether 5’ or

3’DSB overhangs were short or long (Fig 4E). Altogether, these findings suggest that the polar-

ity of the DSB influences Cas9-mediated switching frequency more than overhang length.

Staggered DSB polarity influences Cas9-mediated der3 more than

overhang length

WRC motifs are abundant in the switch regions but less dense in “off-target” genes [30].

Accordingly, the frequency of AID-dependent mutations is higher in immunoglobulin loci

than “off-target” genes [31]. Therefore, one would predict that the density of AID-mediated

nicks in “off-target” genes to be lower, giving rise to staggered DSBs with longer overhangs. To

test whether longer 5’ or 3’ overhangs in BCL6 affect the frequency and nature of Cas9-me-

diated der3, we used two pairs of sgRNAs in BCL6 to generate 5’ and 3’DSBs with either a 57

or 169 nt overhang while keeping overhang length in S’μ constant (Fig 5A).

Like we observed in Cas9-mediated switching, increasing the overhang length in BCL6 did

not significantly affect Cas9-mediated der3 frequency (Fig 5B). 5’DSBs remained better sub-

strates for Cas9-mediated der3 than 3’DSBs whether BCL6 overhangs were short or long (Fig

5B), supporting the idea that DSB polarity influences suitability for recombination more than

overhang length. 5’DSBs with longer overhangs in BCL6 were resected to the new sum total of

S’μ and BCL6 overhangs, while 3’DSBs with longer overhangs in BCL6 were filled in (Fig 5C,

dotted versus solid line, S3 Fig). Increasing overhang length of staggered DSBs in BCL6 had no

significant effect on resection of S’μ (Fig 5D), supporting our hypothesis that resection of stag-

gered DSBs in non-homologous partners is not typically symmetrical. As with Cas9-induced

switching, we found no effect of overhang length on microhomology usage at Cas9-mediated

der3 junctions (Fig 5E). Together, these data suggest that DSB polarity plays a more significant

role than overhang length in dictating the frequency and nature of genome rearrangements in

human B cells.

5’ and 3’DSBs lead to recombination junctions with templated insertions

Our sequencing analysis of recombination events revealed inserted nucleotides at a subset of

S’μ-S’α and S’μ-BCL6 junctions. Although the frequency of insertions at S’μ-S’α and S’μ-BCL6
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junctions was similar regardless of DSB structure or polarity (Fig 6A and 6C), staggered DSBs

led to junctions with longer insertions than blunt DSBs (Fig 6B and 6D). That is, insertions at

most junctions from blunt DSBs were only a few nucleotides long, whereas insertions at junc-

tions from 5’ and 3’ DSBs were almost as long as the overhang itself (Fig 6B and 6D, dotted

and solid lines). Indeed, these insertions were mostly composed of duplications of the S’μ, S’α,

or BCL6 overhangs themselves (Fig 6E and 6F). The presence of these “templated insertions”

Fig 4. DSB polarity rather than overhang length primarily influences end-joining leading to Cas9-mediated switching. (A) Schematic depicting an

additional sgRNA target site (shown in red) in S’α on the IGH locus on human chromosome 14. Cleavage by the Cas9 nickases at S’α_1 and S’α_2 or S’α_1

and S’α_3 gives rise to staggered DSBs with 63 or 121 nt overhangs, respectively. Schematic is not to scale. (B) Percentage of IgA+ BJAB cells from 5’ and

3’DSBs with either of two overhang lengths measured by flow cytometry, 5 days post-transfection with Cas9/sgRNA plasmids. Overhang lengths are

denoted on the x-axis. (C) Total resection of S’μ and S’α at S’μ-S’α junctions from 5’ and 3’DSBs with either of two overhang lengths. Horizontal lines

denote the total overhang lengths in S’μ plus S’α (dotted line = 101 nt, solid line = 159 nt). (D) Resection of 38 nt S’μ overhang at S’μ-S’α junctions when

S’α overhang length is varied. (E) Microhomology usage at S’μ-S’α junctions from 5’ and 3’DSBs with either of two overhang lengths. Black line denotes

mean microhomology usage.

https://doi.org/10.1371/journal.pgen.1008101.g004
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Fig 5. DSB polarity rather than overhang length primarily influences end-joining leading to Cas9-mediated der3. (A) Schematic depicting an additional

sgRNA target site (shown in red) in the BCL6 locus on human chromosome 3. Cleavage by the Cas9 nickases at BCL6_1 and BCL6_2 or BCL6_1 and BCL6_3

gives rise to staggered DSBs with 57 or 169 nt overhangs, respectively. Schematic is not to scale. (B) Frequency of Cas9-mediated der3 from 5’ and 3’DSBs with

either of two overhang lengths measured by qPCR. Cells were harvested 5 days post-transfection with Cas9/sgRNA plasmids for genomic DNA isolation.

Overhang lengths are denoted on the x-axis. (C) Total resection of S’μ and BCL6 at S’μ-BCL6 junctions from 5’ and 3’DSBs with either of two overhang lengths.

Horizontal lines denote the total overhang lengths in S’μ plus BCL6 (dotted line = 95 nt, solid line = 207 nt). (D) Resection of 38 nt S’μ overhang at S’μ-BCL6
junctions when BCL6 overhang length is varied. (E) Microhomology usage at S’μ-BCL6 junctions from 5’ and 3’DSBs with either of two overhang lengths.

Black line denotes mean microhomology usage.

https://doi.org/10.1371/journal.pgen.1008101.g005
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Fig 6. S’μ-S’α and S’μ-BCL6 junctions from staggered DSBs exhibit “templated insertions”. (A) Percentage of all sequenced S’μ-S’α junctions containing

insertions of any length. (B) Lengths of insertions at S’μ-S’α junctions formed from blunt DSBs and staggered DSBs with either of two overhang lengths. Horizontal

lines denote the total overhang lengths in S’μ plus S’α (dotted line = 101 nt, solid line = 159 nt). (C) Percentage of all sequenced S’μ-BCL6 junctions containing

insertions of any length. (D) Lengths of insertions at S’μ-BCL6 junctions formed from blunt DSBs and staggered DSBs with either of two overhang lengths.

Horizontal lines denote the total overhang lengths in S’μ plus BCL6 (dotted line = 95 nt, solid line = 207 nt). (E) Example of “templated insertion” at S’μ-S’α
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suggest that staggered DSBs undergo cycles of resection and filling in until repair is achieved.

Our data suggest that the presence of a single-stranded DNA overhang may stimulate iterative

repair more than a blunt DSB end.

Discussion

In this study, we used CRISPR/Cas9 to generate site-specific, predefined DSB structures to

model DNA lesions arising downstream of AID activity in human B cells. We found that DSB

structure strongly influenced the mode of end processing associated with DNA repair leading

to genome rearrangements like CSR or chromosomal translocations. The end processing pro-

files we observed at switch or translocation junctions were often, but not always, in alignment

with generally accepted definitions of NHEJ and A-EJ. For example, we observed that 5’DSBs

typically led to switch and translocation junctions exhibiting increased resection and increased

microhomology, two characteristics of repair by A-EJ, compared to blunt or 3’DSBs. A previ-

ous study found that decreasing the density of nicks in the switch regions by knocking down

AID, presumably leading to more staggered DSBs rather than blunt DSBs, increased microho-

mology usage at switch junctions [32]. We expand on this observation by showing that stag-

gered DSBs specifically with 5’ overhangs skew towards increased microhomology usage at

switch and translocation junctions. In addition, we previously found that 5’DSBs were prefer-

entially repaired by A-EJ in CH12 mouse B cells [13], suggesting that the influence of DSB

polarity on end-joining pathway choice is likely a general property of mammalian cells.

However, we also found that 3’DSBs undergo more end processing than blunt DSBs,

although not in a manner characterized by resection. Specifically, we observed that while 5’

overhangs tended to be resected during end-joining, 3’ overhangs were filled in during end-

joining. This result suggests that DSB polarity not only influences repair by NHEJ or A-EJ, but

also how DSBs are processed and repaired by specific subsets of enzymes. It is not currently

known which enzymes resect 5’DSBs or fill in 3’DSBs during end-joining. One recent study

found that mutation of the 5’ to 3’ exonuclease CtIP, but not Mre11 or Exo1, increased the

fraction of precisely ligated DSBs with no resection, suggesting that CtIP is required for resec-

tion of DSBs [33]. A second study showed that either CtIP knockdown or chemical inhibition

of Mre11 endo- and exonuclease activity led to a reduction in chromatin-bound RPA, a

marker of single-stranded DNA, in G2 phase after ionizing radiation-induced DNA damage

[34]. This result suggests that several candidate 5’ to 3’ exonucleases can resect DSBs in vivo,

but could potentially act redundantly. Alternatively, 5’ overhangs could be removed by a flap

endonuclease such as FEN1 [35]. We acknowledge that the manner(s) by which nucleotides

were resected in our study, whether through exonucleolytic degradation or endonucleolytic

degradation, differ mechanistically. Our model allows us only to quantify the number of nucle-

otides lost from the native sequence in a given switch or translocation junction, not the mecha-

nism by which those nucleotides were lost. However, we can reasonably conclude that any

resection beyond the sum total overhang length was likely achieved through exonucleolytic

degradation. Regardless of how 5’ overhangs are removed, our data suggest that removal of the

5’ overhang might be required for end-joining, perhaps in order to expose microhomology to

facilitate ligation.

In contrast, filling in of 3’ overhangs during end-joining is poorly understood. One known

example of physiological 3’DSBs in end-joining occurs during V(D)J recombination, whereby

the opening of DNA hairpins at coding ends by the endonuclease Artemis results in 3’

junction from 5’DSBs and (F) 3’DSBs. Underlined sequences represent sgRNA sequences. “<” and “>” point toward PAM sequences and indicate predicted Cas9

cut site 3 nt upstream of PAM sequence. Colored/highlighted nucleotides indicate sequence alignment.

https://doi.org/10.1371/journal.pgen.1008101.g006
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overhangs [36]. These 3’ overhangs can be filled in, presumably by a DNA polymerase, giving

rise to P nucleotides and junctional diversity within the B cell receptor repertoire. However,

the mechanism for filling in 3’ overhangs leading to P-nucleotides has not yet been character-

ized. Identifying the enzymes that process 5’ and 3’DSBs leading to end-joining will help eluci-

date how the spectrum of AID-dependent DSBs are recognized, processed, and ligated to

complete CSR or translocations. Our data support the model that different factors and end-

joining pathways are indeed required to repair different DSB structures.

One subset of enzymes that is known to recognize and repair AID-dependent DSBs com-

prise the NHEJ pathway. In this report, we demonstrate that NHEJ is indeed required for

Cas9-mediated switching regardless of DSB polarity (Fig 3A–3C). This finding supports the

notion that NHEJ is the primary end-joining pathway leading to CSR in human B cells as it is

in mouse B cells. Interestingly, we found that the role of NHEJ in chromosomal translocations

was contingent on DSB polarity. Our data demonstrate that NHEJ deficiency led to a defect in

Cas9-induced der3 using staggered DSBs, but a dramatic increase in der3 using blunt DSBs

(Fig 3D–3F). This finding is similar to a previous study showing that chromosomal transloca-

tions were reduced in NHEJ-deficient human cells using endonucleases that generated stag-

gered DSBs, but were unchanged using blunt DSBs [29]. We had also found that ligase IV

deficiency in CH12 mouse B cells led to a more pronounced increase in translocations from

blunt DSBs than 5’DSBs [13]. Furthermore, we observed in this study that translocation junc-

tions from blunt DSBs exhibited more microhomology and resection than switch junctions

from blunt DSBs (Figs 1D, 1E, 2C and 2D). Taken together, our results suggest that in the

absence of NHEJ, A-EJ prefers joining blunt DSBs over staggered DSBs leading to chromo-

somal translocations in human B cells.

We propose two explanations for this observation. First, perhaps the act of converting a

blunt DSB into a staggered DSB represents a key signaling step during A-EJ. Blunt DSBs can

indeed be repaired by A-EJ; indeed, we observe that in wild-type cells, blunt DSBs occasionally

lead to recombination junctions with elevated resection and microhomology usage (Figs 1D,

1E, 2D and 2E). Thus, blunt DSBs generated by Cas9 are sometimes resected into staggered

DSBs when they are finally repaired. A-EJ in NHEJ-deficient cells might magnify this process-

ing, which could stimulate chromosomal translocations. Still, it is unclear why this would not

also apply to CSR, evoking the larger question of why A-EJ drives chromosomal translocations

but not CSR in mouse B cells.

Second, A-EJ is typically suppressed or overshadowed by NHEJ, so the preference for A-EJ

to repair blunt DSBs leading to chromosomal translocations may be due to a lack of competi-

tion from NHEJ. Several studies have demonstrated that NHEJ suppresses A-EJ during CSR,

as evidenced by an overall increase in microhomology at switch junctions from when NHEJ is

depleted in mouse B cells [7,9]. This may be because binding of NHEJ factors to DSB ends

inhibits resection, a step shared between homologous recombination and A-EJ, or because

NHEJ simply occurs faster than A-EJ [37]. We observed that the majority of switch and trans-

locations junctions from blunt DSBs in this study exhibited little to no microhomology, sug-

gesting repair predominantly by NHEJ (Figs 1E and 2E). In NHEJ-deficient cells, however,

A-EJ is free to engage blunt DSBs that are typically repaired by NHEJ without competition for

DSB ends, inhibition of resection, or time constraints. These atypical circumstances could lead

to increased irregular end-joining such as chromosomal translocations.

In this report, we observed that 5’DSBs were better substrates for Cas9-mediated switching

and translocations than 3’DSBs (Figs 1C and 2B). This pattern was independent of overhang

length (Figs 4B and 5B). However, the reason behind this bias is unknown. One possible expla-

nation is that 5’ to 3’ resection is an important step in end-joining as it is for homologous

recombination. For example, Cas9-induced 5’DSBs stimulate higher rates of homologous
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recombination than 3’DSBs using the DR-GFP homologous recombination reporter assay

[38,39]. Another study found that Cas9-induced 5’DSBs led to more gene conversion, a path-

way that relies on homologous recombination, than 3’DSBs [40]. In support of this hypothesis,

we observed in this study that 5’ overhangs tended to be resected prior to end-joining while 3’

overhangs were filled in. Perhaps the lack of a 5’ overhang to resect makes 3’DSBs poor sub-

strates for end-joining.

Another possible explanation for the increased level of Cas9-mediated switching and der3

using 5’DSBs versus 3’DSBs could be due to different enzymatic activity of the Cas9 D10A and

N863A nickases. That is, Cas9 D10A could simply lead to more DSBs than Cas9 N863A. Some

studies have demonstrated that currently available RuvC-null Cas9 nickases (e.g. D10A) gener-

ate more indels than HNH-null Cas9 nickases (e.g. N863A or H840A) [41,42]. However, indel

formation is likely an inaccurate measure of cleavage efficiency, as we and others demonstrate

that DSB polarity itself can influence repair by NHEJ or A-EJ which may in turn lead to differ-

ent frequencies of indel formation [13,40]. Nonetheless, Cas9 D10A and N863A nickases have

been shown to have similar nicking efficiency in vitro [40]. An ideal study would use the same

nuclease to produce 5’ and 3’DSBs, which in theory could be achieved using the Cas9 D10A

nickase and orienting sgRNAs with PAMs facing outwards or inwards, respectively. In prac-

tice, however, paired sgRNAs with inward-facing PAMs are incompatible with Cas9 cleavage

[40,41].

While we believe that the Cas9/Cas9 nickase system is the best currently available

method to model AID-dependent DSB intermediates for CSR and chromosomal transloca-

tions, we acknowledge that Cas9 does not perfectly mimic AID in all aspects. For example,

AID is a deaminase while Cas9 is a nuclease. Modeling AID-dependent DSBs with Cas9

therefore overlooks two intermediate enzymatic steps—deamination of dC by AID, and

excision of dUs by UNG to create an abasic site, followed by the creation of a nick by APE—

between AID deamination and nick formation. Future studies could use an enzymatically

dead Cas9 fused to cytidine deaminase rather than the Cas9 nickase to more accurately

model AID function [43]. Another limitation of our model system is that we targeted Cas9

cleavage 5’ of the switch regions rather than the repetitive switch regions themselves to

avoid introducing multiple DSBs with one sgRNA. Although the loci 5’ of the switch regions

are physiological sites of AID deamination [44], our model does not take into account the

formation of secondary structures in the repetitive switch regions that could be conducive

to deoxycytidine deamination and DSBs [45]. Cas9 may also imperfectly model AID during

CSR and chromosomal translocations in its residence time on DNA after cleavage and its

influence on DNA repair processes.

In conclusion, we found that DSB structure strongly influences repair by NHEJ and A-EJ in

human B cells. Our data suggest that the spectrum of AID-dependent DSBs is not uniformly

recognized and repaired by human B cells. These findings expand our knowledge of DSB

repair in B cells leading to humoral immunity or lymphomagenesis and may eventually inform

therapeutic interventions designed to promote desired DSB repair outcomes.

Methods

Cell culture conditions

BJAB cells were cultured in RPMI 1640 medium with L-Glutamine supplemented with 10%

fetal bovine serum, 5% NCTC 109, 50 μM β-mercaptoethanol, and penicillin/streptomycin.

Ramos cells were cultured in IMDM supplemented with 10% fetal bovine serum and penicil-

lin/streptomycin. All cells were cultured at 37˚C and 5% CO2.
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Construction of Cas9- and sgRNA expression vectors

sgRNAs were chosen based on favorable on- and off-target scores calculated by Benchling

[46]. sgRNAs were cloned into plasmids encoding Cas9 (Addgene: #42330), Cas9D10A

(Addgene: #42335), and Cas9N863A. Cas9N863A plasmid was constructed by site-directed

mutagenesis of Addgene #42330.

Transfection of CRISPR/Cas9 elements for chromosomal translocations

and class switch recombination

One million BJAB cells in standard electroporation buffer were transfected with 4 μg of each

relevant plasmid using a BioRad Gene Pulser using the following parameters: 350 V, 975 μF,

1 O, and 4 mm gap. BJAB cells were incubated on ice for 5 minutes and then transferred into

complete media. One million Ramos cells in IMDM were transfected using the following

parameters: 250 V, 950 μF,1 O, and 4 mm gap. Ramos cells were incubated at room tempera-

ture for 5 minutes and then transferred into complete media. For chromosomal translocations,

cells were harvested 5 days post-transfection and lysed to isolate genomic DNA by standard

phenol-chloroform extraction and ethanol precipitation. For Cas9-induced switching, cells

were harvested 5 days (BJAB) or 3 days (Ramos) post-transfection for genomic DNA isolation

by proteinase K digestion and flow cytometry analysis of IgA expression (see below).

CRISPR/Cas9-mediated genome editing

One million BJAB cells in standard electroporation buffer were transfected with 4 μg of

sgRNAs LIG4 BRCTd G1 and G2 targeting DNA ligase 4 (S1 Table). Cells were plated at 0.5

cells/well in a 96-well tissue culture plate 3 days post-transfection to obtain individual clones.

Clones were screened for mutations by the mismatch cleavage assay as previously described

[13]. Knockout clones were confirmed by sequencing.

Quantitative PCR (qPCR) for chromosomal translocation quantification

Der3 translocations were detected by nested PCR. Round 1 was amplified from 8 separate

reactions using primers S’μ F.1 and BCL6 R.1 (S1 Table) and 150 ng of phenol chloroform-iso-

lated genomic DNA by conventional PCR. Amplicons from the 8 reactions were then pooled

and diluted ten-fold to use as template for Round 2. Round 2 was amplified by qPCR using S’μ
F.2 and BCL6 R.2 primers (S1 Table) and SsoAdvanced Universal SYBR Green Supermix

(BioRad). A control genomic region on chromosome 13 (S1 Table) was amplified from 10 ng

of genomic DNA template by nested PCR to obtain reference Ct values, using round 1 primers

c13 F.1 and R.1 followed by round 2 primers c13 F.2 and R.2 (S1 Table). Der3 frequencies

were calculated using the ΔΔCt method, using S’μ_1 + BCL6_1 WT Cas9 (Fig 2B, second col-

umn) or S’μ_1+2 + BCL6_1+2 Cas9 D10A (Fig 5B, second column) as control samples.

Flow cytometry quantification of IgA-switched cells

Cells were harvested 5 days post-transfection, washed, and incubated with anti-IgA antibodies

(Southern Biotech, cat. 2050–09) for 30 min at 4˚C in the dark. Cells were washed and ana-

lyzed for IgA expression on a BD LSR II at the Faculty of Medicine Flow Cytometry Facility

(University of Toronto, Toronto, Ontario, Canada).

Amplification, cloning, and sequencing of S’μ-BCL6 and S’μ-S’α junctions

Der3 junctions for sequencing analysis were amplified by nested conventional PCR from

genomic DNA using primers S’μ F.1 and BCL6 R.1 (round 1) and S’μ F.2 and BCL6 R.2
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(round 2) (S1 Table). S’μ-S’α junctions were amplified from genomic DNA by nested PCR

using primers S’μ F.1 and S’α R.1 (round 1) and S’μ F.2 and S’α R.2 (round 2) (S1 Table). Junc-

tion PCR products were purified using standard spin columns, cloned into a TA-cloning vec-

tor (pGEM-T Easy, Promega), and transformed into chemically competent bacteria. Plasmids

containing proper inserts were purified and Sanger sequenced at The Center for Applied

Genomics (The Hospital for Sick Children, Toronto, Ontario, Canada).

Sequencing analysis of S’μ-Bcl6 and S’μ-S’α junctions

Alignments of S’μ-BCL6 and S’μ-S’α junctions to reference sequences were performed using

Basic Local Alignment Search Tool (BLAST). The following reference sequences were used for

analysis and are available from the National Center for Biotechnology Information (NCBI):

IGH (NCBI Accession NG_001019) and BCL6 (NCBI Accession NG_007149.1). Resection is

defined as the number of nucleotides in the native sequence spanning from 3 nt upstream of

the PAM of the most distal sgRNA to the point where the junction changes alignment from

one reference sequence to another, including any microhomologous nucleotides, that are not

in the recombined sequence. Insertions are defined as the number of nucleotides in the recom-

bined sequence that are not in the native sequence, starting from the end of alignment between

the recombined and native sequences. All junctions included in sequencing data in this report

are unique to genomic DNA harvested from a single transfection, and are reported in S1

Appendix.

Statistical analysis

All statistical comparisons were made using the Mann-Whitney test. Stars denote p-values:

ns>0.05, ��0.05, ���0.01, ����0.001, �����0.0001.

Supporting information

S1 Fig. Visualization of Cas9-mediated switching and der3 in BJAB cells. (A) Representa-

tive flow cytometry plots showing IgA+ BJAB cells as a result of Cas9-mediated switching, 5

days post-transfection with Cas9/sgRNA plasmids. Live BJAB cells were identified by forward

and side scatter, then gated on singlets. (B) Representative gel electrophoresis images showing

Cas9-mediated der3 amplified by conventional, nested PCR. Leftmost lane is a 100 nt ladder.

Expected product size, assuming no resection and no insertion, is approximately 1040 nt. Each

gel shows 8 independent PCRs amplified from 150 ng of genomic DNA template.

(TIF)

S2 Fig. Quantification of distance between AID-mediated mutations at murine switch

region μ. Graphical representation of distance between AID-mediated transition mutations in

switch region μ from UNG-/-MSH2-/- mice. 507 pairs of transition mutations on opposite

strands from 127 analyzed sequences are depicted above. All values represent the distance

between mutations (i.e. immediately adjacent mutations are assigned a distance of 0 nt). Black

line denotes mean distance between AID-mediated transition mutations. See S3 Table for

more information.

(TIF)

S3 Fig. Resection of S’μ versus S’α or BCL6 at junctions from short and long staggered

DSBs. (A) Graphical representation of S’μ resection versus S’α resection using short and (B)

long 5’ or 3’ overhangs in S’α. S’μ overhangs are kept constant. Dotted lines denote overhang

lengths in S’μ and S’α. Each data point represents a unique S’μ-S’α junction. (C) Graphical

representation of S’μ resection versus BCL6 resection using short and (D) long 5’ or 3’
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overhangs in BCL6. Dotted lines denote overhang lengths in S’μ and BCL6. Each data point

represents a unique S’μ-BCL6 junction. S’μ overhang length is kept constant in all panels. The

total resection measured at each unique junction is presented in Figs 1, 2, 4 and 5.

(TIF)

S4 Fig. DSB polarity influences end-joining pathway choice despite altered sequence con-

text. (A) Schematic depicting sgRNAs designed to target a different region upstream of switch

region α (S’α_I and S’α_II, shown in blue) and the resulting chromosome after Cas9-mediated

switching. WT Cas9 and S’α_I produces a blunt DSB, while either Cas9 nickase with S’α_I and

S’α_II gives rise to a staggered DSB with a 58 nt overhang. Schematic is not to scale. (B) Total

resection of S’μ and S’α at S’μ-S’α junctions from blunt, 5’, and 3’DSBs. Dotted line denotes

the total overhang length in S’μ plus S’α (96 nt). (C) Microhomology usage at S’μ-S’α junctions

from blunt, 5’, and 3’DSBs. Black line denotes mean microhomology usage. ^The vast majority

of S’μ-S’α junctions from blunt DSBs that were sequenced exhibited 0 nt of resection and 1 nt

of microhomology, but had to be excluded from analysis for being non-unique.

(TIF)

S5 Fig. CRISPR/Cas9 editing of LIG4 in BJAB cells. Sequence alignments of LIG4 from wild-

type BJAB cells and three LIG4-/- BJAB clones. Amino acid translation and residue number of

wild-type LIG4 are denoted above the nucleotide sequence. Underlined sequences represent

LIG4 BRCTd G1 and G2 sgRNA sequences (S1 Table).

(TIF)

S1 Table. Oligonucleotides used in this study.

(DOCX)

S2 Table. Cas9 and sgRNA combinations used to produce blunt, 5’, and 3’DSBs in S’μ, S’α,

and BCL6.

(DOCX)

S3 Table. Analysis of AID-dependent mutations in switch region μ of Ung-/-Msh2-/- mice.

(DOCX)

S1 Appendix. S’μ-S’α and S’μ-BCL6 junction sequence alignments.

(DOCX)

S2 Appendix. Numerical data underlying all graphs and figures.

(XLSX)
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