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Parkinson's disease (PD) is a progressive movement disorder resulting primarily from

loss of nigrostriatal dopaminergic neurons. PD is characterized by the accumulation of

protein aggregates, and evidence suggests that aberrant protein deposition in

dopaminergic neurons could be related to the dysregulation of the lysosomal autoph-

agy pathway. The therapeutic potential of autophagy modulators has been reported

in experimental models of PD. Trehalose is a natural disaccharide that has been

considered as a new candidate for the treatment of neurodegenerative diseases. It

has a chaperone‐like activity, prevents protein misfolding or aggregation, and by

promoting autophagy, contributes to the removal of accumulated proteins. In this

review, we briefly summarize the role of aberrant autophagy in PD and the underlying

mechanisms that lead to the development of this disease. We also discuss reports

that used trehalose to counteract the neurotoxicity in PD, focusing particularly on

the autophagy promoting, protein stabilization, and anti‐neuroinflammatory effects

of trehalose.
1 | INTRODUCTION

Parkinson's disease (PD) is the second most frequent, age‐related

neurodegenerative disorder that is characterized by a progressive loss

of dopaminergic neurons in the substantia nigra pars compacta

(Mishra et al., 2015). Selective loss of nigral dopaminergic neurons

leads to a dramatic decrease in dopamine levels in the striatum, which

leads to the cardinal symptoms of PD like tremor, muscle rigidity,

balance disturbances, and bradykinesia (Dawson & Dawson, 2003;

Learmonth & Freitas, 2002).

Despite the great advances that have been made in the under-

standing of the molecular basis and neuronal pathways of PD over

the last decades, the aetiology of PD remains unclear. About 90% of
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PD cases occur as a sporadic condition that is caused by an interplay

between environmental and genetic risk factors (Ghavami et al.,

2014). Although familial and sporadic forms of PD have different

causes, they present similar phenotypic features suggesting that both

forms may involve common pathophysiological mechanisms. It has

been proposed that mitochondrial dysfunction, oxidative stress, and

the mishandling of damaged proteins and mitochondria contribute to

the progressive nature of PD (Kroemer, Mariño, & Levine, 2010).

An accumulation of intracytoplasmic protein inclusions known as

Lewy bodies (LBs) and Lewy neurites are the histological hallmark of

PD (Ebrahimi‐Fakhari, Saidi, & Wahlster, 2013; Singh, Patel, Dikshit,

& Gupta, 2006). LBs are mainly composed of abnormal aggregates of

α‐synuclein (Iwatsubo, 2003). Post‐mortem brains of patients with

PD exhibit highly phosphorylated, ubiquitinated, and insoluble aggre-

gates of α‐synuclein protein accumulated in LBs and Lewy neurites

(Baba et al., 1998; Spillantini et al., 1998).

At present, there are no proven disease‐modifying or neuropro-

tective therapies for PD patients (AlDakheel, Kalia, & Lang, 2014),
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and treatment is initiated after functional impairment or social

anxiety from the symptoms. Currently, the oral dopamine precursor

levodopa is the most effective treatment for PD and provides good

control of motor symptoms (Poskanzer, 1969). However, complica-

tions such as on–off phenomena and dyskinesia are the conse-

quence of prolonged levodopa treatment that makes this drug less

effective (Prashanth, Fox, & Meissner, 2011). To prevent the motor

complications associated with levodopa, other medications such as

dopamine agonists, amantadine, monoamine oxidase B (MAO‐B)

inhibitors, anticholinergics, or β‐blockers are initiated first in patients

with mild symptoms, patients with tremor as the only or most

important symptom, and patients aged over 60 years (Connolly &

Lang, 2014).

Deep brain stimulation has been developed for improving

the motor complications in PD. Deep brain stimulation treats

levodopa‐responsive symptoms, and the benefits of this therapy

are durable for several years, but it is only indicated for patients

having PD with disabling motor fluctuations and/or resistant tremor

without significant cognitive or psychiatric disorders (Bronstein

et al., 2011).

Recent clinical trials investigating the therapeutic effects of the

dopamine agonist pramipexole, coenzyme Q10, creatine, pioglita-

zone, and adeno‐associated virus‐mediated gene therapy to increase

the expression of neurturin did not provide evidence of their efficacy

(NINDS Exploratory Trials in Parkinson Disease (NET‐PD) FS‐ZONE

Investigators 2015; Bartus et al., 2013; Parkinson Study Group QE3

Investigators et al., 2014; Writing Group for the NINDS Exploratory

Trials in Parkinson Disease (NET‐PD) Investigators et al., 2015;

Schapira et al., 2013).

It has been demonstrated that toxic forms of α‐synuclein aggre-

gates released into the extracellular space can be internalized and lead

to the propagation of pathogenic α‐synuclein seeds (Hansen et al.,

2011). To limit this propagation, both active and passive immunother-

apies against α‐synuclein are currently being investigated in clinical tri-

als (Oertel & Schulz, 2016). Clinical and experimental evidence indicate

that a failure in the autophagy pathway caused by both genetic factors

and environmental neurotoxins plays an important role in PD patho-

genesis (Gan‐Or, Dion, & Rouleau, 2015; Pan, Kondo, Le, & Jankovic,

2008). Approaches such as the use of small molecules with the capac-

ity to block or modulate α‐synuclein aggregation and compounds that

up‐regulate cell‐intrinsic pathways such as the autophagy–lysosome

pathway (ALP) to eliminate the α‐synuclein aggregation are under

development. Rapamycin, also known as sirolimus, is used as an agent

to induce macroautophagy, but its safety profile limits its potential as a

therapeutic for PD (Kalia, Kalia, & Lang, 2015; Oertel & Schulz, 2016).

The neuroprotective effects of agents such as trehalose, which

enhances the clearance of abnormal protein aggregation, have been

previously elucidated, and these agents should be considered as

potential therapies for PD (Tanaka et al., 2004).

In this review, we summarize common mechanisms that may be

involved in the therapeutic effects of trehalose and also provide the

current state of the in vitro and in vivo evidence on the use of this

agent for PD treatment.
2 | AUTOPHAGY: INTRODUCTION AND
PATHWAYS

There are two main protein degradation systems that regulate pro-

tein clearance including the ubiquitin–proteasome system (UPS) and

the ALP (Pan et al., 2008). Under basal metabolic conditions, the

UPS is the major route for degradation of short‐lived and misfolded

proteins as well as the majority of cell constituents (Pan, Kondo,

Le, & Jankovic, 2008). Although, the UPS acts as the first line of

defence against misfolded proteins (Ebrahimi‐Fakhari et al., 2013;

Lynch‐Day, Mao, Wang, Zhao, & Klionsky, 2012; Osellame &

Duchen, 2014), large membrane proteins and oligomeric or aggregated

proteins cannot penetrate the narrow pore of the proteasome barrel

and are thus removed via ALP (Cuervo et al., 2005; Hideshima, Bradner,

Chauhan, & Anderson, 2005; Levine & Klionsky, 2004). Autophagy is a

major proteolytic system that culminates in the lysosomal degradation

of cytoplasmic components, organelles, and proteins (Levine &

Kroemer, 2008). Autophagy tightly modulates the normal balance

between the formation and degradation of cellular proteins, and its

specific roles in cell survival, differentiation, development, and homeo-

stasis have been elucidated (Mizushima & Levine, 2010; Wu, Chen,

et al., 2015). With respect to mechanisms by which a substrate enters

the lysosome, ALP can be subdivided into macroautophagy,

microautophagy, and chaperone‐mediated autophagy (CMA; Cuervo

et al., 2005; Levine & Klionsky, 2004; Mizushima & Komatsu, 2011).

Microautophagy contributes to the slow and continuous turnover of

cytosolic proteins and occurs via invagination of lysosomal membrane

and direct uptake of cytosolic materials by lysosomes, a process similar

to pinocytosis (Pan, Kondo, Le, & Jankovic, 2008).

Macroautophagy, the most general form of autophagy, contributes

to the degradation of large portions of the cytoplasm and even whole

organelles (Xilouri, Brekk, & Stefanis, 2016). In this process, cytosolic

constituents are sequestered within double‐membrane lipid structures

known as autophagosomes, and subsequently, autophagosomes fuse

with a lysosome to form autolysosomes, and their contents are then

broken down into free amino acids by hydrolytic enzymes (Pan,

Kondo, Le, & Jankovic, 2008; Xilouri et al., 2016). The Golgi complex,

endosomes, endoplasmic reticulum, mitochondria, and the plasma

membrane are known sources for the membrane to build the

phagophore (Yang & Klionsky, 2010). Indeed, the formation of

autophagosomes requires the function of autophagy‐related (Atg)

proteins (Cao & Klionsky, 2007; Mizushima & Levine, 2010; Suzuki,

Kubota, Sekito, & Ohsumi, 2007).

The Atg proteins are classified into six functional complexes among

which the ULK1/2 (unc‐51 like autophagy activating kinase 1/2)

complex is the most upstream of autophagosome formation. The

ULK1/2 complex is the target of several cellular signalling pathways

and contributes to autophagy coordination (Chen et al., 2017; Suzuki

et al., 2007; Suzuki & Ohsumi, 2007). In mammalian cells, ULK1

activity is directly modulated by the AMP‐dependent protein kinase

(AMPK) and the mechanistic target of rapamycin kinase (mTOR;

Alers, Loffler, Wesselborg, & Stork, 2012; Kim, Kundu, Viollet, & Guan,

2011; Shang & Wang, 2011). mTOR is a serine/threonine protein
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kinase, which acts as a primary negative regulator of macroautophagy,

and inactivation of mTOR results in the induction of macroautophagy

(Pyo, Nah, & Jung, 2012). Mammalian cells have two distinct

multiprotein mTOR complexes, named mTOR complex 1 (mTORC1)

and mTOR complex 2 (mTORC2). mTORC1 is highly sensitive to cellu-

lar nutrient content and rapamycin (Diaz‐Troya, Perez‐Perez,

Florencio, & Crespo, 2008; Wullschleger, Loewith, & Hall, 2006) and

regulates protein homeostasis and autophagy, whereas mTORC2 reg-

ulates cell survival and proliferation. mTORC1 can inhibit autophagy

under nutrient‐rich conditions by phosphorylating the Atg13 subunit

and disrupting the ULK1–ATG13 complex. In contrast, under glucose

starvation, AMPK stimulates autophagy directly by phosphorylating

ULK1 at the Ser317 and Ser777 residues (Kim et al., 2011). Also, the

conjugation of microtubule‐associated protein 1 light chain 3 (LC3)‐I

with phosphatidylethanolamine to form LC3‐II is a key step in the

formation of autophagosomes such that the LC3‐positive puncta is

an accepted marker for autophagosome formation (Fujita et al.,

2008; Hanada et al., 2007; Klionsky et al., 2008). It has been well

demonstrated that Atg5 plays a critical role in autophagosome forma-

tion by evoking the lipidation of LC3‐I to LC3‐II (Klionsky et al., 2008;

Mizushima et al., 2001).

Proteins are the only cargo degraded via CMA and are selectively

delivered into the lysosome (Wu, Chen, et al., 2015). In contrast to

the other types of autophagy, the arrival of substrates to the

lysosomal lumen does not require vesicle formation, or major changes

in the lysosomal membrane, and proteins are directly transported

across the lysosomal membrane (Arias & Cuervo, 2011; Xilouri et al.,

2016). To be CMA substrates, proteins need to have a specific

targeting motif (KFERQ‐like sequence) in their amino acid sequence,

which is recognized by the cytosolic chaperone Hsp70 (Dice, 1990).

The chaperone and substrate complex interacts with lysosome‐

associated membrane protein type 2a (LAMP‐2A; Bandyopadhyay,

Kaushik, Varticovski, & Cuervo, 2008), driving the transportation of

proteins into the lysosomal lumen with the assistance of lysosomal

hsc70 (Agarraberes, Terlecky, & Dice, 1997; Cuervo, Dice, & Knecht,

1997). It has been shown that the lysosomal mTORC2/PHLPP1/Akt

axis participates in the regulation of CMA activity (Arias et al., 2015).

This modulatory effect is mediated by changes in the kinetics of

assembly and disassembly of the CMA translocation complex in the

lysosomal membrane (Arias, 2015).
3 | AUTOPHAGY IN PARKINSON'S DISEASE

Autophagy plays a key role in the basal maintenance of protein

homeostasis in the nervous system. Because neurons are postmitotic

cells, redistribution of damaged constituents to the daughter cells

does not occur (Pan & Yue, 2014), and autophagic dysfunction can

trigger a cascade of events that lead to neuronal degeneration

(Kochergin & Zakharova, 2016). Furthermore, ageing is an important

element associated with dysfunctions in the protein control machin-

ery. The activities of the UPS and autophagy are decreased during

ageing (Cuervo et al., 2005; Keller et al., 2004; Pan, Kondo, Le, &
Jankovic, 2008), resulting in the accumulation and aggregation of

proteins and possible neurodegeneration as seen in PD (Cuervo

et al., 2005; Wong & Cuervo, 2010). Deficiences in the ALP are

implicated in the progression of several human neurodegenerative

disorders such as Alzheimer's disease, PD, and Huntington's disease

(HD; Crews et al., 2010; Wu, Chen, et al., 2015). In neurodegenerative

diseases, defects in the autophagic machinery can occur at different

stages including autophagosome formation, cargo recognition,

autophagosome fusion with the lysosome, autophagosome clearance,

and cargo degradation (Ghavami et al., 2014).

In the field of PD, several defective genes encoding α‐synuclein,

LRRK2, Parkin, PINK1, ATP13A2, Rab7L, and VPS35 are associated

with autophagy pathways (Gusdon, Zhu, Van Houten, & Chu, 2012;

Hyttinen, Niittykoski, Salminen, & Kaarniranta, 2013; Lynch‐Day

et al., 2012; Zavodszky et al., 2014). α‐Synuclein, the main component

of LBs, is an aggregation‐prone protein. Two main mutations in this

protein (A53T and A30P) have been linked to the early onset of PD

(Recchia et al., 2004). Studies have shown that wild‐type (WT)

α‐synuclein is degraded by the CMA pathway due to the presence

of a CMA‐targeting motif in its sequences (Cuervo, Stefanis,

Fredenburg, Lansbury, & Sulzer, 2004). However, the mutant or

overexpressed form of α‐synuclein undergoes a posttranslational

modification and binds abnormally to lysosome‐associated membrane

protein type 2a (LAMP‐2A), leading to blockage of their translocation

into the lysosomal lumen (Lee & Lee, 2002; Xilouri, Vogiatzi, Vekrellis,

Park, & Stefanis, 2009). Moreover, oxidation of dopamine to

aminochrome induces the formation of α‐synuclein protofibril and

α‐ and β‐tubulin adducts, which could inactivate the CMA pathway.

Also, adducts could prevent the formation of microtubules essential

for the fusion of autophagosome with the lysosome (Munoz,

Huenchuguala, Paris, & Segura‐Aguilar, 2012). A reduction of CMA

activity increases the accumulation of more aggregated proteins and

augments degeneration of dopaminergic neurons (Alvarez‐Erviti

et al., 2010; Cuervo et al., 2004). In this regard, an impairment of the

CMA pathway was found to stimulate macroautophagy as a compen-

satory response to maintain cellular homeostasis. Previous studies

demonstrated that macroautophagy plays a key role in the elimination

of aggregated proteins, including mutant huntingtin, α‐synuclein, and

ataxin (Weissmann et al., 2001; Williams et al., 2006). An accumulation

of autophagosomes in post‐mortem PD brains has been largely linked

to macroautophagy activation (Vila, Bove, Dehay, Rodriguez‐Muela, &

Boya, 2011). Moreover, an overexpression of mutant α‐synuclein

in mice brain increased autophagy markers, including LC3‐II and

Beclin‐1 (Bossy, Perkins, & Bossy‐Wetzel, 2008). Induction of autoph-

agy in cellular and mouse models of PD via rapamycin treatment

enhances autophagic degradation of misfolded proteins (Pan, Kondo,

Zhu, et al., 2008). However, it should be noted that macroautophagy

is also disrupted during disease progression (Mishra et al., 2015). It

was shown that α‐synuclein oligomers, upon direct interaction with

the lipid membrane and vesicles of an organelle, damage their regular

functions. This leads to disruption of the lysosomal integrity and

abnormal permeabilization of lysosomal membranes, defective clear-

ance, and subsequent accumulation of autophagosome (Sulzer,
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2010). In vivo evidence indicates an accumulation of autophagosomes

and depletion of lysosomes in PD post‐mortem brains. Moreover, LBs

in PD brains were strongly positive for autophagosome markers, sug-

gesting that these inclusions might have derived from nondegraded

autophagosomes (Vila et al., 2011). In support of these findings, it

was also shown that genetic or pharmacological activation of

transcription factor EB (TFEB) induces lysosomal biogenesis, prevents

the accumulation of autophagosomes, and protects dopaminergic

neurons (Dehay et al., 2010). Also, it has been revealed that

1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) exposure in

dopaminergic BE‐M17 neuroblastoma cells induces abnormal perme-

abilization of lysosomal membranes, whereas an overexpression of

TFEB in these cells induces lysosomal biogenesis and reduces cell

death (Vila et al., 2011). Collectively, increased autophagy in samples

from PD patients suggests the neurons' effort to withstand cellular

stress (Macchi et al., 2015).
4 | TREHALOSE: WHAT IT IS AND
THERAPEUTIC EFFECTS

Trehalose is a nonreducing and naturally occurring disaccharide that is

widely distributed in many organisms including bacteria, yeast, fungi,

insects, invertebrates, and plants. Trehalose acts as a bioprotectant

and protects cells against a wide variety of environmental conditions

including heat, cold, desiccation, dehydration, and oxidation (Chen &

Haddad, 2004). Trehalose contains no reducing end hydroxyl group,

which makes it a stable molecule unable to take part in glycation reac-

tions and prevents it from being metabolized (Chen & Haddad, 2004;

Ohtake & Wang, 2011). Therefore, it acts in the form of a disaccharide

in peripheral tissues and cells. In healthy humans, trehalose ingestion

des not induce rapid changes in blood glucose (Yoshizane et al.,

2017). As such, after oral administration, trehalose was detected in

the peripheral circulation in mice (DeBosch et al., 2016; Mayer et al.,

2016; Yoshizane et al., 2017). The non‐toxic nature of trehalose

makes it a favourable pharmacological agent, and no adverse effects

were determined for doses up to 10% in safety studies in humans

(Richards et al., 2002). Currently, trehalose is regarded as a safe food

ingredient for humans by the European regulation system following

approval by the U.S. Food and Drug Administration in 2000 (Richards

et al., 2002).

Having many unique physical and chemical properties, trehalose

has been the focus of a wide range of studies (Ohtake & Wang,

2011). Several lines of experimental evidence confirm the inhibitory

effect of trehalose on amyloid formation. For instance, it was shown

that trehalose diminishes amyloid‐β aggregation, the neuropathology

underlying Alzheimer's disease (Du, Liang, Xu, Sun, & Wang, 2013;

Liu, Barkhordarian, Emadi, Park, & Sierks, 2005), and prevents

insulin‐induced amyloid formation in vitro (Arora, Ha, & Park, 2004).

In addition, it attenuates brain pathology in the R6/2 mouse model

of HD (Tanaka et al., 2004) by directly binding to the expanded polyQ

region, which results in apparent stabilization of partially unfolded

mutant proteins. In spite of many supporting data, the exact
mechanisms that induce this protective effect of trehalose are not

clear. There is evidence that trehalose stabilizes protein folding as a

chemical chaperon via direct interaction with protein (Welch & Brown,

1996). Three theories have been proposed to explain the mechanism

by which trehalose stabilizes the protein structure. The preferential

exclusion theory implies that an increased stability of protein in the

presence of trehalose is associated with the removal of a solvation

layer around the protein, which limits its motility and increases its

compactness. The water replacement theory states that trehalose

replaces water and forms hydrogen bonds that provide the major sta-

bilization for protein. According to the vitrification theory, trehalose

forms a glassy matrix and immobilizes proteins inside the matrix, thus

making them more stable to deal with stress conditions (Jain & Roy,

2009; Liu, Ji, Dong, & Sun, 2009). Experimental evidence supports a

preferential hydration hypothesis, which postulates that protein may

be stabilized by preferential exclusion of cosolvent molecules from

the close proximity of the protein (Arakawa & Timasheff, 1982;

Timasheff, 2002). A molecular dynamics simulation study of treha-

lose's interaction with a protein demonstrated that trehalose covers

the protein (Lins, Pereira, & Hünenberger, 2004) and competes with

it in forming hydrogen bonds with the overlaying thin layer of water

around the protein molecule. Therefore, a reduction in the number

of protein and water hydrogen bonds decreases conformational

fluctuations in the protein and contributes towards greater stability

(Ganea & Harding, 2005). Furthermore, an investigation into the

antiamyloidogenic effect of trehalose on hen egg white lysozyme

through docking studies revealed that trehalose interacts with

amyloidogenic regions in hen egg white lysozyme mainly via hydrogen

and hydrophobic interactions and blocking aggregation (Chatterjee,

Kolli, & Sarkar, 2017).

Although there are several studies investigating the activation of

autophagy by trehalose, the underlying mechanism by which it

induces autophagy remains unclear. It has been proposed that treha-

lose can act as an autophagy inducer through an mTOR‐independent

pathway and enhances the clearance of aggregate‐prone proteins like

α‐synuclein, mutant huntingtin, and prion protein (PrPSc; Aguib et al.,

2009; Beranger, Crozet, Goldsborough, & Lehmann, 2008; Sarkar,

Davies, Huang, Tunnacliffe, & Rubinsztein, 2007). Moreover, in the

cellular model of PD and HD, trehalose has been shown to protect

cells against secondary pro‐apoptotic insults in an autophagy‐

dependent manner (Hosseinpour‐Moghaddam, Caraglia, & Sahebkar,

2018; Sarkar et al., 2007). In a recent report, trehalose induced

autophagy in hepatocytes through an AMPK‐dependent pathway,

downstream of GLUT8 (Mayer et al., 2016). However, as the GLUT8

transporter is tissue‐specific and neurons do not contain SLC2A8

(GLUT8) in their plasma membrane, this pathway may not occur in

the brain tissue (Yoon et al., 2017). Also, trehalose can activate TFEB

to enhance ALP by decreasing Akt activity (Palmieri et al., 2017).

Trehalose might induce protective actions through its ability to

protect cells from inflammation; trehalose has been shown to have

an anti‐inflammatory effect against endotoxic shock both in vivo and

in vitro (Echigo et al., 2012; Minutoli et al., 2007; Minutoli et al.,

2008). Almost all of the evidence suggests that trehalose suppresses

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=166#885
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inflammatory responses by inhibiting the NF‐κB pathway (Echigo

et al., 2012; Minutoli et al., 2007; Minutoli et al., 2008).

Trehalose also has antioxidant activity and can scavenge free rad-

icals (Oku et al., 2005). It is worth noting that oxidative damage is

one of the potential drivers of cell death in a variety of human diseases

like disorders associated with ageing and neurodegenerative diseases

(Gandhi & Abramov, 2012). Trehalose exerts a stabilizing effect on

membrane structure and function (Elbein, Pan, Pastuszak, & Carroll,

2003). As reported previously, it prevents lipid peroxidation induced

by ROS in yeast (Herdeiro, Pereira, Panek, & Eleutherio, 2006). In

another in vivo study on rat femoral artery model, trehalose sup-

pressed the production of lipid peroxides in cerebral vasospasm

induced by blood through direct interaction with the membrane

(Echigo et al., 2012). Taken together, trehalose is able to exert a pro-

tective action against environmental stress through a variety of differ-

ent mechanisms. Hence, due to its ability to suppress aggregation and

enhance autophagy, and its anti‐inflammatory properties it could be

an excellent candidate to treat amyloid‐related disorders and neurode-

generative diseases (Casarejos et al., 2011). Trehalose has been shown

to have a neuroprotective effect in both in vivo and in vitro PD

models. In the following section, we will present experimental

evidence on the use of trehalose as a relevant therapeutic agent in

PD (Tables 1 and 2).
4.1 | Modulation of autophagy

A progressive accumulation of specific protein aggregates is the com-

mon neurodegenerative pathology that impairs neuronal function.

Effective therapeutic approaches to amyloid‐related disorders are

achieved when protein self‐assembly into amyloid fibrils is controlled.

PD is a proteopathic disorder in which failure of proteolytic systems

can initiate the formation of LB‐like aggregates (Xilouri, Brekk, &

Stefanis, 2013; Figure 1). Existing literature supports the likelihood

that the therapeutic effect of trehalose against neurodegeneration is

mainly through the induction of the autophagy pathway (Liu et al.,

2005; Sarkar et al., 2007; Tien, Karaca, Tamboli, & Walter, 2016).

Several studies in animal and in vitro models of PD have reported

the ability of trehalose to reduce the toxicity of aggregated proteins;

these are summarized below.

Previously, an in vitro study of neuronal cell lines showed that tre-

halose accelerated the clearance of both A53T and A30P α‐synuclein

mutants through activation of autophagy in a mTOR‐independent

manner (Sarkar et al., 2007; Table 1). Trehalose also increased the

removal of α‐synuclein in an AVV1/2 A53T α‐synuclein rat model of

PD. Indeed, it activated autophagy in the striatum and significantly

reduced the amount of α‐synuclein aggregates, enhanced the survival

of dopaminergic neurons, and improved the motor deficits (He et al.,

2016; Table 2). A study on PC12 cells overexpressing WT or A53T

α‐synuclein demonstrated that trehalose enhanced the clearance of

A53T α‐synuclein, and that this effect was mediated by an up‐

regulation of the macroautophagy PI3K pathway. However, trehalose

had no significant effect on WT α‐synuclein clearance (Lan et al.,
2012; Table 1). This is consistent with the observation that

macroautophagy is the predominant pathway for clearance of A53T

α‐synuclein due to its propensity to aggregate and WT α‐synuclein

can be efficiently cleared by the UPS pathway (Ravikumar, Duden, &

Rubinsztein, 2002; Webb, Ravikumar, Atkins, Skepper, & Rubinsztein,

2003). Inhibition of UPS function by epoxomicin results in the accu-

mulation of polyubiquitinated proteins such as total and phosphory-

lated tau, p‐GSK‐3, and α‐synuclein, as well as the α‐synuclein

intracellular aggregates in NB69 human neuroblastoma cells. After

treatment with trehalose, autophagosomes and autophagy markers

increased in these cells in a dose‐ and time‐dependent manner

(Casarejos et al., 2011; Table 1). In transgenic Caenorhabditis elegans

model expressing human α‐synuclein, treatment with trehalose

reduced ROS and α‐synuclein levels, whereas motility and dopamine

levels were significantly increased. Also, trehalose induced autophagy,

and mRNA expression of genes related to autophagy and heat‐shock

system was increased in the transgenic worms, indicating that treha-

lose has a synergistic interaction with the cellular machinery to tackle

the proteotoxic load of aggregated proteins. Other osmolytes includ-

ing sorbitol and xylitol exert many opposite effects in the C. elegans

model of Parkinsonism (Kaur & Nazir, 2015; Table 2).

A recent study has demonstrated that trehalose decreased the

A53T α‐synuclein expression level in transduced PC12 cells at low

concentration (lower than 1 mM). In contrast, at a high concentration

(higher than 1 mM), trehalose induced the expression of A53T

α‐synuclein and attenuated cell viability through stabilization of A53T

α‐synuclein oligomers (Zhao et al., 2017; Table 1). Likewise, a high con-

centration of trehalose induced cytotoxic effects, an effect also

observed in previous studies (Lan et al., 2012; Table 1). Along these

same lines, trehalose did not efficiently induce autophagy in the brain

of mice after long‐term treatment (3 or 12 weeks; Tanji et al., 2015;

Table 2). Short‐term treatment with trehalose ameliorates dopamine‐

related pathology in the mouse tauopathy model by induction of

mitophagy and improvement in the redox status. However, long‐term

treatment leads to energy deficits due to the uncontrolled activation

of the autophagic pathway. The detrimental long‐term effect of treha-

lose is more noticeable in cerebral regions associated with higher met-

abolic activity and oxidative stress like the striatum, which has a high

content of dopamine (Table 2; Rodríguez‐Navarro et al., 2010). As

shown by Zhao et al. (2017), a high trehalose concentration in PC12

cells affected mitochondrial morphology and reduced the mitochon-

drial membrane potential (Table 1). Therefore, it appears that the low-

est effective dose and duration of maximum neuroprotective effect

need to be defined to avoid the adverse effects of a high dosage.

Despite the general consensus regarding the autophagy‐inducing

activity of trehalose, an in vitro study on PD cell culture models

showed that it blocked autophagy, thus resulting in the accumulation

of lipidated LC3 (LC3‐II), p62, and autophagosomes, whereas a

decreased number of autolysosomes were observed. According to

the results of this study, trehalose disturbed lysosomal membrane

integrity and inhibited autophagosome–lysosome fusion. Neverthe-

less, although α‐synuclein aggregation was significantly increased, cell

viability did not change, suggesting the neuroprotective function of

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=781
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2030
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FIGURE 1 Protective effects of trehalose in Parkinson's disease (PD). The ubiquitin–proteasome system (UPS) and autophagy pathways are
blocked (red arrow) in the pathological state of PD resulting in protein accumulation and Lewy body (LB) formation. Trehalose protects through
different mechanisms. AP: autophagosome
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trehalose was mediated via an autophagy‐independent mechanism

(Table 1; Yoon et al., 2017). Similarly, neuropathological analysis of

brains from a mouse model of LB disease by Tanji et al. revealed that

trehalose increased the accumulation of the autophagic marker LC3‐II

in the brain with no apparent effect on the abnormal aggregation of

α‐synuclein, but it decreased the level of insoluble α‐synuclein in mice.

Moreover, they demonstrated that trehalose can act through modula-

tion of different chaperone molecules such as HSP90 and SigmaR1

(Table 2; Tanji et al., 2015). Various studies have shown that exoge-

nous application of α‐synuclein preformed fibrils (PFFs) promotes

the formation of protein aggregation in cells (Luk et al., 2012;

Volpicelli‐Daley et al., 2011). Interestingly, it has been shown that

when primary cortical neurons are treated with trehalose alone, the

LC3‐II levels increase and remained elevated on treatment with both

trehalose and α‐synuclein PFFs, whereas no significant changes were

observed in the levels of aggregated α‐synuclein, indicating that

PFFs were resistant to degradation even with augmentation of

macroautophagy (Table 1; Redmann et al., 2017).

In a rotenone‐induced PD model, rotenone‐treated PC12 cells

exhibited a significant increase in the levels of aggregated α‐synuclein,

LC3‐II, Beclin‐1, and autophagic substrate p62, and trehalose treat-

ment attenuated this accumulation of LC3‐II and α‐synuclein. Treha-

lose also increased the nuclear translocation of TFEB, an enhancer of

lysosomal biogenesis, and elevated the clearance of autophagosomes

(Wu, Xu, et al., 2015). Decressac and Bjorklund in an in vivo study

showed that excess cellular concentration of α‐synuclein in nigral

dopaminergic neurons caused cytoplasmic sequestration of TFEB

and effectively blocked its nuclear translocation. Genetic or pharmaco-

logical activation of TFEB improved the clearance of toxic α‐synuclein

aggregates. Similar alterations also occur in the human PD brain, and
TFEB colocalizes with α‐synuclein in Lewy bodies (Decressac &

Bjorklund, 2013).
4.2 | Stabilization of protein

The ability of trehalose to fold denatured proteins into their native

structures has been defined in previous studies (Melo et al., 2003).

Although the precise mechanism is not clear, it seems plausible that

trehalose acts as a chaperone and enhances protein folding via direct

interaction with the protein (Jain & Roy, 2009; Welch & Brown,

1996). Conformational transition of α‐synuclein using synchrotron

radiation circular dichroism spectroscopy showed that trehalose can

interact with α‐synuclein and block in vitro polymerization in a dose‐

dependent manner (Ruzza et al., 2015). An assessment of the

inhibitory effect of trehalose on α‐synuclein aggregation revealed that

a low trehalose concentration disaggregates preformed mutant

α‐synuclein (A53T) protofibrils and fibrils into small aggregates or

dissolves them into disordered structures. However, at a higher con-

centration, the structural transition of A53T α‐synuclein into a β‐sheet

was blunted, and the formation of mature fibrils was completely

prevented (Table 1; Yu et al., 2012). In another study, it was revealed

that early coincubation of WT α‐synuclein with trehalose leads to the

formation of amorphous aggregates, and after a longer incubation

large amorphous aggregates are remoulded into small amorphous par-

ticles or into the random coil conformer (Jiang et al., 2013). In contrast,

results from another in vitro study indicated that fibrillization of

α‐synuclein is clearly accelerated in the presence of trehalose (Naik

et al., 2016). In this latter study, it was proposed that the inverse

effect is due to the intrinsically disordered structure of α‐synuclein,

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2552
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which in the presence of trehalose re‐arranged into a partially folded

conformation and the interaction of these structures initiated aggrega-

tion (Table 1; Naik et al., 2016). In a more recent study, Katyal,

Agarwal, Sen, Kumar, and Deep (2018) found that trehalose reduces

potentially toxic fibril load by driving the aggregation route into the

formation of off‐pathway amorphous aggregates, which are unable

to nucleate the formation of amyloid fibrils. Protofibrils and oligomer

species, as nucleation‐prone species, could contribute to neurotoxicity

in the dopaminergic neurons (Goldberg & Lansbury, 2000; Volles et al.,

2001). Therefore, agents that could block protein oligomerization

might represent a potential therapy for PD.

4.3 | Anti‐inflammatory effect of trehalose

Neuroinflammation is proposed to be central to the progressive nature

of several neurodegenerative disorders and occurs in virtually all
FIGURE 2 A schematic presentation of the autophagy–lysosome pathwa
mediated autophagy (CMA) is the main route for α‐synuclein degradation.
binding to lysosome‐associated membrane protein type 2a (LAMP‐2A) rece
synuclein strongly binds to the LAMP‐2A receptor and impairs the CMA p
synuclein. (c) In response to blockage of CMA, clearance of aggregated α‐s
macroautophagy. (d) Up‐regulation of macroautophagy might increase aut
synuclein with organelle lipid bilayers could disrupt and permeabilize the ly
cytosol and accumulation of autophagic vacuoles. (e) Pharmacological activ
biogenesis and alleviates autophagosome accumulation
lysosomal storage diseases with neurological involvement (Farfel‐-

Becker et al., 2011). Nowadays, microglia are a critical target in many

PD therapeutic trials aiming at the attenuation of inflammation and

suppression of the self‐perpetuating ROS production cycle (Glass,

Saijo, Winner, Marchetto, & Gage, 2010). There is overwhelming sup-

port for the ability of trehalose to inhibit inflammatory response in PD

models. For example, treatment of a chronic MPTP‐intoxicated mouse

model of PD with trehalose resulted in the inhibition of both microglial

and astroglial activation, which in turn s at present attenuates the

release of pro‐inflammatory and neurotoxic molecules. Interestingly,

the disruption of the integrity of the blood–brain barrier and also

endothelial cell “cluster” formation, which occur in MPTP‐intoxicated

mice, were diminished by trehalose through its ability to restore the

levels of two tight junctional proteins (ZO‐1 and occludin). The subse-

quent impact of trehalose on the MPTP mouse model was devoid of

motor deficits (Table 2; Sarkar et al., 2014). The link between
y in Parkinson's disease. (a) Under physiological conditions, chaperone‐
Wild‐type α‐synuclein is internalized to the lysosomal lumen through
ptor. (b) In the pathological condition, mutant or dopamine‐modified α‐
athway. CMA inactivation leads to aberrant accumulation of toxic α‐
ynuclein occurs by a compensatory mechanism that is up‐regulation of
ophagosome accumulation. Moreover, the interaction of oligomeric α‐
sosomal membrane, causing the leakage of lysosomal hydrolases to the
ation of the transcription factor EB (TFEB) promotes lysosomal
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microglial activation and neural damage was confirmed in an in vitro

study. NF‐κB pathway activation increased the release of cytokines

including IL‐1β, IL‐6, TNF‐α, and NO in BV‐2 microglial cells that were

challenged with LPS. Trehalose suppressed apoptosis in PC12 cells

and protected these cells against neurotoxicity evoked by microglial

activation (Table 1; He et al., 2014). Moreover, trehalose efficiently

attenuated NF‐κB activation by down‐regulation of toll‐like receptor

4 (TLR4) and protected the PD animal model from LPS‐mediated neu-

roinflammation (Minutoli et al., 2008). In a recent study, Bussi et al.

(2017) showed that exposure to both rapamycin and trehalose effi-

ciently promoted autophagy and decreased the release of pro‐

inflammatory mediators, including NO, in response to LPS and α‐

synuclein in BV2 microglial cells (Table 1). Autophagy may play a crit-

ical role in the control of inflammatory responses through inhibition of

spurious inflammasome activation and down‐regulation of immune

response, induced by the activated inflammasome (Lupfer et al.,

2013; Nakahira et al., 2011; Saitoh et al., 2008), and inhibition of type

I interferon responses either directly or indirectly (Konno, Konno, &

Barber, 2013; Liang et al., 2014; Saitoh et al., 2009). Therefore, thera-

peutic strategies that prevent neuroinflammation by targeting autoph-

agy might be helpful in finding effective treatments for

neurodegenerative diseases (Ghavami et al., 2014).
5 | CONCLUSIONS

Extensive data derived from animal models indicate that trehalose,

via its effect on autophagy, has therapeutic potential in various

proteopathic disorders. There are four main mechanisms for autoph-

agy regulation in eukaryote cells: PI3K/Akt/mTOR, AMPK/ULK1/

mTOR, Bcl‐2/Beclin‐1, and TFEB pathways (Wang et al., 2017). At

present most of the evidence suggests that trehalose can activate

autophagy via each of these pathways, depending on the type of dis-

ease and cell. Nevertheless, there is controversy surrounding the

effect of trehalose on autophagy activation in PD treatment. Although

in many studies an mTOR‐independent pathway is proposed as the

main mechanism of action, recent studies have revealed that trehalose

drives ALP through activation of TFEB function (Evans, Jeong, Zhang,

Sergin, & Razani, 2018; Figure 2). Lysosomal depletion and

autophagosome accumulation in PD neurons corroborate the notion

that TFEB may be a promising target for the development of novel

therapies for PD. Also, on the basis of the experimental evidence, tre-

halose could affect protein aggregation by stabilizing proteins. In PD,

trehalose drives the aggregation of α‐synuclein into amorphous aggre-

gates, which are non‐toxic. However, dose and time‐dependency are

major factors affecting the efficacy of trehalose in PD treatment as

no effect was observed with high‐dose and long‐term use of this

disaccharide. Therefore, determination of the optimal dose and treat-

ment duration with trehalose may be an important direction for future

studies. Above all, it should also be noted that in animal models of PD

treatment with trehalose has been demonstrated to be effective in

improving the manifestation of symptoms associated with parkinson-

ism (He et al., 2016; Kaur & Nazir, 2015; Rodríguez‐Navarro et al.,
2010; Sarkar et al., 2014). Even with short‐term treatment, the num-

ber of Aβ‐positive plaques and motor deficits were reduced in old

PK−/−/TauVLW mice, which were at the limit of their life expectancy

(Rodríguez‐Navarro et al., 2010). Despite the beneficial effects of

trehalose in animal models, no clinical trials designed to assess the effi-

cacy of this disaccharide in human PD subjects have been done. Such

trials should take into consideration the limited intestinal absorption of

trehalose in humans that justifies the need for alternative routes of

administration or the use of tailored formulations allowing systemic

absorption of this disaccharide. In this context, intravenous trehalose

administration has been suggested to tackle the problem of intestinal

degradation of trehalose by trehalase. There is currently evidence

from phase I and II trials supporting the efficacy and safety of

long‐term intravenous trehalose administration in patients with

oculopharyngeal muscular dystrophy and spinocerebellar ataxia type

3 (Argov, Vornovitsky, Blumen, & Caraco, 2015). Given these convinc-

ing data, proof‐of‐concept clinical trials are recommended to be

initiated in patients with neurodegenerative diseases including PD to

assess if intravenous trehalose administration can improve the

symptoms of the disease.

5.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to PHARMA-

COLOGY (Harding et al., 2018), and are permanently archived in the

Concise Guide to PHARMACOLOGY 2017/18 (Alexander, Fabbro

et al., 2017; Alexander, Kelly, Marrion, Peters, Faccenda, Harding,

Pawson, Sharman, Southan, Buneman et al., 2017a; Alexander, Kelly,

Marrion, Peters, Faccenda, Harding, Pawson, Sharman, Southan,

Davies et al., 2017b).
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