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Comprehensive genomic and immunological
characterization of Chinese non-small cell lung
cancer patients
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Deep understanding of the genomic and immunological differences between Chinese and

Western lung cancer patients is of great importance for target therapy selection and

development for Chinese patients. Here we report an extensive molecular and immune

profiling study of 245 Chinese patients with non-small cell lung cancer. Tumor-infiltrating

lymphocyte estimated using immune cell signatures is found to be significantly higher in

adenocarcinoma (ADC, 72.5%) compared with squamous cell carcinoma (SQCC, 54.4%).

The correlation of genomic alterations with immune signatures reveals that low immune

infiltration was associated with EGFR mutations in ADC samples, PI3K and/or WNT pathway

activation in SQCC. While KRAS mutations are found to be significantly associated with T cell

infiltration in ADC samples. The SQCC patients with high antigen presentation machinery

and cytotoxic T cell signature scores are found to have a prolonged overall survival time.
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Lung cancer is among the most frequently diagnosed cancer
and the leading cause of cancer-related mortality1. Non-
small cell lung cancer (NSCLC) contributes 75% of lung

cancer with most patients diagnosed in the advanced stage. The
5-year survival rate for NSCLC is only 15%. In 2015, a total of
733,300 new lung cancer cases and 610,200 lung cancer deaths
were estimated in China2. It remains a significant unmet medical
need and a huge burden on the healthcare system.

Targeted therapies have been successfully developed to treat
NSCLC patients harboring driver gene mutations. Genomics
studies have revealed distinct genetic mutation profiles for ade-
nocarcinoma (ADC) and squamous cell carcinoma (SQCC)3,4.
High prevalence of driver gene mutations and fusions in EGFR,
ALK, RET, ROS1, and KRAS in lung ADC patients, while more
frequent PIK3CA, AKT1, and CDKN2A mutations have been
observed in lung SQCC patients3,4. Notably, non-smoker East
Asian women are more likely to develop ADC and exhibit a
higher incidence of EGFR mutation and a lower KRAS mutation
frequency5,6. Further efforts are required to identify additional
genomic alterations in Asian lung cancer patient population.

In recent years, immunotherapy, especially immune check-
points blockage treatment such as PD-1 and PD-L1 inhibitors
have been approved as first- or second-line treatment for various
lung cancer types7. Targeting LAG3, TIM3, Tregs, and immu-
nosuppressive factors released by Tregs (e.g., TGF-β) into the
tumor microenvironment (TME) have also been proposed as
additional strategies to re-establish the antitumoral immune
response8.

To better prioritize treatment options and develop a more
comprehensive picture of the TME, we carried out the CHOICE
study to perform extensive molecular and immune annotation in
245 Chinese NSCLC patients. To identify additional genomic
targets that are enriched in the Chinese population, we compared
the genomic data with The Cancer Genome Atlas (TCGA)
dataset. The relationship between the immune cell composition in
TME and tumor genomic alteration in the Chinese NSCLC
patients was investigated using the immune cell signatures. The
prognostic role of the immune cell signatures was also evaluated.

Results
Samples and clinical data description. Tumor samples and
adjacent normal tissues were obtained from 245 treatment-naïve
NSCLC patients (ADC: 131, SQCC: 114). The peripheral blood
was also collected to generate germline variants. The detailed
patient clinical information can be found in the Supplementary
Data 1. The mean age of the patients was 61.5 (SD= 9.00) years
for ADC and 63.0 (SD= 7.15) years for SQCC (Table 1). Total

64% (n= 84/131) of ADC patients and 97% (n= 111/114) of
SQCC patients had a history of tobacco use. The DNA and RNA
were extracted and processed for genomics analysis as outlined in
the online methods.

Somatic copy number variation. The GISTIC 2.0 algorithm was
used to identify significantly recurrent focal copy number gains
and losses in ADC and SQCC patients, and the resulting q values
were compared with the respective q values from the TCGA
patients3,4. The overall copy number variation (CNV) profiles in
the CHOICE study demonstrated distinct patterns for different
lung cancer subtypes (Supplementary Fig. 1, Supplementary
Data 2). Arm level gains of 1q, 2p, 3q, 5p, chr7, and 8q as well as
arm level losses of 3p, chr4, 5q, 8p, 9p, 13p, and 17p have been
identified. When comparing SQCC with ADC (Supplementary
Fig. 1a), arm level gains of 2p, 3q and losses of 3p, chr4, 5q, and
13q were more prominent in SQCC. When comparing smokers
versus non-smokers in ADC (Supplementary Fig. 1b), gains of 1q
and chr2 are more prominent in smokers. Despite having a
smaller magnitude of amplification and deletion frequencies
relative to TCGA, CNVs in the CHOICE study were very con-
sistent with those identified in TCGA dataset (Supplementary
Fig. 2a–d). The focal CNV profile between the CHOICE and
TCGA were compared to identify novel focal events in the
Chinese population (Fig. 1). In both TCGA and CHOICE study,
SOX2, WHSC1L1-FGFR1, CCND1, and MYC were identified to
be the top focally amplified genes (Fig. 1a), while CDKN2A,
ERBB4, FAT1, PTPRD, and CSMD1 are among the top focally
deleted genes in SQCC samples (Fig. 1b). For ADC, the top
focally amplified genes are NKX2-1, TERT, MDM2, and MCL1
genes (Fig. 1c), while significant focal deletions were observed for
CDKN2A and 15q11.2 (containing POTEB, NF1P2, SYK, RPL5,
and PIK3R1; Fig. 1d). Several focal events identified in the TCGA
dataset including 9p21.1, LRP1B, FOXP1 in SQCC and 8q24.21,
PTPRD, 13q12.11 in ADC were not found in the current study.
There was significant amplification and deletion events observed
only in the CHOICE study but not in the TCGA dataset. Among
all the CNVs that were unique to the CHOICE study, 15q11.2
was amplified in both SQCC and ADC, while 8p23.1 was
amplified in ADC but deleted in SQCC. More interestingly, both
amplification and deletion events were observed in 14q11.2
(containing OR4K5, OR4K1, TRA, TRD, and CCNB1IP1) in
ADC, indicating a highly variable chromosome structure in this
region.

Somatic mutation and tumor mutation burden. An average of
8.0 somatic mutations per Mb was identified in ADC samples (4.6
non-synonymous mutations per Mb) and 11.8 somatic mutations
per Mb (7.1 non-synonymous mutations per Mb) in the SQCC
cohort. Mutation load has been identified as a strong predictor for
immune checkpoint therapy9. In patients with ADC, smokers
have higher mutation burden than non-smokers (Supplementary
Fig. 3a).

In lung ADC, TP53, EGFR, and KRAS were among the top
mutated genes, whereas TP53, KEAP1, NFE2L2, and KRTAP4-7
were the most significantly mutated (Fig. 2a, b, Supplementary
Data 3 and 4) genes in SQCC. Compared to TCGA, EGFR was
found to have higher frequency of somatic mutations in the
CHOICE ADC patients (Fig. 2, 38.3% vs. 14.0%, Fisher’s exact
test p= 5.3e-5), whereas KRAS (10.9% vs. 33.0%, Fisher’s exact
test p= 5.3e-5) and BRAF (0.8% vs. 10.0%, Fisher’s exact test p=
0.11) mutation frequencies were notably lower (Fig. 2c, Supple-
mentary Fig. 4a, b; see Supplementary Data 5). Prominent ADC
cancer-related genes including TP53, KEAP1, and NF1 had lower
somatic mutation rates, whereas STK11, PIK3CA, and ARID1A

Table 1 Patient demographics

ADC (n= 131) SQCC (n= 114)

Age, mean (SD) 61.5 (9.00) 63.0 (7.15)
Gendera

Men 91 (69) 109 (96)
Women 37 (28) 4 (4)
Unknown 3 (2) 1 (1)

Smoking statusa

No 47 (36) 3 (3)
Yes 84 (64) 111 (97)

Tumor stagea

I 69 (53) 40 (35)
II 26 (20) 46 (40)
III 29 (22) 27 (24)
IV 7 (5) 1 (1)

aAll values refer to percentage
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had consistent mutation rates between the two population
(Fig. 2c, Supplementary Fig. 4a, b, Supplementary Data 5).
Among non-smokers, the rate of EGFR mutation in ADC was
elevated among women compared with men (75% [n= 28/37] vs.
50% [n= 5/10], Fisher’s exact test p= 0.14). For genes commonly
altered in SQCC population, TP53, RB1, and FBXW7 exhibited
higher mutation rates, whereas PIK3CA had lower mutation rates
in the CHOICE study (Fig. 2d, Supplementary Fig. 4c, and
Supplementary Data 6). The mutation frequencies of CDKN2A,
FAT1, NFE2L2, KEAP1, PTEN, NF1, NOTCH1, and ARID1A
were comparable with the TCGA data. Higher mutation
frequencies of PABPC3 (14.2% vs. 2.7%, Fisher’s exact test p=
0.008) in SQCC and IQSEC2 (10.9% vs. 2.3%, Fisher’s exact test
p= 0.012) in ADC were observed in the CHOICE cohort.

The relationship between the cancer driver mutation and
mutation load was examined and found that ADC patients with
EGFR mutation or ALK fusion had significantly lower levels of
mutation burden when compared with EGFR and ALK wild-type
population. However, the same trend was not observed for
patients harboring KRAS mutation (Supplementary Fig. 3b).

Mutation signatures were generated using a proportion of the
nucleotide somatic alteration types10. Consistent with a previous
report11, the CHOICE study exhibited an enrichment of the C > A
mutation in the smokers compared with the non-smokers

(Supplementary Fig. 5). No association was found in the
nucleotide signatures between ADC and SQCC.

Fusion detection. Canonical fusion genes detected in the
CHOICE study included ALK-EML4 (n= 5), CCDC6-RET (n=
1), CD74-ROS1 (n= 1), KIF5B-RET (n= 1), and FGFR3-TACC3
(n= 1) (Supplementary Data 7). All fusions were found in ADC
except for a FGFR3-TACC3 fusion which was found in SQCC.
For all the fusion genes, the ALK-EML4 fusion was the most
frequent canonical fusion identified (4.2%, all in ADC), which is
consistent with the general estimation of 4–7% in both the
Western12 and Chinese population13. ALK rearrangements have
historically been associated with non-smokers14 but the CHOICE
study reported a larger proportion of ALK-EML4 rearrangements
from smokers (n= 3/5, 60%). This finding is consistent with a
recent study in a large cohort of Chinese patients15 which found
no association between smoking status and ALK rearrangements
and may reflect a different demographic relationship compared
with the Western population. In addition to the canonical fusions,
there were several candidate recurrent novel gene fusions detected
such as CLTC-VMP1 and PPFIBP1-STK38L, which ranked high
(>9) in the fusion scoring algorithm (see Supplementary
Methods).
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Tumor-infiltrating lymphocyte enrichment profile in NSCLC.
Enrichment of gene signatures for different immune cell types in
adaptive and innate immunity, as well as gene signatures for
antigen presenting machinery (APM), cytotoxic cell and angio-
genesis were examined using single-sample Gene Set Enrichment
Analysis (ssGSEA). Tumor-infiltrating lymphocytes (TILs) were
shown to be significant in 72.5% of ADC (n= 95/131) and 54.4%
of SQCC (n= 62/114; Fig. 3a). In the CHOICE cohort, effector
memory T (TEM) cells, Tregs and natural killer (NK) cells were
relatively low in both ADC (TEM: 5%, Treg: 0%, NK: 2%) and
SQCC (TEM: 4%, Treg: 0%, NK: 0%). A higher percentage of
APM (ADC 45% vs. SQCC 20%) and Th1 cells (ADC 18% vs.
SQCC 7%) were observed in ADC, while an increased repre-
sentation of B cell infiltration in both SQCC (41%) and ADC
(34%) were also observed.

Between smokers and non-smokers, a similar level of TIL and
APM enrichment was also observed (smokers 70.2% [n= 59/84]
and non-smokers 76.6% [n= 36/47]), Fig. 3b). More smokers
were estimated to have Th1, Th2, and macrophages in the TME,
which may indicate inflammation response. Dendritic cells and B
cells were shown to have a higher level in the TME of the non-
smoker patients.

Association between gene alteration and immune infiltration.
The relative level of immune infiltration for each patient was

investigated for ADC and SQCC. The ssGSEA based signature
score of 26 immune cell types were used to cluster ADC (Fig. 4a)
and SQCC (Fig. 4b) into 3 immune status (online methods):
HIGH, patients having high ssGSEA scores of the various
immune cell types; MIX, a mixture of high and low ssGSEA
scores of the 26 immune cell types; and LOW, low ssGSEA scores
of the 26 immune cell types. As expected, in both ADC and
SQCC, patients with high immune marker gene expression values
(IFNG, PD-L1, PD-1, and CD8) were enriched in immune HIGH
population (Fig. 4a, b). Mutation load was not significantly
associated with different immune status in both ADC and SQCC
patient cohorts. When looking at mutation/amplification differ-
ence in ADC, immune HIGH tumors showed enrichment of
KRAS mutation/amplification compared with the rest of ADC
patients (immune MIX and LOW, Fisher’s exact test p= 0.0002).
An opposite trend was observed for EGFR mutation (Fisher’s
exact test p= 0.015, Supplementary Fig. 6a). STK11 mutations
were found to be associated with the relatively low level of PD-1,
PD-L1, T-cells signatures and elevated level of neutrophils sig-
nature. However, the correlation is not significant except for T-
cells (t-test p= 0.01, Supplementary Fig. 7). It has been reported
that STK11 deficiency can promote neutrophil recruitment and
suppress T cell functions through the production of pro-
inflammatory cytokines16. While in SQCC, immune MIX and
LOW groups showed enrichment for amplification of TP63,
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PIK3CA, and SOX2 as well as TP53 and NFE2L2 mutation
(Supplementary Fig. 6b). PTEN loss and PIK3CA amplification
are enriched in immune LOW and MIX group in SQCC patients
(Fig. 5a). T cell signature and CD8 IHC score were found to be
significantly reduced in those SQCC samples harboring PTEN
loss or PIK3CA amplification (Fig. 5b, c). Furthermore, the high
PIK3CA and/or low PTEN expression is significantly correlated
with low T cell signatures in the SQCC samples (Fig. 5d, e). Loss
of PTEN has been shown to increase the expression of immu-
nosuppressive cytokines such as VEGFA and lead to reduced T
cell infiltration and response to T cell-mediated immunotherapy
in melanoma17.

Expression profiles were also examined for differently
expressed genes among the three immune groups. In total, 147
genes in ADC and 437 genes in SQCC were identified to be
significantly differentially expressed among three immune groups
(Supplementary Fig. 8a, b). Pathway enrichment analysis
identified enrichment of immune-related pathways in ADC
(Supplementary Fig. 8c), while in SQCC, top-ranked enrichment
pathways were driven by different classical cancer-related signal
transduction pathways (Supplementary Fig. 8d). The pathway
analysis identified genes in WNT pathway that are also
differentially expressed. It is consistent with recent findings that
activated WNT/β-catenin pathway is associated with TME
immune cell exclusion in melanoma18. The activated WNT
pathway can down-regulate CCL4 expression via ATF3-
dependent transcriptional repression, which will lead to reduced

infiltration and activation of dendritic cells and CD8+T cells18.
Several cytokines including CXCR3, CXCL9, CXCL10, IL2, and
VEGFA were identified to be differentially expressed between
immune groups (Supplementary Fig. 9a), which suggest immune
exclusion through lack of innate immune sensing or lack of
effector T cell recruitment19. WNT pathway activity was
estimated by ssGSEA using WNT pathway hallmark gene set
from MSigDB. The WNT pathway signature were shown to be
significantly negatively correlated with both CCL4 mRNA
expression and T cell signatures (Supplementary Fig. 9b).

Immunohistochemistry staining. The PD-L1 expression on the
tumor cell and in the tumor microenvironment

To characterize tissue expression of PD-L1 (PD-L1 rabbit mAb,
0.7 mg/mL, cat. no: 13684, cell signaling, diluted at 1:100) in
Chinese NSCLC, formalin-fixed paraffin-embedded (FFPE) sec-
tions from 147 cases were subjected to immunohistochemistry
(IHC) analysis. The PD-L1 positivity rate in the CHOICE study
was 23.1% using H-score ≥50, or 63.9% using >1% tumor cell
positive as a cutoff, which is consistent with what was reported in
the literature on the Western population (Fig. 6a–f). Both PD-L1
protein and mRNA expression were found to be significantly
higher in ADC smokers (Supplementary Fig. 3c). Consistent with
temporal and spatial expression of PD-L1 from previous
reports20,21, expression of PD-L1 showed inter- and intra-tumor
heterogeneity in both ADC and SQCC (Fig. 6g–l). This hetero-
geneity could contribute to challenges of utilizing PD-L1 expression
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as companion diagnostic markers for predicting the response from
anti-PD therapies, especially by testing on small biopsy samples.

Correlation of PD-L1 and CD8. To evaluate the expression of
PD-L1 and CD8 in Chinese NSCLC, dual-color IHC method was
developed and applied to the CHOICE cohort. PD-L1 expression

was quantified in the same way as previously described. CD8
expression in tumor and stroma regions was semi-quantified and
categorized into H, M, and L classes. Like PD-L1 expression, CD8
positivity also showed inter- and intra-tumor heterogeneity. A
strong correlation was observed for the PD-L1 and CD8 protein
expression in ADC (ANOVA p-value= 8.76e-13), but not in
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SQCC (Fig. 6m–p). In addition, T cell signature was also shown
to be significantly correlating with PDL1 mRNA expression
(Supplementary Fig. 10).

Survival analysis of immune group and immune signature. The
patients in the CHOICE study were followed-up for at least 2
years. To verify the validity of survival data, the relationship of
known factors such as stage and smoking status with patient
outcome were tested. High tumor stage was found to be sig-
nificantly associated with patients’ overall survival (OS) time in
both ADC and SQCC (Supplementary Fig. 11). Smokers were
found to have shorter PFS time in ADC cohort. The prognostic

role of the immune cell signatures, the three immune cluster
groups, and mutational load were evaluated. The immune HIGH
group was shown to have favorable OS time when compared with
immune LOW and MIX group in SQCC patients in the
Kaplan–Meier survival analysis (Fig. 7a). The survival analysis of
immune signature showed that only Tfh cells signature (log-rank
test p= 0.01) was found to be significantly associated with patient
OS in ADC patients. Higher APM (log-rank test p= 0.03),
cytotoxic T cell (log-rank test p= 0.02), and pDC (log-rank test
p= 0.03) signature was associated with longer OS survival in
patients with SQCC (Fig. 7b, c, Supplementary Data 9). The
multivariate analysis which take into account of age, stage, and

Fig. 4 Characterization of immune infiltration in the CHOICE population. a Heat map of normalized ssGSEA score for ADC, mutation status of TP53, KRAS,
and EGFR are shown while CNV level of CASC5, FANCG, CDKN2A, CCND1, and SOX2 are shown. b Heat map of normalized ssGSEA for SQCC. Mutation
status of TP53, NFE2L2, KEAP1, and EGFR are shown, while CNV profile of CDKN2A, CASC5, FANCG, CCND1, and SOX2 are shown. Tumor samples were
classified into 3 immune status: HIGH, MIX, and LOW based on the signature score of 26 immune cell types. Samples were also labeled using 5 types of
omics data. (1) Mutation burden for each sample (green). (2) Immune status (red, yellow, and blue for HIGH, MIX, and LOW). (3) Selected significantly
mutated genes in each subtype (black for mutation and white for wild-type). (4) mRNA expression value for four immune marker genes (IFNG, PDL1, PD1,
and CD8) (dark green indicates high expression and light green indicate low expression). (5) GISTIC 2 based CNV for the selective gene. Source data are
provided as a Source Data file. Dark red color represents homozygous amplification, light red for heterozygous amplification, white for diploid, light blue for
heterozygous deletion, and dark blue for homozygous deletion
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treatment methods showed that the APM and cytotoxic T cell
signature remained significant (Cox regression, p-value ≤0.01),
but not significant for the immune group.

Discussion
The CHOICE study performed comprehensive molecular analysis
of the CNV, SNV, and transcriptomic profiles in Chinese NSCLC
patients and compared the results with the TCGA NSCLC dataset
that mainly composed of the Western population. Higher fre-
quency of 8p23.1 loss was found to be significant in the CHOICE
study. Genes in this region, such as MSRA, MFHAS1, DEFB106A,
and DEFB105A, play an important role in the initiation and
progression of lung SQCC22. Focal alteration at 14q11.2 con-
taining olfactory receptor family genes was specifically identified
in lung ADC. It has been reported that smoking is associated with
decreased olfactory performance23. However, little is known
about the functional and integrative mechanisms of the human
olfactory receptor in odorant perception in lung cancer. Focal
deletions of LRP1B, a putative tumor suppressor in lung cancer
was not found in the CHOICE study (Fig. 1) but in TCGA. Focal
amplifications at 8q24.21 were unique to TCGA, which contain
MYC and MIR1208. It has been suggested that they could be used
as biomarkers to select patients with poor prognosis in lung
ADC24.

In lung ADC, the EGFR somatic mutation frequency in the
CHOICE study was notably higher (38.3%) compared with the
rate typically found in the Western population (14–21%)4,25.
Interestingly, a higher rate of EGFR mutation was observed
among women ADC non-smokers (75%) compared with previous

studies26,27. While it was clear that histology and smoking status
are associated with EGFR status, the effect of gender remains
unclear in Asian population26,28, partly due to the high rate of
non-smokers in this women population. Unfortunately, the
CHOICE study, with the limited number of male non-smokers
does not shed any additional light on the effect of gender in this
regard. Lower somatic mutation frequencies were observed for
KRAS (10.9%) and BRAF (0.8%) compared with the Western
population (33–38% for KRAS and 2–10% for BRAF)4,29, which
are consistent with other studies30,31. KEAP1, NFE2L2, and CUL3
are responsible for dysregulation of oxidative stress pathway in
lung cancer and they have been shown to have elevated mutation
rates in NSCLC. Compared to TCGA dataset, ~13% reduction of
KEAP1/NFE2L2/CUL3) mutations in ADC (7.8% vs. 20%) was
observed (Supplementary Data 5) and a 5% increase in SQCC
(36.3% vs. 31%) (Supplementary Data 6) in the CHOICE study.
This finding is interesting given the important role of KEAP1 in
antioxidant stress response in the context of elevated smoking
frequencies found in Chinese NSCLC patients. The mutation rate
is elevated in the CHOICE SQCC (13.3% vs. 5.2%). The identi-
fication of these somatic alterations and their variable frequencies
should be interpreted with some caution as NGS data can be
subject to numerous sources of technical variation including
library prep, sequencing, computational analysis, etc.

It is important to understand the immunological landscape of
NSCLC in the Chinese population, as this information might
reveal the mechanism of response and resistance to specific
immunomodulatory agents and inform future development of
more effective combination approaches. For example, in addition
to the PD-1/PD-L1 axis of immunosuppressive mechanism, the
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presence of MDSCs and Tregs could also contribute to additional
immune suppression in NSCLC. The ssGSEA was used to char-
acterize the relative composition of infiltrating immune cells in
TME. The preliminary findings suggest a diversity in NSCLC
TMEs, offering a comprehensive view of the relative level of
enrichment of different immune subtypes and provided insights
about the complex interactions of NSCLC tumor cells with its
microenvironment. Specifically, the enrichment profile of TILs
suggests the presence of innate immune cells such as macro-
phages, myeloid-derived suppressor cells (MDSCs), and dendritic
cells.

Using ssGSEA based immune signature, enrichment of T cells,
B cells, and a reduction of NK cells in NSCLC was demonstrated,
which is consistent with a recent multiscale immune profiling
study of stage I lung ADC lesions using Cytometry by Time-Of-
Flight (CyTOF)32. While most studies have focused on the cell
type with best anti-tumoral potential, such as CD8+T cells, not
much is known regarding tumor-infiltrating B cells. There is
recent evidence supporting a complex role for TIL-B cells in
modulating the immune response across solid tumors33. B reg-
ulatory (Breg) cells express cytokines such as IL-10, TGF-β, and
immune regulatory ligands such as PD-L1 have been shown to
suppress T cell responses in tumors from different anatomical
origins33. In lung cancer, it has been suggested that TIL-B cells
help to generate potent, long-term immune responses against
cancer by presenting tumor antigens to CD4 TILs33 and their
presence is correlated with improved survival34.

Tumor-infiltrating B cells have been studied most extensively
in breast cancer, where they are present in 25% of tumors and
comprise up to 40% of the tumor-infiltrating lymphocytes and
this has been associated with favorable survival rates in breast
cancer35,36. Tumor-infiltrating B cells are also found in tertiary
lymphoid structures consisting of CD4+, CD8+T, and dendritic

cells, which could promote the formation of tertiary lymphoid
structures by secreting lymphotoxin and chemokines that attract
and stimulate T cells, dendritic cells, and other immune cells37,38.
On the other hand, in mouse tumor model, B cells were shown to
generally inhibit the T cell response. A key factor may be the
activation status of B cells in different contexts. The T cell
response was inhibited by resting B cells and facilitated by acti-
vated B cells. The enrichment profile of B cell infiltration suggests
that there is an opportunity to target tumor cells through reg-
ulation of the B cell functions. Follow-up studies are warranted to
confirm these findings, to better understand the function and
types of B cells in the TME.

Despite promising clinical efficacy in patients with various
cancers39,40, many patients with NSCLC fail to respond to anti-
PD-1/PD-L1 treatment. The CHOICE study observed inter- and
intra-tumor heterogeneity of PD-L1 expression (Fig. 6), which
could contribute to challenges of utilizing PD-L1 expression as a
companion diagnostic marker for predicting the response from
anti-PD therapies. The CHOICE study also evaluated the
expression of PD-1 and CD8 (Fig. 6m–p) and found a correlation
in ADC but not in SQCC. Expression of PD-L1 has been hypo-
thesized to be regulated by IFN-γ released by TILs41,42, thus
spatial proximity between PD-L1 expression and T-cell is a
consideration. PD-L1 mRNA expression was shown to be cor-
related with T cell signature (Spearman’s correlation coefficient
= 0.57, Supplementary Fig. 10). This finding needs to be further
confirmed to examine if the same biomarker strategy would be
used for different histology subtypes.

In SQCC, one subpopulation of immune HIGH patients tends
to have a lower mutation burden, suggesting that the specific type
of neo-antigen might be the key factor to promote the immune
response in TME. A recent study has reported that mutations in
certain genes like CASP8 or TP53 may affect host immune
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response to tumors. Identification of such gene may lead to the
development of personalized immune-based therapy43. Several
mutations/alterations that might play important role in regulating
the immune response were identified. Loss of PTEN and/or
PIK3CA amplification, as well as the activation of WNT pathway
in immune LOW samples in SQCC, were associated with reduced
immune cell signals derived by using the immune signatures.
These findings suggest that targeting PI3K or WNT pathway may
potentially further enhance the efficacy of immunotherapy such
as PD1 in SQCC.

With the biological and analytical limitations of PD-1/PD-L1
IHC, it is more likely to get a better predictive value when
combining biomarkers from different perspectives. Recent pub-
lications suggest that multifactorial biomarkers may be needed to
predict the response of anti-PD therapies, including PD-L1
expression, TILs, tumor antigens, and mutational load40. The
CHOICE study generated data for genetic profiling, PD-L1
expression by IHC and TIL status, and provided comprehensive
descriptive data to characterize these potential biomarkers in
Chinese NSCLC population. Further analysis will be done to
evaluate the correlation between PD-L1 expression and other
biomarkers to find potential complementary markers for PD-L1
IHC, along with future follow-up data for patient outcome.

Finally, our analysis of the relative tumor immune composition
has certain inherited limitations. First, given the heterogeneity of
tumor and complexity of TME, the gene signatures can only
suggest the relative presence of a given immune cell type but
cannot be used to quantify the composition of the immune
environment. Second, given our limited understanding of
immune response in TME, the genes used to generate the
immune signatures might need further optimization to better
characterize immune cell types in NSCLC.

Methods
Sample collection. This study was conducted between September 2013 to October
2016 across 6 hospitals in China (Guangdong Provincial People’s Hospital,
Shanghai Zhongshan Hospital, Peking University People’s Hospital, Nanjing
Medical University Affiliated Cancer Hospital, 1st Hospital of Jilin University and
Jilin Provincial Cancer Hospital; clinicaltrials.gov identifier: NCT02113852). All
patients provided written informed consent to conduct genomic studies in accor-
dance with the ethical principles laid down in the Declaration of Helsinki, the
International Conference on Harmonization Guidelines for Good Clinical Practice,
applicable regulatory requirements and Janssen’s policy on bioethics. The study
was approved by the ethical committees of all participating hospitals. Samples were
either collected prospectively from lung cancer surgical material or retrospectively
(stage IA-IIIA) from the tumor Biobank between 2006 and 2012. Patients with a
history of chemotherapy, biological, immunological therapy, or radical radio-
therapy were excluded.

Demographic data, Eastern Cooperative Oncology Group performance status,
concurrent medications, medical, surgical, and smoking history were obtained.
Patients were categorized based on their smoking habits as smokers (individuals
smoke >20 packs/year or <10 years of smoking cessation history prior to
enrollment) and non-smokers (individuals smoke <100 cigarettes in their lifetime).
Surgically resected tumors, adjacent normal tissue, and matched blood samples
were collected and snap-frozen. Histopathological review of HE stained sections
was performed by pathologists. Only tumor with tumor content ≥60% were
selected for profiling analysis.

DNA from the frozen tissue was extracted from the using QIAamp DNA Mini
Kit (51306) and QIAamp DNA Blood Kit (51106) was used for blood DNA. RNA
isolation was performed using Trizol and RNeasy MinElute Cleanup Kit (74204).

RNA sequencing for expression analysis. RNA quality was analyzed using
Bioanalyzer 2100 and only samples with RIN >8 were used. RNA library was
prepared using TruSeq RNA sample prep kit (RS-122-2001). RNA-seq data were
obtained for both tumor and matched adjacent normal samples for each patient.
RNASeq data were obtained for both tumor and matched adjacent normal samples
for each patient. The raw reads were aligned to the Human genome GRCh37
Gencode v19 using STAR (v2.4.2a)44 with the following setting: out-
FilterMismatchNmax= 10, outFilterMismatchNoverReadLmax= 0.04, out-
SAMstrandField= “intronMotif”. Cufflinks (v2.2) was used with multiple read
error correction option to generate FPKM data45.

Whole-exon sequencing and mutation analysis. Whole-exome sequencing for
tumor and matched blood from all patients were performed on Illumina Hiseq2000
using 2 × 100 bp pair-end sequencing method. The average data output was about
200×coverage. Tumor and normal sequencing FASTQ data were first aligned to the
hg19 UCSC reference genome using Novoalign (v2.03) with the following options:
using base quality sequence calibration (“-k”), Illumina adapter removal (“-a”),
reduction of the alignment score threshold for low complexity reads (“--hlimit 8”),
hard clipping of low-quality bases with a quality < 20 (“-H 20”), filtering of poly-
clonal reads (“-p 5,20”) and reduction of the alignment score threshold (“-p 7,20”).
Then SAM files were converted to BAM format using samtools (v 0.1) and sub-
sequently deduped and sorted using Novosort (v1.03.07). Base quality recalibra-
tion, indel realignment were performed using GATK (v1.6)46.

Variant calls were generated using a combination of multiple callers including
GATK UnifiedGenotyper (v1.6)46, Somatic Sniper (v1.0.5.0)47 LowFreq (v2.1.2)48

Strelka (v1)49, and VarScan 2 (v2.3.5)50. The settings for the variant callers are:
GATK UnifiedGenotyper (run on both tumor and normal samples, subtract
normal variants from tumor, -glm BOTH, -dbsnp137); SomaticSniper (min
alignment mapping quality (Q) > 10 min read depth= 20); Strelka (default setting);
Varscan (min-coverage-tumor= 8, somatic-p-value= 0.99); LoFreq (“lofreq
somatic” with default setting).

SNV and short indel calls generated from each tool were merged and then
annotated using the UCSC hg19 database with SNPEff (v4.0)51. ExaC (r0.2), 1000
Genomes (phase 1), Mills, COSMIC (v74), and dbSNP 138 were also used for the
variant annotation.

The somatic variant calls were generated with the following steps: (1) remove
variants with less than 8 supporting reads and exclude any synonymous and UTR
variants, (2) germline variants from the matched normal tissues were subtracted
from each tumor variant results, (3) any variants identified by the 1000 genome
project and ExAC were excluded (r0.2), (4) the pooled germline variants identified
from 128 blood samples (57 ADC and 71 SQCC patients) were removed from the
final variant calls. To assess the significance of the SNVs, all variants were
processed by MutSigCV52. The TCGA data was obtained from 2016 PanCancer
study in cBioPortal (www.cbioportal.org) using CGDSR R package53,54.

Fusion detection. Reads (FASTQ) were aligned to the transcriptome using the
STAR aligner44 and fusions were called using a combination of three fusion callers:
defuse, TopHat-fusion, and FusionCatcher. Fusion candidates were then compiled
and scored based on key characteristics consistent with what has been observed in
canonical fusions. These features include (i) count of junction and mate pair reads,
(ii) presence of one or more genes in canonical fusions described in the literature55,
(iii) number of fusion callers detecting the fusion, (iv) presence of either partner in
the cancer census56, and (v) the recurrence of fusions found in this dataset.

Somatic copy number data generation and data analysis. Total 238 tumor DNA
samples (ADC: 124 and SQCC: 114) were hybridized to the Affymetrix SNP 6.0
array. Copy number variations of tumor samples were analyzed using the 17 blood
samples as a pooled normal reference and the results were delivered as copy
number status of each individual gene. Data were subsequently processed from the
raw CEL files using Affymetrix Genotyping Console 4.2 to infer a preliminary
copy-number at each probe locus. For each tumor sample, log ratios were com-
puted by normalizing against a modified reference derived from the 17 normal
samples and median normalization was then used to normalize all of the tumor
samples to the median value of the individual tumor sample. The Bioconductor
DNA Copy package was used to analyze SNP6 log-ratio calls for all tumor samples
in ADC and SQCC. Circular Binary Segmentation SEG values were generated with
adjusted p values using standard workflow recommended for CNV detection.
Significant focal copy number alterations were identified from segmented data
using GISTIC 2.0 according to the publisher’s recommendations for cancer
cohorts. Two peaks were considered similar across different data sets if the known
target gene of each peak was the same, or they were located within the same
cytoband (the genomic locations of the peaks overlapped after adding 1Mb to the
start and end locations of each gene).

IHC staining and image analysis. Tumor samples were obtained from 147 sur-
gical resections and processed to make FFPE blocks following standard procedure.
Prior to IHC staining, 4 µm serial sections were prepared for IHC staining of PD-
L1 and cluster of differentiation 8 (CD8). Dual color IHC of PD-1 and CD8, as well
as hematoxylin and eosin staining, were also performed. All stained slides were
evaluated in a blinded fashion by one scientist trained to identify the features of
NSCLC and scoring via criteria defined by a pathologist. Slides were examined for
the presence of PD-L1 and CD8 within the tumor nest and the stroma. Correlation
between PD-L1 and CD8 expression were analyzed semi-quantitatively. CD8
expression in tumor and stroma regions were semi-quantified and categorized into
H, M, and L classes. Positivity of PD-L1 was defined using various criteria, such as
H-score ≥50%, tumor cell positive >50% and tumor cell positive >1%.

Tumor-infiltrating immune cell analysis. Marker genes for immune cell types
and angiogenesis marker genes were identified57,58. Of 26 gene signatures, 11 were
for immune cells in adaptive immunity, 12 for innate immunity, and 3 for MDSC,
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angiogenesis, and antigen presentation machinery. Tumor RNA from 131 ADC
and 114 SQCC lung samples were used in the analysis (Supplementary Data 8).
The immune signature score was calculated using ssGSEA method implemented by
R package GSVA59. The tumor-infiltrating lymphocytes enrichment profiles was
generated using the Preranked GSEA method60. Briefly, the RNAseq data was first
z-score normalized. Then the gene z-score were ranked for each patient and the
immune signature gene lists were selected for comparison of this ranking using the
GSEA method. The immune signature gene lists with false discovery rate (q-value)
<10% were considered as over-represented or enriched.

The immune groups were explored using hierarchical clustering in combination
of considering T cell and B cell immune signature levels. There are two major
clusters identified in the ADC immune signature data (relatively high and low).
Within the cluster with relatively high immune signatures, the patient samples can
be further divided into two subgroups (high and mix group) based on T cell, and B
cell signature levels. For SCC samples, hierarchical clustering identified three major
clusters corresponding to high, low, and mix immune groups. Within the mix
group, a subset of samples show enrichment in B cells, T cells, and elevated PD1
and CD8 expression. This group of patients were classified as immune high
subtype.

To identify differentially expressed genes among three immune groups,
ANOVA and Kruskal–Wallis tests were used. Only genes with FDR <0.01 for both
tests were selected. To minimize overfit, those genes were later filtered to make sure
their expression was not correlated (correlation coefficient <0.6) with any immune
markers used to classify the patients. At last, genes were further filtered by
comparing their mean expression values among three different immune groups. A
fold-change bigger than 2 must be observed from 3 possible pair-wise
combinations. Metacore (V6.31) curated Pathway Maps database was used for the
enrichment analysis and FDR was used to adjust for multiple testing.

Mutation landscape figure generation. The waterfall plot of a mutational land-
scape was generated using GenVisR package61. Mutation types were retrieved from
MutSigCV2 and were ordered by its potential impact from most deleterious to
least. Mutation burden values were also calculated from MutSigCV2 results.

Statistical analysis. All statistical analysis were performed in R. t-test was used for
two group comparison and ANOVA or Kruskal–Wallis test was used for more than
two group comparisons. Multiple comparison corrections were used to calculate
q-values using Benjamini-Hochberg method. Fisher’s exact test was used to com-
pare two categorical variables. For survival analysis, patient’s survival data was
right-censored at 1200 days. Survival analysis was performed using Kaplan–Meier
survival plot and log-rank test p value was calculated. Cox regression was used in
the multivariate analysis to adjust for age, stage and treatment effects. Firth’s
penalized maximum likelihood bias reduction method was implemented using
coxphf package to calculate the hazard ratio and 95% confidence intervals.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Patient clinical data (deidentified) were provided in the Supplementary Data 1. The
complete somatic mutation calls can be found in Supplementary Data 10 and 11. The
VCF files of Exome-seq data have been deposited to the European Variation Archive
(EVA) at the EMBL-EBI under accession number PRJEB31315 (https://www.ebi.ac.uk/
eva/?eva-study=PRJEB31315). The RNA-seq FPKM data have been deposited at figshare
(https://doi.org/10.6084/m9.figshare.7306364.v1). The source data underlying Figs. 1,
2c–d, 3–5, 6p, and 7 and Supplementary Figs. 2, 3, 9, and 10 are provided as Source Data
file. All other relevant data are available from the authors of this study upon request.
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