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Abstract

An alternative to human red blood cells (RBCs) for clinical transfusion would be advantageous, 

particularly in situations of massive acute blood loss (where availability and compatibility are 

limited) or chronic hematologic diseases requiring frequent transfusions (resulting in 

alloimmunization). Ideally, any alternative must be neither immunogenic nor pathogenic, but 

readily available, inexpensive, and physiologically effective. Pig RBCs (pRBCs) provide a 

promising alternative due to their several similarities with human RBCs, and our increasing ability 

to genetically-modify pigs to reduce cellular immunogenicity. We briefly summarize the history of 

xenotransfusion, the progress that has been made in recent years, and the remaining barriers. 

These barriers include prevention of (i) human natural antibody binding to pRBCs, (ii) their 

phagocytosis by macrophages, and (iii) the T cell adaptive immune response (in the absence of 

exogenous immunosuppressive therapy). Although techniques of genetic engineering have 

advanced in recent years, novel methods to introduce human transgenes into pRBCs (which do not 

have nuclei) will need to be developed before clinical trials can be initiated.
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1. Introduction

1.1 Blood product supply and demand

The World Health Organization estimates that approximately 112 million units of donated 

blood are collected each year, which is far from satisfying the global need [1]. In the United 

States, 12.6 million red blood cell (RBC) units were collected in 2015 with 11.3 million 
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units transfused, highlighting a slim surplus of units on a national level, but with steadily 

decreasing rates of donation [2]. Transient critical blood shortages are well-recognized [2]. 

While blood type O availability is often scarce, supply and demand mismatch is not the only 

limitation to transfusion therapy [2,3].

1.2 Economic and safety burdens impacting human RBC transfusions

Although donor screening, leukocyte reduction, and nucleic acid viral screening help prevent 

deleterious consequences of transfusion, the risk is not zero [2,4]. Ensuring safety is 

requisite, but varying regulatory mandates, prohibitive costs, and strenuous screening 

encumber accessibility, excluding up to 15% of all donors prior to or after blood collection 

[2]. For example, because of concerns relating to new variant Creutzfeldt-Jakob disease in 

Europe, eligibility for blood donation has been made more restrictive [5]. In countries where 

the incidence of human immunodeficiency virus infection is much higher than in the US 

(e.g., sub-Saharan Africa), the shortage of acceptable RBCs and the risks of blood 

transfusion are, of course, significantly greater.

1.3 Limitations of repeated transfusion in chronic disease

Patients with diseases requiring repeated transfusions (e.g., sickle cell disease, thalassemia, 

hematologic cancers, etc.) are at risk of alloimmunization and the development of delayed 

hemolytic transfusion reactions, limiting their donor pool. Approximately 30% of transfused 

patients with sickle cell disease develop alloantibodies [6] and, over a 5-year period, 8% of 

patients develop a delayed hemolytic transfusion reaction following alloimmunization [7]. In 

some cases, the patient’s own RBCs are also lysed (hyper-hemolysis syndrome), 

characterized by macrophage activation, leading to the destruction of both donor and 

recipient RBCs [8].

Hematologic phenotypes are controlled by various loci that affect hematopoiesis, intrinsic 

RBC turnover, minor antigen expression, and recipient allosensitization [9,10]. Some 

individuals requiring chronic transfusions are predisposed to developing alloantibodies to 

rare donor antigens, and have a higher risk of future alloimmunization. Other groups have 

successfully implemented more extensive antigen matching for such vulnerable populations 

[10]. However, the practicality of cross-matching donors and recipients with precision to a 

single locus requires continued investigation. Complicating matters, this further diminishes 

an already limited donor pool, which should encourage the development of novel 

alternatives, including genetically-modified source (‘donor’) pigs with ‘immunologically 

inert’ RBCs for xenotransfusion.

1.4 Xenotransfusion as a novel alternative

In light of the aforementioned obstacles, innovative replacements to human RBC transfusion 

have garnered considerable attention, including perfluorocarbon hemoglobin, and stem cell-

based therapies [11-13]. However, most substitutes have had relatively little clinical success. 

Important developments achieved in recent years offer hope for the eventual industrial 

production of in vitro-cultured human RBCs [13,14]. Still, technical challenges in mapping 

stem-cell fate and sub-optimal reticulocyte maturation pose significant hurdles to the 

promise of ex vivo human RBC production [14,15]. Transgenic manipulation of xenogeneic 
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RBCs (to prevent immunologic responses) may be more tangible than programming 

allogeneic cell differentiation. Xenotransfusion (cross-species transfusion), using the pig as a 

source of RBCs, may provide a solution.

There have been significant advances in organ and tissue xenotransplantation, particularly 

when using genetically-modified pigs as the sources of organs and cells [16,17]. With recent 

technological advances, there have been dramatic improvements in the results in pig-to-

nonhuman primate (NHP) transplantation models (See below: 2.4 Recent progress in pig-to-
nonhuman primate organ transplantation). This progress in overcoming the pathobiological 

barriers to xenotransplantation can be applied to producing pigs whose RBCs might be 

suitable for clinical xenotransfusion.

There are a number of situations in which pig RBCs (pRBCs) might be particularly valuable, 

e.g., (i) in acute blood loss (hemorrhage, trauma) where sufficient human ABO-compatible 

blood is not available, and (ii) in patients with hematological and oncological disorders 

requiring frequent blood transfusions in whom sensitization to human RBCs has developed. 

Indeed, pRBCs may eventually provide a source of RBCs superior to that of human RBCs, 

and is the focus of this review.

1.5 History of xenotransfusion

The earliest documented evidence of human xenotransplantation begins with 

xenotransfusion, when in 1667 Jean Baptiste Denis and Paul Emmerez transfused the blood 

of a lamb into a 15-year-old feverish boy, and later that year transfused calf blood to a 

mentally ill man in an attempt to cure him [18,19]. Complications and politics ultimately led 

to a ban of transfusions by the French Parliament in 1678, and even denunciation by the 

Pope in 1679. Progress halted until 1749, when Andrew Cantwell, a member of the Faculty 

of Medicine in Paris, recognized the potential value of transfusion in emergencies with acute 

hemorrhage [20-23].

A series of allogeneic human transfusions were documented by James Blundell and 

colleagues beginning in 1819. In 1829, they described the first successful transfusion in a 

woman with post-partum hemorrhage [23]. Not only was Blundell one of the earliest 

proponents of transfusion, he demonstrated that cross-species xenotransfusion was more 

hazardous than allogeneic human transfusion. Despite his observations, xenotransfusion 

continued throughout the 19th century.

The modern era of transfusion was ushered in when Landsteiner published his landmark 

paper on the ABO blood groups in 1900 [24]. With this, debate was largely settled, and 

human RBC allogeneic transfusion became the focus of attention for nearly a century.

Similarly, after Harold Neuhof’s failed attempt at transplanting a lamb kidney into a man in 

1923, it would be 40 years until xenotransplantation was attempted again [25,26]. In 1964, 

Keith Reemtsma began a small series of kidney transplants from chimpanzees into humans, 

marking the first use of immunosuppressive therapy in such a procedure. One patient 

survived a remarkable 9 months [26,27]. Transplantation and xenotransplantation 
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experienced a renaissance, and the fields became more ambitious and successful with the aid 

of improving immunosuppressive therapy.

As a result of scientific advances in xenotransplantation over the past 30 years, particularly 

in the genetic engineering of pigs, attention has returned to the possibilities afforded by 

xenotransfusion.

2. Clinical application of xenotransfusion

2.1 Pig RBCs as a source for clinical transfusion

The potential for using genetically-modified pigs as sources of RBCs is considerable. 

pRBCs share a number of common characteristics with human RBCs (Table 1) with similar 

cell diameters and counts, although the average life-span of pRBCs is shorter than that of 

human RBCs [28,32,33]. Porcine hemoglobin shares only 85% sequence identity with its 

human counterpart [34]. Nevertheless, both pig and human hemoglobin have similar three-

dimensional structures, and it is believed that most of the 22 and 21 amino acid substitutions 

on the alpha and beta subunits, respectively, have no significant functional effect. For 

example, human alpha-hemoglobin chains hybridize with pig beta-hemoglobin chains in 
vivo; however, the opposite (human beta-chains hybridizing with porcine alpha-chains) only 

occurs in vitro. It appears that despite subtle differences in structure affecting stability and 

function, the molecules are functionally competent [34].

The most closely studied pig blood group system is the A-O (H) system, which is loosely 

related to the human ABO system [35,36]. Pig herds have been developed that are uniformly 

of blood type O; thus, ABO compatibility between human recipients and ‘donor’ pigs can be 

assured. Furthermore, human hemoglobin has been expressed in transgenic pigs, with 

normal post-translational modifications and biological function [37].

The high breeding capacity of pigs and the ability to produce them in a designated pathogen-

free environment obviates many of the potential infectious risks of human RBC transfusion. 

Moreover, pRBCs do not have nuclei, and therefore do not harbor porcine endogenous 

retroviruses (PERV), although this advantage would be reduced by contamination of the 

product by leukocytes [38]. Nonetheless, the use of white blood cell filters could feasibly 

ensure that leukocytes do not contaminate pRBCs, simultaneously preventing the theoretical 

risk of PERV transmission, as well as leukocyte immunogenicity. Most experts now agree 

that with the necessary established screening protocols, and requisite biosecured housing for 

source pig herds, the risk of porcine xenotransplantation spreading communicable diseases 

is minimal (when compared to human donors) [39-41].

2.2 Nonhuman primates as surrogate hosts

We have shown previously that Old World NHPs are satisfactory surrogates for humans in 

xenotransplant trials (See below: 2.4 Recent progress in pig-to-NHP organ transplantation) 
[42-44]. NHP recipients of blood group AB can be selected, simplifying the interpretation of 

the response to pRBCs from blood group O source pigs.
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Like humans, NHPs hyperacutely reject transplanted wild-type (WT, genetically-

unmodified) pig organs, largely due to antibody-antigen binding, complement activation, 

innate cell activation, and coagulation dysfunction [44]. An important antigen, galactose-

α1,3-galactose (Gal), is expressed on the surface of many pig cells, including RBCs. The 

presence of anti-Gal antibodies in humans and Old World NHPs initiates much of this 

response (See below: 3.1 Antigen specific barriers in xenotransplantation). NHPs also 

develop similar elicited immune responses to humans, and demonstrate a similar 

inflammatory response.

2.3 Initial studies of pRBC xenotransfusion in NHPs

Scientific investigations into pRBCs for clinical transfusion began in the 1990s [45]. 

Initially, pRBCs from WT pigs were treated with the enzyme α-galactosidase to remove Gal 

epitopes [46,47]. In vitro binding of baboon or human antibodies to α-galactosidase-treated 

pRBCs was greatly reduced compared to untreated pRBCs. In vivo, however, whereas 

autologous baboon RBCs survived for >16 days, and WT pRBCs for <15 minutes, treating 

pRBCs with α-galactosidase increased pRBC survival to only two hours [30]. In 

complement-depleted baboons, pRBC survival increased to 24 hours, and to 72 hours when 

the baboon was depleted of both complement and anti-Gal antibodies, or of complement and 

macrophage phagocytes.

Although baboon recipients became sensitized to Gal, the lack of hemolysis of baboon 

RBCs, with no reduction in hematocrit and no increases in serum bilirubin or lactate 

dehydrogenase, suggested a lack of cross-reactive antibody-mediated destruction of baboon 

RBCs.

When large numbers of WT pRBCs were transfused into baboons depleted of anti-Gal 

antibodies and complement [48], pRBCs could be detected for 12 hours. At necropsy, the 

spleen was found to be congested and grossly enlarged, indicating that the pRBCs had been 

removed from the blood by splenic macrophages.

When α1,3-galactosyltransferase gene-knockout (GTKO) pigs (genetically-modified pigs 

whose cells do not express Gal) became available [49,50], in vitro binding of IgM from 

human or baboon sera was significantly less than to WT pRBCs. IgG binding to GTKO 

pRBCs was absent or minimal [51,52]. Sera had minimal cytotoxicity to GTKO pRBCs 

compared to WT pRBCs. Although antibody binding and serum cytotoxicity to GTKO 

pRBCs were significantly less than to ABO-incompatible human RBCs, they were not 

comparable to binding and cytotoxicity to ABO-compatible human RBCs (Figure 1) [52]. 

Nevertheless, GTKO pRBCs transfused into baboons could be detected in the blood for only 

5 minutes, indicating that RBCs, even from GTKO pigs, are rapidly phagocytosed. While 

these studies were encouraging in some respects, they underscored the principle that rapid 

loss of GTKO pRBCs is associated with the presence of antigens other than Gal and/or to 

other heretofore unknown mechanisms.

The rapid loss of pRBCs appeared to be related to two key factors – (i) antibody binding to 

the pRBCs (thus activating complement), and (ii) phagocytosis of the pRBCs by recipient 

macrophages through either antibody-dependent and/or antibody-independent mechanisms 
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(Table 2). Similar responses have been recorded after the intravenous infusion of mobilized 

pig hematopoietic stem cells or bone marrow cells into baboons, and after human blood 

perfusion through pig livers [134]. Long et al. demonstrated that sensitization to pig antigens 

increased antibody-dependent phagocytosis of pRBCs (Figure 2), indicating that the 

adaptive immune response also has to be prevented (Table 2) [52].

2.4 Recent progress in pig-to-NHP organ transplantation

Recent technological advances have dramatically improved the results of pre-clinical models 

of organ xenotransplantation aimed at overcoming the shortage of human organs [16,17,44]. 

Using an immunosuppressive regimen that prevents a T cell-dependent elicited antibody 

response, survival of pig heterotopic (non-life-supporting) hearts and life-supporting kidneys 

is now being measured in months or even years [120-122,125,136,137], rather than minutes 

as originally reported [42,43].

These encouraging results have been obtained by two key genetic approaches—(i) deletion 

of pig xenoantigens against which humans (and NHPs) have natural (preformed) antibodies, 

and (ii) introduction into the pig cells of transgenes for human complement- and/or 

coagulation-regulatory proteins [17,44,138]. We suggest that the ability to delete key pig 

antigens by genetic manipulation, and novel approaches to inhibit phagocytosis, will 

eventually overcome the barriers to pRBC xenotransfusion (detailed below). On the basis of 

this progress, we suggest it is timely to reconsider pRBCs for clinical transfusion.

3. Overcoming the remaining barriers to pRBC xenotransfusion

3.1 Antigen-specific barriers in xenotransplantation

Pigs express antigens that correlate with human A or O blood group antigens, but only blood 

group O pigs are used in the field of xenotransplantation [36]. Pigs have a single Rh gene 

that does not appear to represent a blood group antigen [139]. The many ‘minor’ blood 

group antigens (e.g., Kell) that have been investigated do not appear to be expressed on 

pRBCs (Gregory Martens, personal communication June 2018). Still, investigation of 

additional variant antigens may need to be explored to prevent potential rejection or 

immunization from developing, as seen in allogeneic transfusion [10].

The presence of antibodies to human leukocyte antigens (HLA) is not uncommon in patients 

who have been exposed to blood transfusion, organ allotransplantation, or pregnancy. 

Increasing evidence suggests that some humans have anti-HLA antibodies that cross-react 

with swine leukocyte antigens (SLA). However, SLA are not expressed on pRBCs and so 

will not be problematic [140].

Three major carbohydrate antigens are expressed on pRBCs against which humans have 

natural (preformed) antibodies, namely Gal, Neu5Gc (N-glycolylneuraminic acid), and Sda 

(Table 3). The major target antigen for primate natural antibodies is Gal, a terminal 

oligosaccharide similar to the human blood group A, B, and O saccharides (Figure 3) [45]. 

Like anti-A/B antibodies, anti-Gal antibodies are believed to develop during infancy as a 

response to colonization of the gastro-intestinal tract by various bacterial and viral flora 

[143].
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When WT pig organs are transplanted or pRBCs are transfused into humans or Old World 

NHPs, expression of Gal results in almost uniform hyperacute rejection or cell lysis, similar 

to that seen after ABO-incompatible organ allotransplantation or blood transfusion. Pigs 

homozygous for GTKO do not express Gal, thereby overcoming this immediate cause of cell 

destruction [49,50].

Human natural antibodies to two other carbohydrate epitopes have been identified (Tables 2 

and 3) [59,61], although the cytotoxicity associated with these antibodies is relatively 

reduced compared to anti-Gal [85,144,145]. Nevertheless, they can initiate lysis of pig cells 

in vitro and cause rejection of pig organs in NHPs. Therefore, if pRBCs are to be transfused 

successfully into humans, RBCs from triple-knockout (TKO) pigs will be required, in which 

all three of these antigens have been deleted (Figure 4) [67]. The current evidence is that 

many patients awaiting kidney allografts (who do not express anti-HLA antibodies) have 

natural anti-pig antibodies directed only to these three known pig antigens [146], although 

there may be other minor, unidentified carbohydrate xenoantigens in the remaining members 

of the population.

A comparative analysis of human antibody binding to pRBCs isolated from GTKO, double-

knockout (GTKO/CMAH-KO), and TKO pigs, as well as autologous and allogeneic (blood 

type O donor) human RBCs, has been carried out [67,142]. Human antibody bound less to 

TKO pRBCs than to allogeneic human RBCs in 43% (36/87) of samples, with varying but 

minimal binding in the remaining specimens (Figure 5) [67]. This demonstrated that TKO 

dramatically reduces or eliminates the xenoantigenicity of these pRBCs.

In the absence of human serum antibody binding to TKO pRBCs, survival of the pRBCs 

after transfusion would likely be prolonged. This would be a result of (i) reduced antibody-

mediated cell loss, and (ii) reduced phagocytosis (resulting from reduced or absent antibody 

binding) [67,142]. Therefore, in some patients, transfusion of TKO pRBCs may be sufficient 

to obtain clinically-relevant prolonged survival of the pRBCs.

Baboons and other Old World monkeys have been established as reliable surrogate hosts in 

xenotransplantation models because they express comparable proteins to humans. Perhaps 

more importantly, they lack certain carbohydrate antigens as do humans, and therefore 

develop similar anti-pig antibodies. For example, neither expresses Gal or Sda, and therefore 

produce anti-Gal and anti-Sda antibodies (which bind genetically-unmodified pRBCs) [147]. 

For these species, therefore, double-knockout pigs lacking Gal and Sda (GTKO/Sda-KO) 

will be required for in vivo experimental studies of pRBC transfusion. However, Old World 

nonhuman primates differ from humans in one important respect: they do express Neu5Gc, 

and therefore do not make anti-Neu5Gc antibodies (in contrast to humans) [60]. 

Alternatively, the capuchin monkey (a New World monkey) mimics humans exactly with 

respect to the antibodies developed against Gal, Sda, and Neu5Gc expressed on pRBCs. 

Therefore, New World monkeys may make a preferable experimental model for studying the 

comparable human antibody response to TKO pRBCs in vivo [147].

3.1.1 Complement regulation—If antibody binding to TKO pRBCs is present, e.g., 

because of expression of other (hitherto unidentified) glycan antigens, the cells may be 
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destroyed by complement activation. Based on experience with pig organ and cell 

transplantation in NHPs, antibody-mediated rejection can be prevented or significantly 

reduced by the expression of a human complement-regulatory protein, such as hCD55 

(decay-accelerating factor), hCD46 (membrane cofactor protein), or hCD59 (membrane 

attack complex-inhibiting protein) [17,44,85,139].

Pigs expressing high levels of one or more human complement-regulatory protein on 

vascular endothelial cells have been available for many years, and demonstrate resistance to 

complement-mediated injury (Figure 6). However, using current technology, it has not 

proved possible to express these proteins on pRBCs, as mature RBCs lack nuclei. hCD46 is 

expressed on almost all human cells (sparing RBCs), including peripheral blood 

mononuclear cells (PBMCs), and has been expressed on porcine PBMCs [66]. If expressed 

on pRBCs, human complement-regulatory proteins would undoubtedly protect the pRBCs 

from lysis. To achieve human transgene expression will be challenging (discussed below), 

and represents the major novel contribution needed to advance this field.

3.2 Phagocytosis of pRBCs

Human macrophages present a unique immunological challenge to xenotransfusion [92,93]. 

Xenografts activate host immunity not only by expressing immunogenic antigens that 

initiate rejection, but also by lacking antigenic inhibitory signals that normally prevent host 

immune responses [94].

One potential mechanism of macrophage activation is associated with species 

incompatibility of CD47/SIRP-α (signal-regulatory protein-α) signaling. Normally, cells 

expressing human (h)CD47 interact with human macrophage SIRP-α to inhibit phagocytosis 

[91-97,106,148,149]. Expression of pig CD47 does not inhibit the activation of human 
macrophages [92], indicating that hCD47 will need to be transgenically expressed in pRBCs 

to prevent phagocytic responses. Transfection of cells with the gene for CD47 from the same 

species as the recipient macrophages prevents phagocytosis by activation of SIRP-α in mice 

[150] and humans [92].

Expression of human CD47 on pRBCs should, therefore, inhibit human macrophage activity 

through its inhibitory effect on human SIRP-α. The generation of human CD47-expressing 

pigs (and the recent production of viable human SIRP-α-expressing mice) increased 

engraftment in a murine model of pig-to-human hematopoietic progenitor cell 

transplantation [96,97]. There was a substantial protective effect of hCD47 expression on 

engraftment, associated with prolonged survival of porcine hematopoietic cells, presumably 

by modulation of macrophage phagocytosis. The generation of human CD47-expressing 

pigs indicates the potential that CD47/SIRP-α signaling can be manipulated. We anticipate 

that the transfusion of TKO/CD55 pRBCs that are additionally transgenic for hCD47 will 

successfully inhibit phagocytosis. Expression of hCD47 may also have a beneficial effect by 

modulating the monocyte and T cell responses [96].

As with transgenic expression of a human complement-regulatory protein, however, 

expression of hCD47 on pRBCs will be difficult, and novel techniques of transgenesis will 

be required.
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3.2.1 Potential methods for expressing human regulatory proteins in pRBCs
—From extensive studies on pig hematopoietic cell transplantation [134], we anticipate that 

the problem of phagocytosis can be resolved by genetic engineering of the pig. However, 

one of the major challenges facing xenotransfusion is to induce expression of human 

transgenes in pRBCs (which lack a nucleus).

Novel gene manipulations in fetal fibroblasts, somatic cell nuclear transfer, and embryo 

implantation may possibly resolve this biological barrier (Figure 7) [64]. Exons and introns 

spanning the protein coding sequences of the pig α1,3-galactosyltransferase (Gal) and 

β4GalNT2 (Sda) genes could be replaced with genes for hCD47 and/or a human 

complement-regulatory transgene (e.g., CD55) open reading frames. α1,3-
galactosyltransferase and β4GalNT2 promoters could drive expression of these transgenes. 

The CRISPR/Cas9 gene editing system has been used to insert transgenes at specific 

genomic locations [151] and a guide RNA could be designed to direct Cas9 to cleave 

specific genomic locations flanking the open reading frames of α1,3-galactosyltransferase 
and β4GalNT2. This would increase the efficiency of gene replacement mediated by 

homologous recombination. Two α1,3-galactosyltransferase-specific Cas9/gRNA complexes 

would need to be electroporated into cells along with the transgene template (Figure 7).

If the described gene-swaps failed to appropriately express CD47 and/or CD55 in pRBCs, an 

alternate approach could be to express the transgenes as a cassette using an exogenous 

promoter. The human elongation factor 1-alpha promoter has been used to express CD47 in 

pRBCs when the entire construct was inserted into the α1,3-galactosyltransferase gene 

[96,97]. Hemoglobin and glycophorin promoters could also be explored.

3.2.2 Natural killer (NK) cells—Natural killer cells have also been demonstrated by in 
vitro studies to participate in rejection following porcine xenotransplantation (although this 

has been difficult to detect in vivo) [98-100]. Transgenic expression of HLA-G and/or E 

and/or Cw3 may inhibit the natural killer cell response that contributes to rejection 

[101-104,152]. Pigs expressing HLA-E or HLA-G have been produced, but not yet fully 

tested on the preferable GTKO (or TKO)/human complement-regulatory protein background 

[95,105,106]. Importantly, studies by Miyagawa’s group indicate that expression of these 

transgenes also inhibits macrophage activity [95,106], and would be an additional approach 

that could be explored to prevent phagocytosis.

3.3 The adaptive immune response

Inhibition of the T cell-mediated immune response is a necessary component of preventing 

rejection following organ xenotransplantation. Blockade of the CD154-CD40 T cell 

costimulation pathway has been shown to successfully block the adaptive immune response 

to a GTKO pig organ transplant [116,117,120-125], whereas conventional pharmacologic 

immunosuppressive regimens have proved less successful.

Regardless, overcoming the adaptive immune response without administering exogenous 

immunosuppressive therapy remains another significant challenge.Certainly, some acutely-

ill patients could tolerate short-term immunosuppression for limited transfusions. However, 

requiring immunosuppression to tolerate repeated pRBC xenotransfusions would effectively, 
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and unacceptably, substitute the morbidities of chronic hematologic conditions (and blood 

transfusions) for those of lifelong immunosuppression. Moreover, there would be 

considerable contraindications in some chronically- or critically-ill patients requiring 

immunocompetence (i.e. cancers, HIV, etc.), or those at risk for microbial infection (i.e. 

requiring parenteral nutrition, indwelling catheters, or requiring mechanical ventilation, 

etc.).

Without exogenous immunosuppressive therapy, sensitization to pRBCs (or contaminating 

WBCs) is likely to develop, but may not be inevitable. (i) Many human sera do not have 

natural antibodies that bind TKO pRBCs, suggesting that there are no additional glycan or 

protein targets on pRBCs for human natural antibodies. The absence of expression of pig 

glycans on pRBCs will abrogate the development of elicited antibodies to these antigens. (ii) 

The absence of expression of SLA on pRBCs will negate the development of elicited 

antibodies to these antigens. (iii) The absence of Gal expression alone [153] and the 

expression of a human complement-regulatory protein [115] have both been demonstrated to 

reduce the T cell response to pig cells, thus reducing the risk of the development of elicited 

antibodies. The proliferative T cell response to TKO pig cells has not yet been tested, but 

may be reduced further.

Nevertheless, some humans demonstrate low levels of antibody binding to TKO pRBCs, and 

these pRBCs almost certainly express low levels of hitherto-unidentified glycan or protein 

antigens to which those subjects (and maybe others) may develop elicited antibodies. One 

approach to this potential problem might be to develop transgenic, ‘enzymatically-

converted’ group O red blood cells, or use polymer derivatives to ‘mask’ any unknown pig 

antigens [154-157].

Several other genetic modifications could be considered, such as transgenic expression on 

pRBCs of the immunosuppressive agent, CTLA4-Ig, which would provide local suppression 

of T cell activation [128,129]. If monitoring indicates that there is a significant inflammatory 

response to the pRBCs (which would, in turn, augment the adaptive immune response), then 

pigs could be engineered to express one or more human ‘anti-inflammatory’ transgenes/

proteins (e.g., hemeoxygenase-1 or A20) [158-161]. There are several genetic-engineering 

techniques to reduce or delete expression of SLA [131-133], but, as SLA is not expressed on 

pRBCs, these approaches will not help.

Recently, in a rat model, autologous mesenchymal stromal cells (and even allogeneic MSCs 

to some extent) were demonstrated to prevent transfusion-elicited sensitization (even when 

transfused several days after the blood transfusion), and so, in the future, this form of 

therapy might become another possible method of preventing xenosensitization [162].

Future Considerations

Prior to considering clinical trials of pRBC transfusion, the pathobiologic barriers must be 

better understood and overcome through both in vitro and in vivo investigations. We must 

characterize the survival of pRBCs after xenotransfusion in NHPs, and determine to what 

extent pRBC loss is related to antibody binding, complement activation, phagocytosis, 
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and/or the adaptive immune response. Significant advances in genetic engineering can be 

applied to pRBCs that may overcome or diminish these barriers. Importantly, for the 

majority of cases, this must be done in the absence of exogenous immunosuppressive 

therapy.

As sensitization to pig antigens does not appear to be detrimental to the outcome of a 

subsequent allograft, pRBC transfusions could be followed successfully by a transfusion of 

ABO-compatible human RBCs [163,164]. This would allow a pRBC transfusion to be 

employed in an emergency before human blood becomes available. It is not known whether 

sensitization to human RBCs (as opposed to sensitization to HLA) results in sensitization to 

pRBCs, though this seems unlikely.

We anticipate that, within the next decade, pRBCs will prove to be satisfactory alternatives 

for human RBCs in clinical transfusion for acute blood loss and for conditions necessitating 

frequent transfusions, such as sickle cell disease. In these latter patients, if they are highly 

sensitized to human RBCs (a potentially life-threatening situation), then consideration could 

even be given to pRBC transfusion under exogenous immunosuppressive therapy.
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Gal galactoseα1,3-galactose

GTKO α1,3-galactosyltransferase gene-knockout

HLA human leukocyte antigens

Neu5Gc N-glycolylneuraminic acid

NHP nonhuman primate

pRBCs pig red blood cells

SIRP-α signal-regulatory protein-α

SLA swine leukocyte antigens

TKO triple-knockout (i.e., pigs that express none of the three known pig 

antigens against which humans have natural antibodies)

WT wild-type
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Practice Points

• Early success in xenotransplantation has demonstrated survival of tissue and 

whole-organs for months to years. These principles can be applied to pig RBC 

xenotransfusion.

• Triple-knockout source pigs (lacking Gal, Neu5Gc, and Sda) drastically 

reduce xenoantigen expression on pig cells, and provides a foundation for 

xenotransfusion.

• Sensitization to pig antigens does not appear to be detrimental to the outcome 

of subsequent human ABO-compatible RBC transfusion.

• Significant advances in genetic engineering may be applied to pig RBCs, 

which could overcome or diminish remaining barriers to xenotransfusion, 

including complement-mediated rejection and phagocytosis.
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Research Agenda

• Future investigations (prior to clinical trials) must characterize (1) the survival 

of porcine RBCs after xenotransfusion in NHPs, and (2) determine to what 

extent porcine RBC loss is related to antibody binding, complement 

activation, phagocytosis, and/or the adaptive immune response.

• Novel methods to introduce human transgenes into pig RBCs (which do not 

have nuclei) will need to be developed before clinical trials can be initiated.
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Figure 1: Human serum complement-dependent cytoxicity (CDC) of ABO-compatible human 
RBCs (ABO-C), ABO-incompatible human RBCs (ABO-I), wild-type pRBCs (WT), and GTKO 
pRBCs (GTKO)
Human sera (50%) of blood types O (n=10), A (n=9), B (n=8), and AB (n=4) were tested for 

CDC of human ABO-C, human ABO-I, pig WT, and pig GTKO RBCs. There was 

significantly greater lysis of WT than of ABO-I and GTKO RBCs (p<0.01). ABO-I RBCs 

sustained significantly greater lysis than of GTKO RBCs (p<0.01), but there was 

significantly greater lysis of GTKO than of ABO-C RBCs (**p<0.01). (Reproduced with 

permission from reference [52])
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Figure 2: Phagocytosis of pRBCs is increased in GTKO-sensitized baboons
When GTKO-sensitized baboon serum (gray) was added to human and pig RBCs, there was 

significantly increased phagocytosis of WT and GTKO pRBCs, but decreased phagocytosis 

of human AB RBCs. When pooled human O serum (white) was added, human ABO-

incompatible (AB) RBCs underwent greater phagocytosis than pRBCs. The small increase 

in phagocytosis of human group O RBCs likely reflects binding of baboon anti-human 

antibodies to the RBCs. *P<0.05, **P<0.01. (Modified with permission from reference [52])
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Figure 3: Structures of human ABO and pig Gal glycans
Pig RBCs express Gal epitopes on oligosaccharides that are similar in structure to the human 

blood type B oligosaccharide, except for the fucose side-arm. (Reproduced with permission 

from reference [45])
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Figure 4: Flow cytometric comparison of human IgM and IgG antibody binding to pig and 
human RBCs
Human IgM (left) and IgG (right) binding to WT, GTKO, GTKO/βGalNT2-KO (DKO), and 

GTKO/βGalNT2-KO/CMAHKO (TKO) pig RBCs and to human RBCs. The significant 

differences in human IgM and IgG binding to the various RBCs are indicated (*p<0.05, 

**p<0.01; ‡<0.05). There was no IgM/IgG binding to TKO pig or human RBCs (ns = not 

significant). (A relative Mean Fluorescence Intensity [MFI] <1 indicates no significant 

binding of IgM or IgG).
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Figure 5: Flow cytometric comparison of human IgG and IgM antibody binding to pig and 
human RBCs
Human sera (n=83) were incubated with RBCs isolated from WT pigs (W), or from pigs 

lacking Gal (i.e., GTKO) and Neu5Gc (i.e., CMAH-KO) (double-knockout, D) or lacking 

Gal, Neu5Gc, and Sda (i.e., β4GalNT2-KO) (triple-knockout, T). These sera were also 

mixed with human (allogeneic) RBCs (H) expressing blood group O. Panels A and B show a 

summary of IgG and IgM binding to various RBCs, respectively. The data represent median 

fluorescent intensity (MFI). Panel C summarizes the number of samples from panels A and 

B where the indicated pRBC MFI is less than the MFI for the human blood group O RBCs. 

(Reproduced with permission from reference [67])
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Figure 6: Protection from serum cytotoxicity provided by transgenic expression of human 
complement-regulatory proteins on nonactivated (left) and TNF-α-activated (right) pig corneal 
endothelial cells
Before activation, there was no serum cytotoxicity to GTKO, GTKO/CD46, or GTKO/

CD46/CD55 pig cells. After activation, serum cytotoxicity was significantly increased, but 

the expression of two human complement-regulatory proteins (CD46 and CD55) almost 

completely prevented cytotoxicity.
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Figure 7: Potential novel techniques for transgenic expression in pRBCs lacking nuclei
(A) CRISPR/Cas9 could be used to cleave genomic regions of GGTA1 (i.e., Gal) at sites 

flanking exons that contain the open reading frame (ORF). A replacement construct 

containing the ORF of CD47 flanked by GGTA1 sequences could be simultaneously 

introduced to facilitate the replacement of GGTA1 protein coding sequences with CD47. (B) 
The identical approach to that used in panel A could be repeated to replace codons encoding 

the CMAH gene with the CD55 ORF.
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Table 1:

Pig RBCs share a number of common characteristics with human RBCs*

Pig Human

Blood groups 27 30

Hematocrit 38-50% 35-45%

Hemoglobin 6-18 g/100ml 12-18 g/100ml

Isotonicity 0.85% NaCl 0.9% NaCl

Lifespan 86 days 120 days

RBC count 5.7-6.9 million/μl 4.2-6.2 million/μl

RBC diameter 4-8 μm 6-8 μm

RBC volume 56-95 ml/kg 65-75 ml/kg

*
Data from references [28-31]
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Table 2:
Immunological barriers to pRBC xenotransfusion

Barrier References Attempts to
overcome barrier

References

Xenoantigenic barriers:Gal, 
Neu5Gc, Sda

Gal:
Galili 1988 [53]
Cooper 1992 [54]
Good 1992 [55]
Doucet 2004 [56]
Neu5Gc:
Asaoka 1994 [57]
Bouhours 1996 [58]
Zhu 2002 [59]
Padler-Karavani 2011 [60]
Sda:
Byrne 2014 [61]
Byrne 2018 [62]
Zhao 2018 [63]

Development of triple-knock out (TKO) 
pigs

Phelps 2003 [49]
Kolber-Simonds 2004 [50]
Long 2009 [52]
Estrada 2015 [64]
Butler 2016 [65]
Lee 2016 [66]
Gao 2017 [31]
Wang 2017 [67]

Complement-mediated lysis CD55
Atkinson 1991 [68]
Dalmasso 1991 [69]
White 1995 [70]
Morgan 2005 [71]
CD46
Lublin 1988 [72]
Perez de la Lastra 1991 [73]
Thorley 1997 [74]
CD59
Sugita 1988 [75]
Rollins 1991 [76]

Transgenic expression of human 
complement regulatory proteins, CD46 
and CD55

Cozzi 1994 [77]
Fodor 1994 [78]
Langford 1994 [79]
McCurry 1995 [80]
Diamond 1996 [81]
Diamond 2001 [82]
Schuurman 2002 [83]
Loveland 2004 [84]
Hara 2008 [85]
Long 2009 [52]
van der Windt 2009 [86]
McGregor 2012 [87]
Burdorf 2014 [88]
Butler 2016 [65]
Lee 2016 [66]

Macrophage phagocytosis Qian 1999 [89]
Leonard 2000 [90]
Ide 2005 [91]
Long 2009 [52]

Transgenic expression of human CD47 Ide 2007 [92]
Yang 2010 [93]
Navarro-Alvarez 2011 [94]
Maeda 2013 [95]
Tena 2014 [96]
Tena 2017 [97]

Natural killer (NK) cells Inverardi 1997 [98]
Baumann 2004 [99]
Kennett 2010 [100]

Transgenic expression of HLA-G and/or 
HLA-E and/or Cw3

Dorling 2000 [101]
Matsunami 2001 [102]
Forte 2005 [103]
Crew 2007 [104]
Weiss 2009 [105]
Maeda 2013 [95]
Esquivel 2015 [107]

T-cell-mediated immune
response

Gill 1994 [107]
Rollins 1994 [108]
Elwood 1998 [109]
Yamada 2005 [110]
Davila 2006 [111]
Koshika 2011 [112]
Ezzelarab 2014 [113]
Griesemer 2014 [114]
Ezzelarab 2015 [115]

CD154 and CD40 blockade-based 
immunosuppressive therapy
Transgenic expression of CTLA4-Ig
CIITA-knockdown
SLA class 1-KO

Buhler 2000 [116]
Kuwaki 2004 [117]
Tseng 2005 [118]
Ezzelarab 2012 [119]
Mohiuddin 2014 [120]
Iwase 2015 [121, 122]
Mohiuddin 2016 [123]
Bottino 2017 [124]
Iwase 2017 [125]
Kim 2017 [126]
Shin 2018 [127]
Martin 2005 [128]
Phelps 2009 [129]
Bottino 2014 [130]
Hara 2013 [131]
Iwase 2015 [132]
Reyes 2014 [133]
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Table 3:
Carbohydrates known to be expressed on pRBCs against which humans have natural 
(preformed) antibodies

Carbohydrate Enzyme References

Gal
(Galactose-α1,3-galactose)

GT
(α1,3-galactosyltransferase)

Cooper 1992 [54]
Good 1992 [55]
Phelps 2003 [49]
Rouhani 2004 [51]
Long 2009 [52]

Neu5Gc
(N-glycolylneuraminic acid)

CMAH
(cytidine monophosphate-N-acetylneuraminic acid hydroxylase)

Zhu 2002 [59]
Padler-Karavani 2011 [60]
Burlak 2014 [141]
Wang 2014 [142]
Lee 2016 [66]

Sda β4GalNT2
(β1,4N-acetylgalactosaminyltransferase)

Byrne 2014 [61]
Estrada 2015 [64]
Byrne 2018 [62]
Zhao 2018 [63]

Blood Rev. Author manuscript; available in PMC 2020 May 01.


	Abstract
	Introduction
	Blood product supply and demand
	Economic and safety burdens impacting human RBC transfusions
	Limitations of repeated transfusion in chronic disease
	Xenotransfusion as a novel alternative
	History of xenotransfusion

	Clinical application of xenotransfusion
	Pig RBCs as a source for clinical transfusion
	Nonhuman primates as surrogate hosts
	Initial studies of pRBC xenotransfusion in NHPs
	Recent progress in pig-to-NHP organ transplantation

	Overcoming the remaining barriers to pRBC xenotransfusion
	Antigen-specific barriers in xenotransplantation
	Complement regulation

	Phagocytosis of pRBCs
	Potential methods for expressing human regulatory proteins in pRBCs
	Natural killer (NK) cells

	The adaptive immune response

	Future Considerations
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Table 1:
	Table 2:
	Table 3:

